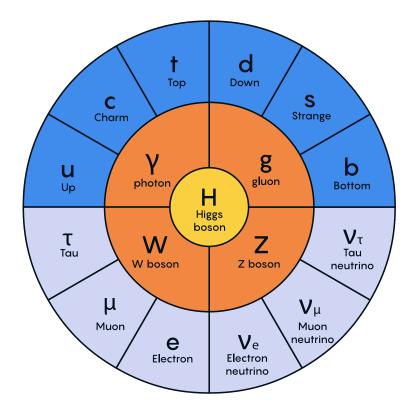


Associated production of Higgses in 2HDMs

S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION

Guglielmo Coloretti
University of Zurich and Paul Scherrer Institut
6.11.2024

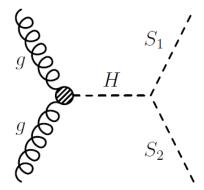

Outline

- (Asymmetric-) associated production of Higgses at the LHC
- Drell-Yan production of Higgses in 2HDMs
- The flavored aligned 2HDM (A-2HDM)
- 4. Correlating $Br[A \rightarrow \gamma \gamma]$ with EDMs
- 5. The 152 GeV and 95 GeV di-photon excesses

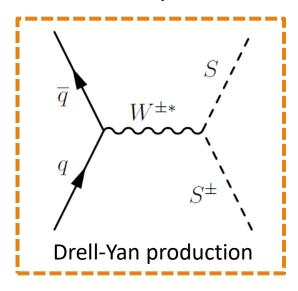
Scalar sector

$$\mathcal{L} = +\mu^2 |\Phi|^2 - \lambda |\Phi|^4$$

- Minimality of the scalar sector of the SM not guaranteed theoretically
- Scalar extensions common to multiple NP models
- Run-3 data (on their way) and HL-LHC stage will provide a unique opportunity to inspect non-trivial signatures


(Asymmetric-) associated production

ATLAS and CMS review


 Provides a yet unexplored window on new physics [Talk by Maggie] [Talk by Davide]

- Additional particles required in the signal regions (on top of the decays of the NP candidate)
- Reduced SM background and enhanced NP sensitivity

Future lepton colliders!

Gluon-fusion initiated via a heavy scalar

Drell-Yan production

New Higgses mostly produced via Drell-Yan at the LHC must have specific properties

Transform non-trivially under $SU(2)_L$

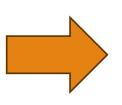
No direct (or tiny) Yukawa couplings

Have small vacuum expectation value

Small mixing with the SM Higgs boson

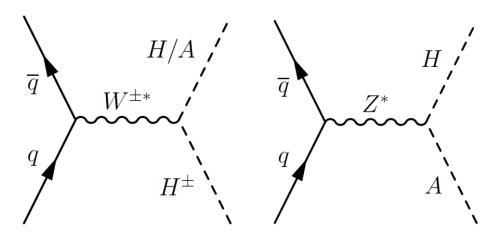
Gauge interaction with SM fields

Suppressed gluon-fusion production

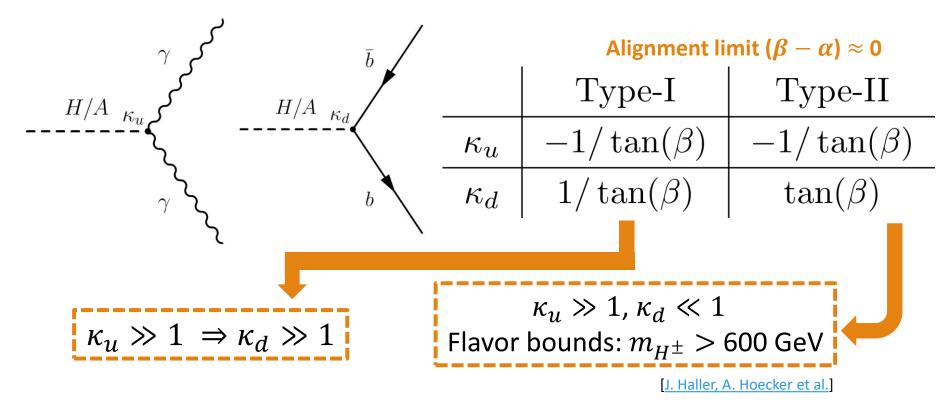

Suppressed VBF and VH production

Alignment limit

2HDMs and Drell-Yan


2HDMs strongly motivated: MSSM, GUT, PQ (strong CP), custodial symmetry

$$Y_{\Phi_{
m NP}}\ll 1$$
 $\langle\Phi_{
m SM}
anglepprox v,\langle\Phi_{
m NP}
angle\ll 1$ Small mixing


