Examining the CP properties of the top-Yukawa and the ggH coupling

Marco Menen Higgs 2024, Uppsala, 06.11.2024

Based on [2309.03146] and [2406.03950]

In collaboration with H. Bahl, A. Carnelli, F. Deliot, E. Fuchs, M. Hannig, A. Kotsokechagia, M. Saimpert, L. Olivier Schoeffel

Overview & Motivation

The need for CP violation:

- The SM fails to explain the observed baryon asymmetry of the universe
- Higgs CP violation could help with this issue
- Current experimental limits leave room for CP violation in the Higgs sector <u>CMS ´21, ATLAS ´21, ATLAS ´22, CMS ´23, ATLAS ´24</u>...

The Higgs-top quark coupling:

- > Well accessible at the LHC, only $\mathcal{O}(1)$ Yukawa coupling
- Complementary constraints from indirect probes (ggF2j) and direct probes (ttH)

Overview & Motivation

The need for CP violation:

- The SM fails to explain the observed baryon asymmetry of the universe
- Higgs CP violation could help with this issue
- Current experimental limits leave room for CP violation in the Higgs sector <u>CMS ´21, ATLAS ´21, ATLAS ´22, CMS ´23, ATLAS ´24</u>...

The Higgs-top quark coupling:

- > Well accessible at the LHC, only $\mathcal{O}(1)$ Yukawa coupling
- Complementary constraints from indirect probes (ggF2j) and direct probes (ttH)

(Unlike US presidential election) ((Personal bias included))

Parameterization and framework

- Higgs characterization model: Higgs H assumed to be mixed CP state Artoisenet et al. 13
 Mapping to
- Allows for (effective) couplings with modified CP-character via CPeven (CP-odd) coupling modifiers c_i (\tilde{c}_i)

$$\mathcal{L}_{Yuk} \supset -\frac{y_t^{SM}}{\sqrt{2}} \bar{t}(c_t + i\gamma_5 \tilde{c}_t) tH$$
Also: $\alpha_i = \tan^{-1} \frac{\tilde{c}_i}{c_i}$

$$\mathcal{L}_{ggH} = -\frac{1}{4\nu} \left(-\frac{\alpha_s}{3\pi} c_g G^a_{\mu\nu} G^{\mu\nu,\alpha} + \frac{\alpha_s}{2\pi} \tilde{c}_g G^a_{\mu\nu} \tilde{G}^{\mu\nu,\alpha} \right) H$$
Indirect test of y_t
many events (ggF)

with c_g , $\tilde{c}_g \rightarrow c_t$, \tilde{c}_t in the heavy top limit and without low-mass colored BSM particles in the ggF loop

Monon Loil

SMEFT: backup

Structure

Part I: ggF2j

- Main production mode at LHC
- 2 jets in the final state needed to construct CP-odd observables
- ➤ Combine all CP information in a classifier in the $H \rightarrow \gamma \gamma$ channel
- Many measurements conducted in VBF-like signal region due to more qq initial state events, what about ggF-like signal region

Structure

Part I: ggF2j

- > Main production mode at LHC
- 2 jets in the final state needed to construct CP-odd observables
- Combine all CP information in a classifier in the $H \rightarrow \gamma \gamma$ channel
- Many measurements conducted in VBF-like signal region due to more qq initial state events, what about ggF-like signal region

Part II: ttH

- Fewer events but coupling measured directly
- Measuring CP-odd variables not feasible currently, concentrate on CP-sensitive observables
- > Combine $H \rightarrow \gamma \gamma$, $H \rightarrow b \overline{b}$ and multilep. final states
- > Extension of the current STXS $p_{T,H}$ binning by a second observable

Part I: ggF2j

Analysis strategy

First distinguish ggF2j from relevant Higgs backgrounds (backup)

Current most sensitive study in VBF-like signal region <u>CMS 22</u>

X = ggF2j, VBF

Train a CP-even and a CP-odd classifier in a ggF2j-SR and a VBF-SR

4

- Ellipse from total rate
- > $\Delta \phi_{jj}$ alone is not able to resolve the ellipse

ggF2j

- Ellipse from total rate
- $\blacktriangleright \Delta \phi_{jj}$ alone is not able to resolve the ellipse
- CP-even classifier can resolve the ellipse well

ggF2j

- Ellipse from total rate
- $\blacktriangleright \Delta \phi_{jj}$ alone is not able to resolve the ellipse
- CP-even classifier can resolve the ellipse well
- CP-odd classifier performs much worse