Suppressed GF
Suppressed VBF/VH
Higgs/Flavor bounds

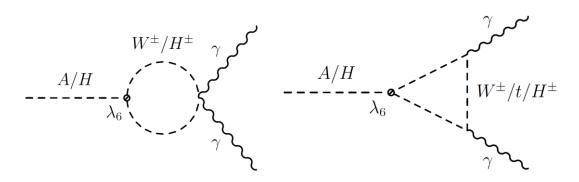
Drell-Yan is the main production mechanism

2HDMs and Drell-Yan

Difficult to obtain sizable $Br[H/A \rightarrow \gamma \gamma]$ with Z_2 symmetries for masses around the EW scale

Composite Higgs? Relaxing Z₂ symmetries?

A-2HDM


[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

Yukawa's of $\phi_1 \propto$ Yukawa's of $\phi_2 \implies$ NO FCNC (tree)

$$\begin{split} \mathcal{L}_Y = & - \, \overline{Q}_L Y_d(\phi_1 + \zeta_d \phi_2) d_R - \overline{Q}_L Y_u(\tilde{\phi}_1 + \zeta_u^* \tilde{\phi}_2) u_R \\ & - \, \overline{L}_L Y_\ell(\phi_1 + \zeta_\ell \phi_2) \ell_R + \text{h.c.} & \quad \zeta_u \ll \mathbf{1} \to \text{suppressed GF} \\ & \quad \text{(small mixing)} \end{split}$$

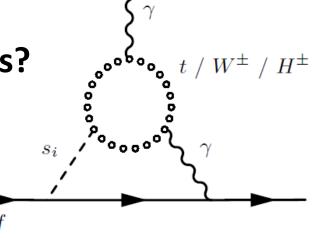
• No Z_2 symmetry imposed $\Longrightarrow \lambda_6$ and λ_7 terms allowed

$$\mathcal{V} = \mathcal{V}_{Z_2} + \left[\underline{\lambda_6}(\phi_1^{\dagger}\phi_1) + \underline{\lambda_7}(\phi_2^{\dagger}\phi_2)\right]\phi_1^{\dagger}\phi_2 + \text{h.c.}$$

Sizable Br $[H/A o\gamma\gamma]$ through H^\pm loop

A-2HDM: CP-violation

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]


 CP-violation of the model (Baryogenesis?)

[K. Enomoto, S. Kanemura, Y. Mural Yukawa sector: ζ_u , ζ_d , ζ_ℓ

Scalar potential: λ_5 , λ_6 , λ_7

- $\Re[\lambda_6]/\Im[\lambda_6]$ drives $Br[H/A \to \gamma\gamma]$
- Correlating Br[$A \rightarrow \gamma \gamma$] with EDMs?

$$i d_f \bar{f} \sigma^{\mu\nu} q_{\mu} \gamma_5 f \subset$$

Higgs basis

- Higgs-flavor symmetry: $U(2)^{ab}_{HF}\Phi_a=\Phi_b$
- $\langle \Phi_1 \rangle = v, \langle \Phi_2 \rangle = 0$; $\lambda_{1,2,3,4,5} \iff Z_{1,2,3,4,5}$ Suppressed VBF / VH (small mixing) $\lambda_{6,7} \iff Z_{7,6}$ Suppressed VBF / VH (small mixing)
- **Explicit treatment of CP-violation**

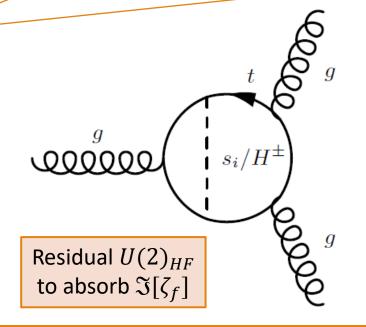
$$\Im(Z_5^* Z_6^2) = \Im(Z_5^* Z_7^2) = \Im(Z_6^* Z_7) = 0$$

SM-Higgs mass | Alignment | H/A mixing

$$\mathcal{M}_{hHA}^{2} = v^{2} \begin{pmatrix} Z_{1} & \Re(Z_{6}) & -\Im(Z_{6}) \\ \Re(Z_{6}) & \frac{1}{2}[Z_{34} + \Re(Z_{5})] & -\frac{1}{2}\Im(Z_{5}) \\ -\Im(Z_{6}) & -\frac{1}{2}\Im(Z_{5}) & \frac{1}{2}[Z_{34} - \Re(Z_{5})] \end{pmatrix}$$

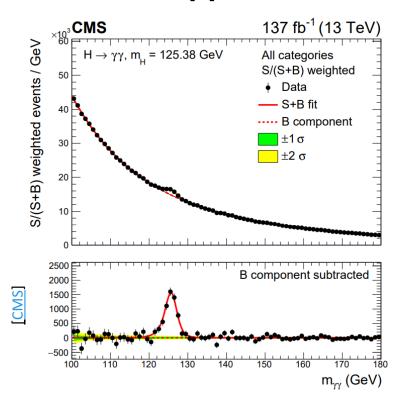
 $Br[H/A \rightarrow \gamma \gamma]$ sizable!

 $oldsymbol{Z_7}$ independent of mixing angles

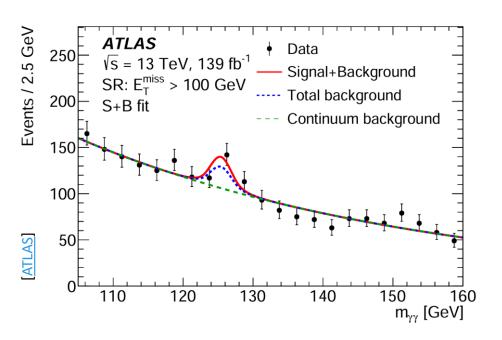

EDMs

Constraints on $Br[H/A \rightarrow \gamma \gamma]$

- Electron gives stringent bounds (10⁻³⁰ e cm⁻¹)
- Projections for neutron/proton (10⁻²⁸/10⁻²⁹ e cm⁻¹)

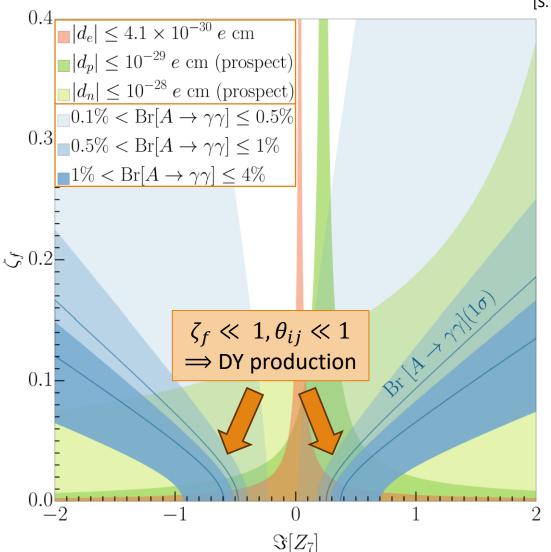

$$d_n = + (0.78 \pm 0.03)d_d - (0.20 \pm 0.01)d_u$$
$$- e(1.1 \pm 0.55)\tilde{d}_d - e(0.55 \pm 0.28)\tilde{d}_u) + e(50 \pm 40) \text{ MeV } d_G$$

- RGE improved chromomagnetic contributions
- Analytic results
 [W. Altmannshofer, S. Gori, N. Hamer, H. Patel]
- H^{\pm} contribution $\propto \Im[\zeta_u^* \zeta_d]$