Marc

ggF2

 $\mathcal{L} = 139 \, \text{fb}$

ggF2j-SR

-0.5

0.0

 C_q

1.0

0.5

-1.0

 \widetilde{c}_g

 $\Delta \phi_{ii}$

 $\Delta \chi^2$

10

- Ellipse from total rate
- $\blacktriangleright \Delta \phi_{jj}$ alone is not able to resolve the ellipse
- CP-even classifier can resolve the ellipse well
- CP-odd classifier performs much worse

➤ Combined:
$$|α_g| \le 15^\circ @ 1σ$$

Marc

 $P_+ - P_-, P(c_a^2)$

 $\mathcal{L} = 139 \, \mathrm{fb}^-$

ggF2j-SR

-1.0 - 0.5 0.0

0.5

 c_q

1.0

0.5

-0.5

 \tilde{c}_g

0.5

1.0

ggF2

Comparison between signal regions

- Ellipse in VBF-SR much wider due to lower number of events
- Most sensitivity in the VBF-SR comes from interference events (Backup)
- Caveat: No non-Higgs backgrounds taken into account

ggF2j

Part II: ttH

Analysis strategy

- Look for extension of STXSframework to combine decay channels with focus on CP
- Test most promising CP-even observables, no need to distinguish $t \& \overline{t}$
- Variables are generally not Lorentz-invariant

Observable	Definition	Frame
$p_{T,H}$		lab, $tar{t}$, $tar{t}H$
$\Delta \eta_{tar{t}}$	$ \eta_t - \eta_{ar{t}} $	lab, H , $t\bar{t}H$
$\Delta \phi_{tar{t}}$	$ \phi_t - \phi_{ar{t}} $	lab, H , $t\bar{t}H$
$m_{tar{t}}$	$(p_t + p_{\bar{t}})^2$	frame-invariant
$m_{tar{t}H}$	$(p_t + p_{\bar{t}} + p_H)^2$	frame-invariant

Observables

		Observable	Definition	Frame
		$p_{T,H}$		lab, $tar{t}$, $tar{t}H$
		$\Delta\eta_{tar{t}}$	$ \eta_t - \eta_{ar{t}} $	lab, H , $t\bar{t}H$
		$\Delta \phi_{tar{t}}$	$ \phi_t-\phi_{ar t} $	lab, H , $t\bar{t}H$
		$m_{tar{t}}$	$(p_t + p_{\bar{t}})^2$	frame-invariant
		$m_{tar{t}H}$	$(p_t + p_{\bar{t}} + p_H)^2$	frame-invariant
Angular observables	ſ	ϕ_{C}	$\cos^{-1}\left(\frac{\left \left(p_{p,1} \times p_{p,2}\right)\left(p_t \times p_{\bar{t}}\right)\right }{\left p_{p,1} \times p_{p,2}\right \left p_t \times p_{\bar{t}}\right }\right)$	Н
Aligutal Observables		$\cos heta^*$	$\left. \vec{p}_t \vec{n} \right \left \vec{p}_t \right \left \vec{n} \right $	$tar{t}$
	٢	b_1	$(\vec{p}_t \times \vec{n})(\vec{p}_{\bar{t}} \times \vec{n}) / p_{T,t} p_{T,\bar{t}}$	all
Variables based on		b_2	$(\vec{p}_t \times \vec{n})(\vec{p}_{\bar{t}} \times \vec{n}) / \vec{p}_t \vec{p}_{\bar{t}} $	all
top-quark momenta		<i>b</i> ₃	$p_t^x p_{\bar{t}}^x / p_{T,t} p_{T,\bar{t}}$	all
Collins, Soper ´77, Gunion, He ´96, Q. Cao et al. ´2	20	b_4	$p_t^z p_{ar t}^z / ec p_t ec p_t $	all

Significances were examined for all 30 variables and all possible 2-dimensional combinations

> Multilep. and $b\overline{b}$ final states suffer from large background normalization uncertainty