Hints for New Physics at 152 GeV

No significant excess in inclusive $\gamma\gamma$ searches



Interesting excesses in $\gamma\gamma + X$ (X represents additional particles in the signal regions)

Associated production mechanism

A-2HDM: $A_{152} \rightarrow \gamma \gamma$

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

m	h	H	A	H^\pm	ATLAS
[GeV]	125	200	152	130	-

•
$$\zeta_u = \zeta_d = \zeta_\ell = \zeta_f \in \mathbb{R}$$

$$\theta_{12} = 10^{-3}$$

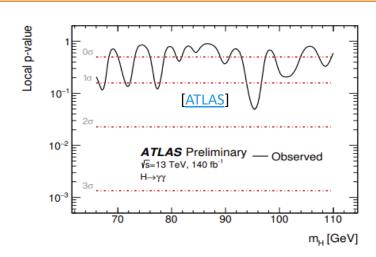
$$\theta_{13} = \theta_{23} = 10^{-2}$$

•
$$Z_2 = -Z_3 = 0.2$$

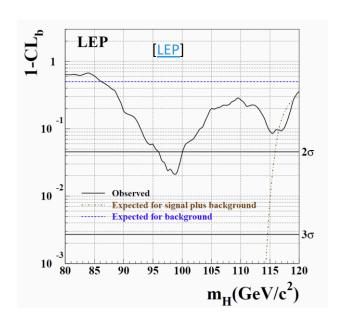
•
$$\Re[Z_7] = 0.1$$

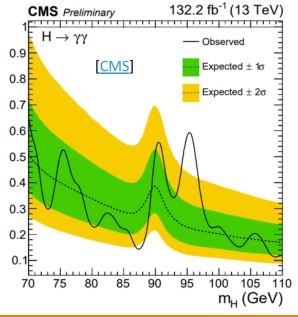
 HiggsTools, perturbativity, vacuum stability

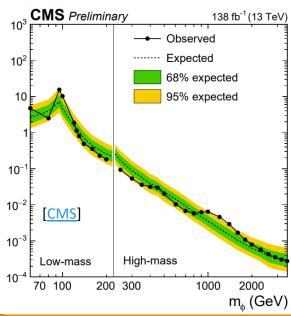
Hints at 95/98 GeV Inclusive searches

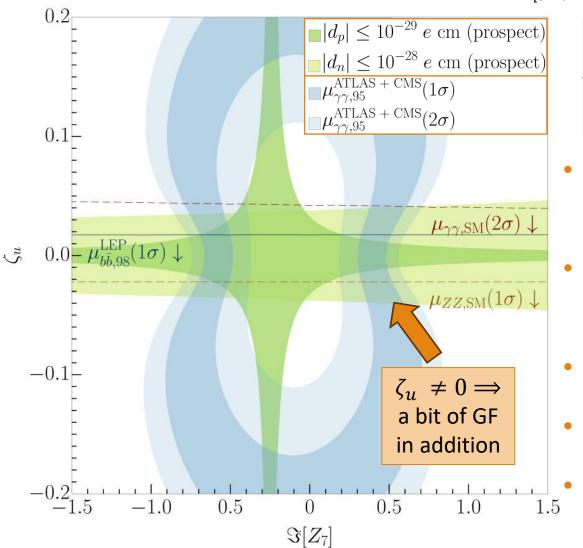

LEP: $Z + b\overline{b}$ (2.3 σ)

ATLAS: $\gamma\gamma$ (1.7 σ)


CMS: $\gamma\gamma$ (2.9 σ)


CMS: $\bar{\tau}\tau$ (2.4 σ)


(but not seen by ATLAS)



A-2HDM: $A_{95} \rightarrow \gamma \gamma$, $H_{98} \rightarrow bb$

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

m	h	$\mid H \mid$	A	H^{\pm}	ATLAS
[GeV]	125	98	95	130	-

• Gluon fusion contribution: $\zeta_d = \zeta_\ell = 0, \ \zeta_u \in \mathbb{R}$

•
$$\theta_{12} = 0.25 \; (\mu_{b\bar{b},98}^{\text{LEP}})$$

 $\theta_{13} = 10^{-2}, \theta_{23} = 3 \times 10^{-2}$

•
$$Z_2 = -Z_3 = 0.2$$

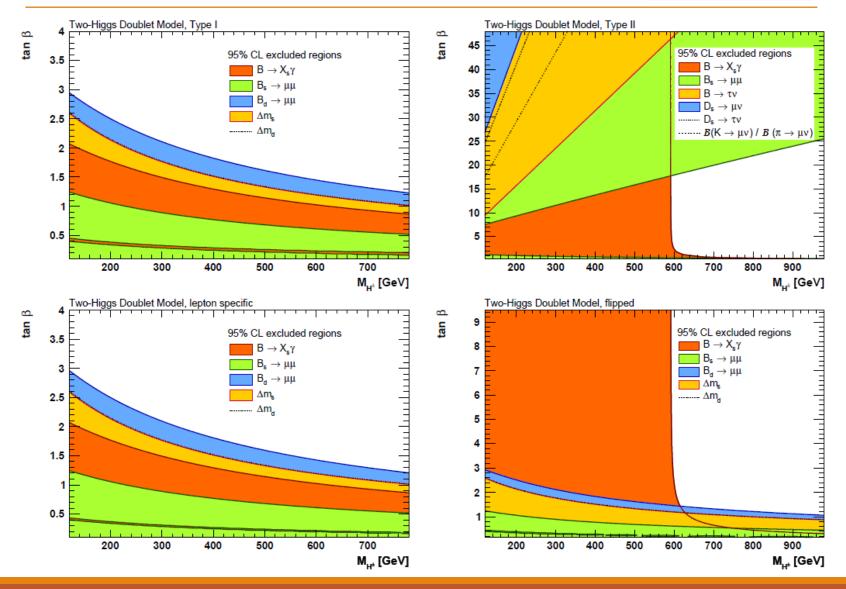
•
$$\Re[Z_7] = 0.1$$

HiggsTools, perturbativity, vacuum stability

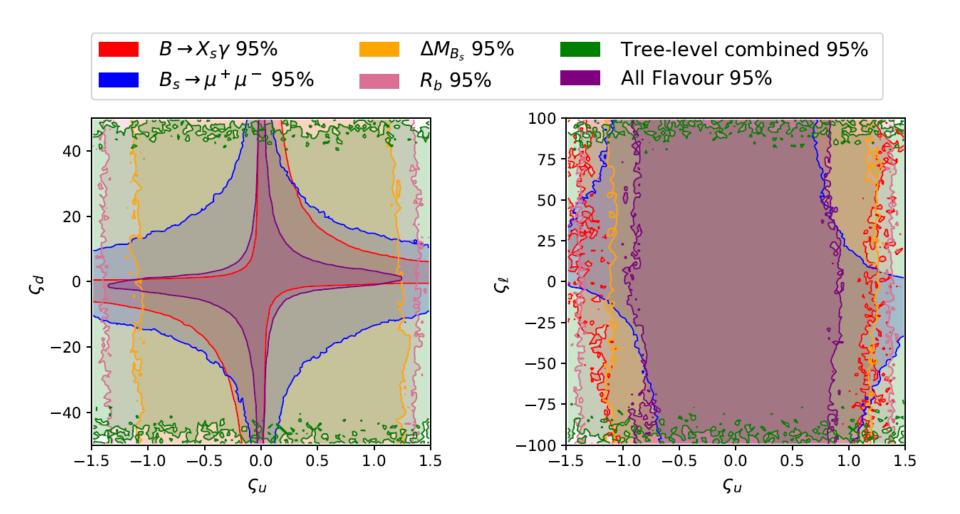
Conclusions and Outlook

- Asymmetric associated production of scalars is a prominent signature to look for NP at the LHC
- A-2HDM offers sizable $Br[H/A \to \gamma \gamma]$ which can be correlated to CP-violating effects such as EDMs
- A-2HDM provides an independent explanation of the diphoton excesses at 95 GeV and at 152 GeV
- Outlook: correlate $Br[H/A \to \gamma \gamma]$ to Baryogenesis, SFOPT and the effects in the trilinear SM-Higgs coupling