	$\alpha_t =$	35°	$t\bar{t}H @ \mathcal{L} = 300 \text{ fb}^{-1}$			14 (6	14 (6 \times 6) bins for 1d (2d) dist.				st.	${\rm comb.} {\rm w}/ p_{T,H}^{\rm lab}$			
$H \to \gamma \gamma$	1.51	1.56	1.54	1.56	1.55	1.52	1.55	1.48	1.5	1.51	1.58	1.59	1.5	1.58	1.51
Multilep.	0.53	0.69	0.9	0.89	0.87	0.73	0.69	0.54	0.52	0.45	0.77	0.8	0.48	0.82	0.56
$H \rightarrow b \bar{b}$	0.35	0.43	0.52	0.52	0.51	0.45	0.44	0.38	0.36	0.29	0.47	0.49	0.3	0.5	0.38
Combined	1.64	1.76	1.86	1.87	1.85	1.75	1.75	1.62	1.63	1.61	1.82	1.84	1.6	1.85	1.65
	$p_{T,H}$	$\Delta \eta_{t\bar{t}}$	$\Delta \phi_{t\bar{t}}$	b_1	b_2	b_3	b_4	$m_{tar{t}}$	$m_{t\bar{t}H}$	$p_{T,H}$	$\Delta \eta_{t\bar{t}}$	$\cos \theta^*$	b_1	b_2	b_3
	lab frame						indep. $t\bar{t}$			$t\bar{t}$ fr	ame				

- \succ Lab and $t\bar{t}$ frame shown due to overall higher significances
- > Combinations of variables with $p_{T,H}$ can yield close-to-optimal significances Comparison with BDT: backup

> Best combined 2d significance: $1.91\sigma (\Delta \phi_{t\bar{t}}^{\text{lab}} + b_4^{\text{lab}})$, not shown here)

	$\alpha_t =$	35°	$t\bar{t}H @ \mathcal{L} = 300 \text{ fb}^{-1}$			14 (6	14 (6×6) bins for 1d (2d) dist.				t.	${\rm comb.} {\rm w}/ p_{T,H}^{\rm lab}$			
$H \to \gamma \gamma$	1.51	1.56	1.54	1.56	1.55	1.52	1.55	1.48	1.5	1.51	1.58	1.59	1.5	1.58	1.51
Multilep.	0.53	0.69	0.9	0.89	0.87	0.73	0.69	0.54	0.52	0.45	0.77	0.8	0.48	0.82	0.56
$H ightarrow b \bar{b}$	0.35	0.43	0.52	0.52	0.51	0.45	0.44	0.38	0.36	0.29	0.47	0.49	0.3	0.5	0.38
Combined	1.64	1.76	1.86	1.87	1.85	1.75	1.75	1.62	1.63	1.61	1.82	1.84	1.6	1.85	1.65
	$p_{T,H}$	$\Delta \eta_{t\bar{t}}$	$\Delta \phi_{t\bar{t}}$	b_1	b_2	b_3	b_4	$m_{tar{t}}$	$m_{tar{t}H}$	$p_{T,H}$	$\Delta \eta_{t\bar{t}}$	$\cos \theta^*$	b_1	b_2	b_3
	lab frame						indep. $t\bar{t}$ fr			ame					

- > Lab and $t\bar{t}$ frame shown due to overall higher significances
- > Combinations of variables with $p_{T,H}$ can yield close-to-optimal significances Comparison with BDT: backup

> Best combined 2d significance: $1.91\sigma (\Delta \phi_{t\bar{t}}^{\text{lab}} + b_4^{\text{lab}})$, not shown here)

- > Expected exclusion limits taking $p_{T,H}^{\text{lab}}$ only:
- $\succ H \rightarrow \gamma \gamma \text{ dominates}$ the constraints

Exclusion limits

- > Expected exclusion limits taking $p_{T,H}^{\text{lab}}$ only and taking $p_{T,H}^{\text{lab}} + |\cos \theta^*|$:
- $\succ H \rightarrow \gamma \gamma \text{ dominates}$ the constraints
- Strong potential improvement from a second variable, here: $\alpha_t \leq 52^\circ \rightarrow \alpha_t \leq 43^\circ$
- $\succ \text{ Very similar results for} \\ p_{T,H}^{\text{lab}} + b_2^{\text{lab}} / \Delta \eta_{t\bar{t}}^{t\bar{t}}$

Conclusion & Takeaways

[2309.03146] Part I: ggF2j

- Performed a multivariate CP analysis in a ggF2j-like SR
- Expect much stronger constraints than in VBF-like SR (driven by CPeven observables)
- Outlook: Investigate behaviour of the irreducible background

Conclusion & Takeaways

[2309.03146] Part I: ggF2j

- Performed a multivariate CP analysis in a ggF2j-like SR
- Expect much stronger constraints than in VBF-like SR (driven by CPeven observables)

 $\begin{array}{l} 300 \mathrm{fb}^{-1} (2\sigma) \, \mathrm{similar} \\ & \searrow \, \mathrm{Improvement} \, \mathrm{at} \, 139 \mathrm{fb}^{-1} \, (1\sigma) \mathrm{:} \\ & \alpha_{g/t} \lesssim 25^\circ \rightarrow \alpha_{g/t} \lesssim 15^\circ \end{array}$

Outlook: Investigate behaviour of the irreducible background

Part II: ttH [2406.03950]

- Studied CP violation combining three Higgs decay channels
- > b_2^{lab} , $\Delta \eta_{t\bar{t}}^{t\bar{t}}$ and $|\cos \theta^*|$ as a second STXS dimension have close to optimal sensitivity towards CP
- Outlook: Agree on common top quark definition

Backup: Other notations

Here:
$$\mathcal{L}_{ggH} = -\frac{1}{4\nu} \left(-\frac{\alpha_s}{3\pi} c_g G^a_{\mu\nu} G^{\mu\nu,\alpha} + \frac{\alpha_s}{2\pi} \tilde{c}_g G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} \right) H$$

Separate top loop:
$$\mathcal{L}_{ggH} = -\frac{\alpha_s \pi}{\nu} (c_{gg} G^a_{\mu\nu} G^{\mu\nu,\alpha} + \tilde{c}_{gg} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}) H$$
 Used in CMS `22

$$\Rightarrow c_g = 1 + 12\pi^2 c_{gg}, \quad \tilde{c}_g = -8\pi^2 \tilde{c}_{gg}$$

SMEFT:
$$c_{g/t} \sim 1 + \sum_i {c_i/\Lambda^2} + \cdots$$
, $\tilde{c}_{g/t} \sim \sum_i {\tilde{c}_i/\Lambda^2} + \cdots$

 c_i, \tilde{c}_i : Wilson coefficients

Marco Menen, Leibniz University Hannover / PTB Braunschweig

Backup: CP information in ggF2j

$$\left|\mathcal{M}_{ggF2j}\right|^{2} = c_{g}^{2} |\mathcal{M}_{even}|^{2} + 2c_{g}\tilde{c}_{g}\operatorname{Re}[\mathcal{M}_{even}\mathcal{M}_{odd}^{*}] + \tilde{c}_{g}^{2} |\mathcal{M}_{odd}|^{2}$$

Interference

 \succ Current most sensitive study from CMS in VBF-like signal region $\frac{CM}{CM}$

- > VBF-SR is enriched in ggF2j $q\bar{q}$ initial state and interference events
- > Does the $q\bar{q}$ initial state have most CP-sensitivity?
- > Problems: Initial study conducted with heavy Higgs, in VBF-like signal region, only variable used is $\Delta \phi_{jj}$
- \Rightarrow ggF2j-SR has tons of events, can we gain sensitivity from them?

Backup: Cutflow

	Fraction of accepted events									
Applied cut	ggF2j $ {\cal M}_{ m even} ^2$	ggF2j Interf.	ggF2j $ {\cal M}_{ m odd} ^2$	VBF	VH					
Initial events	100%	100%	100%	100%	100%					
$N_j \geq 2, N_\gamma \geq 2$	48.1%	50.8%	48.1%	62.6%	49.8%					
$egin{aligned} 100 \mathrm{GeV} \leq m_{\gamma\gamma} \ m_{\gamma\gamma} \leq 140 \mathrm{GeV} \end{aligned}$	47.8%	50.5%	47.9%	62.0%	49.4%					
$p_T^{\gamma_1}/m_{\gamma\gamma} \geq 0.35 \ p_T^{\gamma_2}/m_{\gamma\gamma} \geq 0.25$	39.4%	40.9%	39.8%	50.0%	40.5%					
$p_T^{j_1} \geq 30 { m GeV} \ p_T^{j_2} \geq 20 { m GeV}$	38.6%	40.2%	38.6%	49.7%	39.9%					
$egin{array}{l} \eta_j \leq 2.5 \ \eta_\gamma \leq 2.5 \end{array}$	22.9%	21.5%	22.7%	39.8%	31.2%					
$p_T^H \leq 200 { m GeV} { m \star}$	18.6%	18.4%	18.3%	34.4%	26.8%					

* It is possible to relax this cut using $FT_{approx} \rightarrow see Maltoni et al. '14$

Backup: Signal regions

- \rightarrow Use P(signal) > 0.5 as a cut to define signal regions
- > ggF2j with $q\bar{q}$ initial state are identified as VBF-like more often
- ggF2j interference events are also identified as VBF-like more often

Backup: ggF2j signal region

- $> P(c_g^2) \text{ differentiates between} \\ c_g^2 |\mathcal{M}_{\text{even}}|^2 \text{ and } \tilde{c}_g^2 |\mathcal{M}_{\text{odd}}|^2$
- Kinematically very similar, but some separation in outer bins
- Interference term cancels out