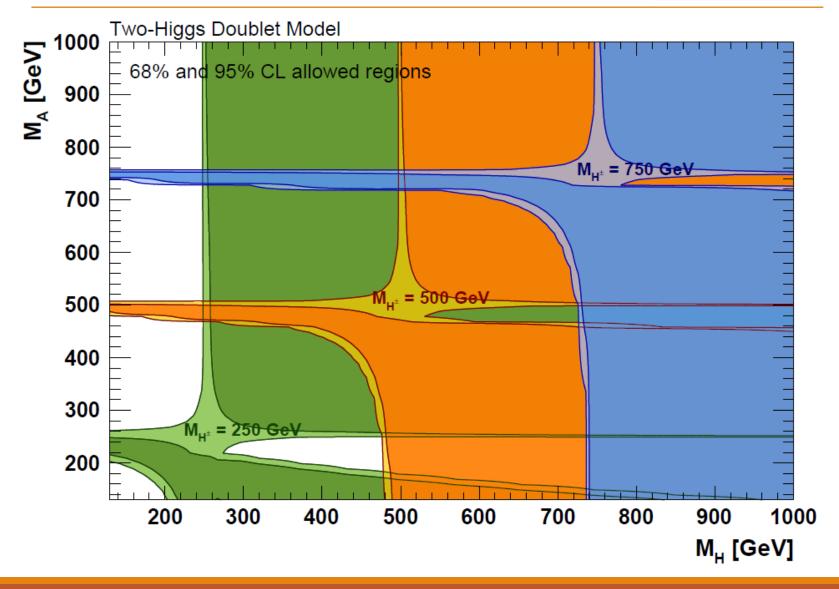
THANK YOU FOR THE ATTENTION!



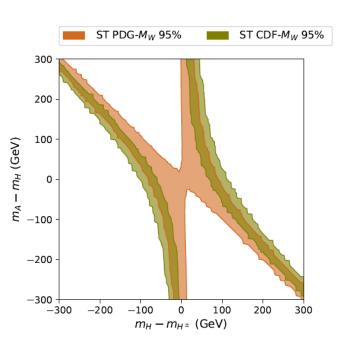
BACK UP SLIDES

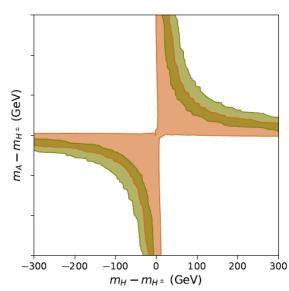

2HDMs: flavor bounds

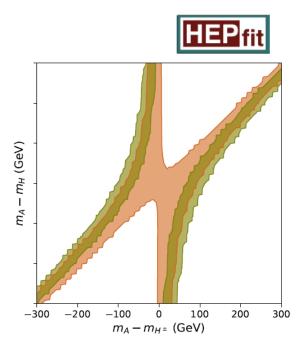
[J. Haller, A. Hoecker et al.]


A-2HDM: flavor bounds

[A. Karan, V. Miralles, A. Pich]


2HDMs: EW precision

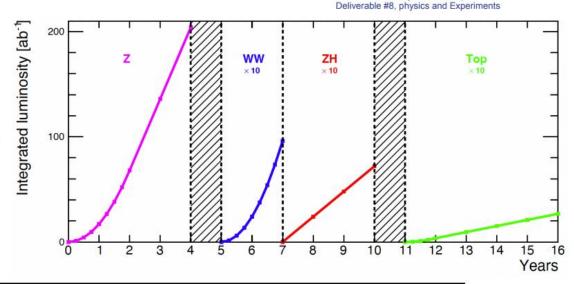

[J. Haller, A. Hoecker et al.]