- P₊ P₋ differentiates between positive and negative interference
- Interference barely visible due to low cross section & looks more VBF-like
- CP-even terms are symmetric

Backup: VBF signal region

- $\succ P(c_g^2) \text{ differentiates between} \\ c_g^2 |\mathcal{M}_{\text{even}}|^2 \text{ and } \tilde{c}_g^2 |\mathcal{M}_{\text{odd}}|^2$
- Less events than in ggF2j-SR, statistical fluctuations visible
- > Wider peak around $P(c_g^2) = 0.5$

- P₊ P₋ differentiates between positive and negative interference
- Interference much more pronounced due to overall lower events and their VBF-like kinematic

Backup: CP violation in *HVV* – ggF2j-SR

BSM physics might introduce CP violation in multiple Higgs couplings \Rightarrow inject CP violation in VBF production, evaluate effect on c_g , \tilde{c}_g limits

> Limits slightly weaken from $|\tilde{c}_g| \le 0.32$ @ 1σ to $|\tilde{c}_g| \le 0.37$ @ 1σ > Mainly a washout effect between SRs due to wrong BG assumption

Marco Menen, Leibniz University Hannover / PTB Braunschweig

Backup: CP violation in *HVV* – VBF-SR

BSM physics might introduce CP violation in multiple Higgs couplings \Rightarrow inject CP violation in VBF production, evaluate effect on c_g , \tilde{c}_g limits

→ Limits tighten from $|\tilde{c}_g| \le 0.58 @ 1\sigma$ to $|\tilde{c}_g| \le 0.48 @ 1\sigma$ → VBF-SR might "fake" stronger limits not originating from CP violation in ggH

Marco Menen, Leibniz University Hannover / PTB Braunschweig

Backup: Feature importance – ggF2j-SR

CP-even classifier:

- $\succ p_T^{j_1} \text{ and } p_T^{j_2} \text{ seem to be the} \\ \text{most important variables}$
- Variable importance much less pronounced than in CPodd case
- Hard to judge interplay
 symbolic regression (WIP)

Backup: Feature importance – VBF-SR

Marco Menen, Leibniz University Hannover / PTB Braunschweig

Backup: Comparison to global fit

- ➢ Interpret c_g, c̃_g as top-Yukawa coupling modifiers c_t, c̃_t (heavy top limit / strong limits on colored BSM particles)
- Global fit based on experimental results for Higgs signal rates
- > Performed with HiggsTools Bahlet al. 22
- Different form of ellipsis due to recent ttH(bb) measurements ATLAS `19, ATLAS `22
- Similar constraints from our analysis

Backup: ttH event generation

Marco Menen, Leibniz University Hannover / PTB Braunschweig

Backup: ttH significance evaluation

- Significance of excluding a BSM-hypothesis evaluated for all single variables and all 2-dimensional combinations at 300fb⁻¹
- Each bin is required to have > 2 events, otherwise bins are merged
- > $H \rightarrow b\overline{b}, H \rightarrow$ multilep. use no rate information to account for large uncertainty in the non-Higgs background normalization
- Additional uncertainties from statistics and shape:

$$\sigma_i = \sqrt{\sigma_{\rm sys}^2 + \sigma_{\rm stat}^2}$$

> Total significance evaluation from SM yield n_i and BSM yield m_i

$$S = \sqrt{2 \sum_{i}^{N_{\text{bins}}} \left(n_{i} \ln \left[\frac{m_{i} (n_{i} + \sigma_{i}^{2})}{n_{i}^{2} + m_{i} \sigma_{i}^{2}} \right] - \frac{n_{i}^{2}}{\sigma_{i}^{2}} \ln \left[1 + \frac{\sigma_{i}^{2} (m_{i} - n_{i})}{n_{i} (n_{i} + \sigma_{i}^{2})} \right] \right)}_{\text{ATLAS '20}}$$

ATLAS 20, CMS 23, ATLAS 24

Marco Menen, Leibniz University Hannover / PTB Braunschweig

Backup: Comparison with BDT approach

Channel	$t\bar{t}H(ightarrow\gamma\gamma)$	<i>ttH</i> (multilep.)	t t H(→ bb)	Combined
Significance (2D)	1.57	0.94	0.55	1.91
Significance (BDT)	1.75	1.17	0.69	2.21

Backup: ttH background shape

The shape of the background has been neglected so far by considering S/B to be equal in each bin but it could spoil the significances