A-2HDM: EW precision

[A. Karan, V. Miralles, A. Pich]

FCC-ee prospects


Courtesy of Rebeca Gonzalez Suarez

FCC feasibility Mid-term report -

Scalars produced in associated production via DY are a prominent candidate for FCC-ee

FCC-ee

- 16 years, 4 IPs
- Flexibility in the run scenario: in order and operation periods.
 - Additional runs, e.g. 125GeV possible
- Stringent experimental requirements

integrated luminosity per year summed over 4 IPs corresponding to 185 days of physics per year and 75% efficiency

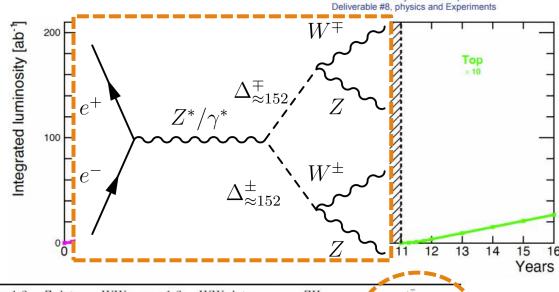
all the data of LEP1 in minutes

Working point	Z, years 1-2	Z, later	WW, years $1-2$	WW, later	ZH	$t\bar{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 1	63	240	340-350	365
Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab ⁻¹)	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	-	3	1	4
Number of events	6×10^{1}	² Z	2.4×10^{8}	WW	$1.45 \times 10^{6} \mathrm{ZH}$ $+$ $45 \mathrm{k \ WW} \rightarrow \mathrm{H}$	1.9 × 10 +330k +80k WW	ZH

Rebeca Gonzalez Suarez (UU) - PSI Particle Physics Summer School 2024

76

FCC-ee prospects


Courtesy of Rebeca Gonzalez Suarez

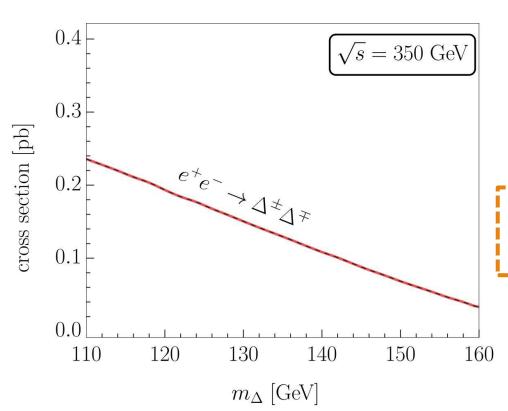
FCC feasibility Mid-term report -

 Scalars produced in associated production via DY are a prominent candidate for FCC-ee

FCC-ee

- 16 years, 4 IPs
- Flexibility in the run scenario: in order and operation periods.
 - Additional runs, e.g. 125GeV possible
- Stringent experimental requirements

	Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	tī	
integrated inosity per year	\sqrt{s} (GeV)	88, 91,	94	157, 1	63	240	340-350	365
med over 4 IPs	Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
rresponding 185 days or	Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.5
vsics per year 75% efficiency	Run time (year)	2	2	2	-	3	1	4
70 70 Ciliatericy			0			$1.45\times 10^6\mathrm{ZH}$	1.9×1	
he data of	Number of events	$6 \times 10^{12} \text{ Z}$		$2.4 \times 10^8 \mathrm{WW}$		$^+$ 45k WW \rightarrow H	+330k +80k WV	


Rebeca Gonzalez Suarez (UU) - PSI Particle Physics Summer School 2024

76

LEP1 in minutes

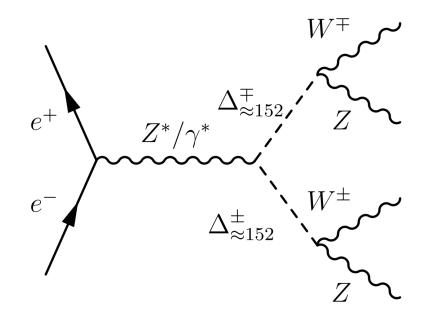
Real triplet at the FCC-ee

- Only Z^*/γ^* s-channel (suppressed $\Delta^0\Delta^0$ production)
- Pair production of the charged components

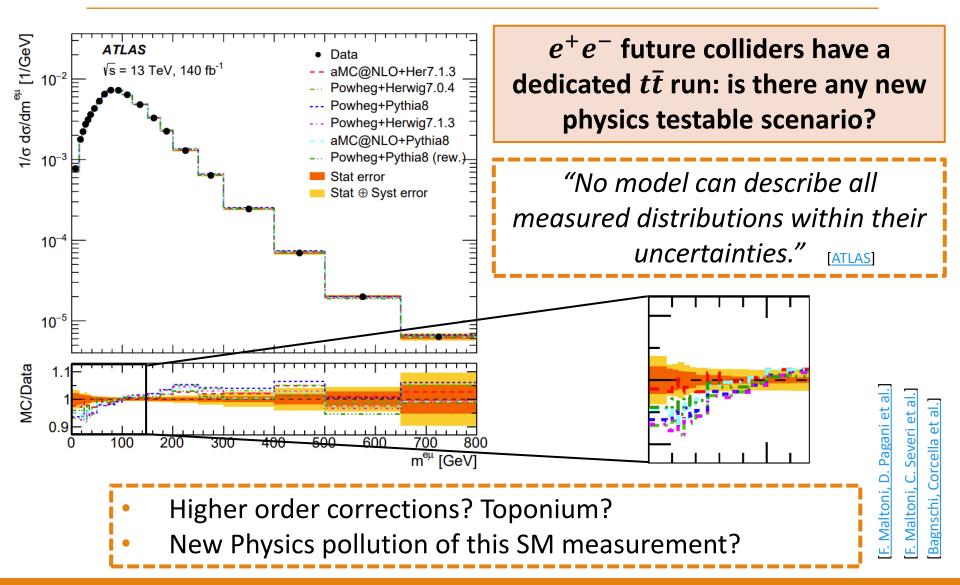
	$SU(2)_L$	$U(1)_Y$
Δ	3	0

Parameters $\rightarrow \langle \Delta \rangle = v_{\Delta}$, α_{Δ} Fields \rightarrow neutral Δ^0 , charged Δ^{\pm}

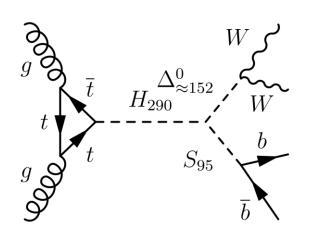
$6\ell + 2\nu$ at the FCC-ee

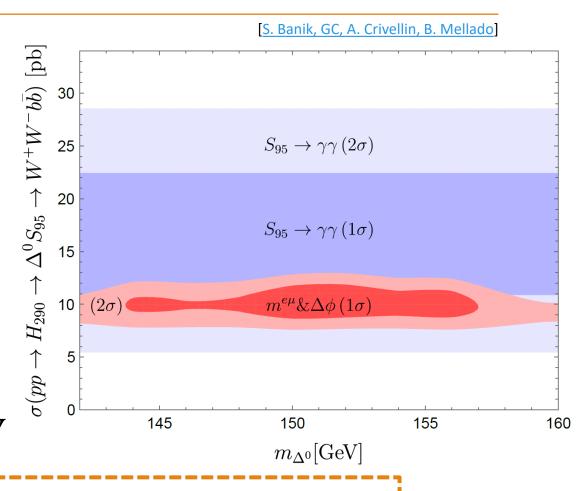

• The decay $\Delta^{\pm} \to W^{\pm}Z$ leads to a 6ℓ (+ MET) signature

Events expected in the SM model


$$e^+e^- \rightarrow 6\ell (+ \text{MET}) \approx 1$$

Events expected in the ΔSM model $e^+e^- o \Delta^\pm \Delta^\mp o 6\ell + MET \approx 46$


- Assuming the integrated luminosity at the $t\bar{t}$ working point (4 years run)
- Log-Likely-hood ratio yields $\chi^2 \approx 80$
- $\sigma(e^+e^- \to \Delta^{\pm} \Delta^{\mp})$ could be measured at $\approx 9\sigma$


$oldsymbol{t}oldsymbol{ar{t}}$ distributions as a probe for NP

95 GeV and 152 GeV excesses?

- S_{95} : SM singlet mostly decaying to $b\bar{b}$
- Δ^0 : real Higgs triplet mostly decaying to WW

Consistent with the 95 GeV $\gamma\gamma$ signal strength and a mass for Δ^0 of 152 GeV

