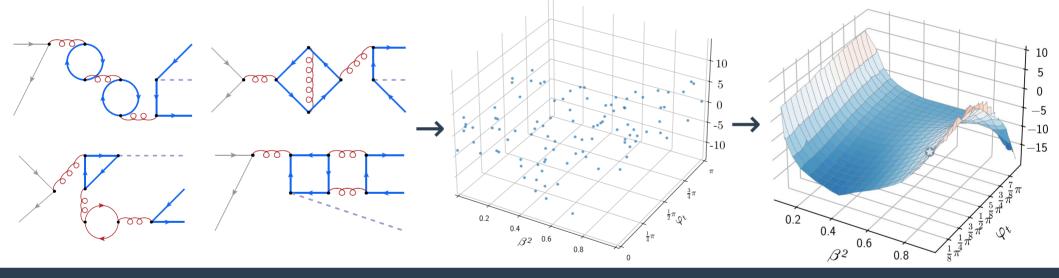


Towards a numerical evaluation of $q\overline{q} \rightarrow t\overline{t}H$ at two loops



Based on 2402.03301

Bakul Agarwal, Víctor Bresó-Pla, Gudrun Heinrich, Stephen Jones, Matthias Kerner, Sven Yannick Klein, Jannis Lang, Vitaly Magerya, AO

Higgs 2024 – Uppsala

Anton Olsson

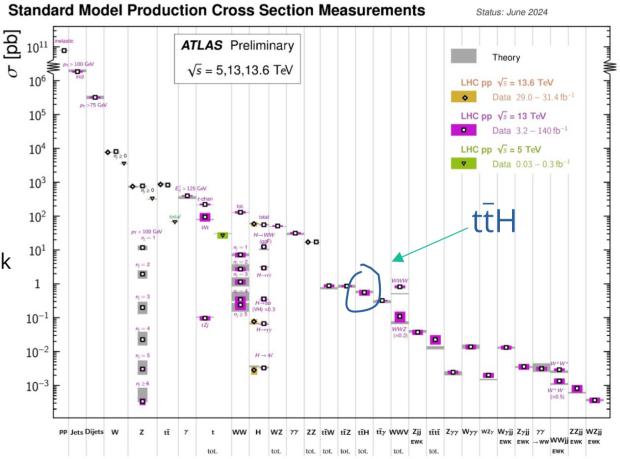
Outline

- 1. Introduction to $t\bar{t}H$ Production
- 2. Numerical Scattering Amplitudes
- 3. Constructing Amplitude Grids

1. Introduction to tTH Production

Introduction to ttH

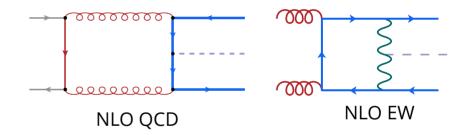
- First observed in 2018
 - 1804.0261 (CMS), 1806.00425 (ATLAS)
- Only 1% of all Higgs bosons are produced with a top-quark pair
- Why is this an interesting process?
 - Direct sensitivity to the top-quark
 Yukawa coupling yt
 - Probe CP properties of y_t
 2208.02686 (CMS), 2303.05974 (ATLAS)



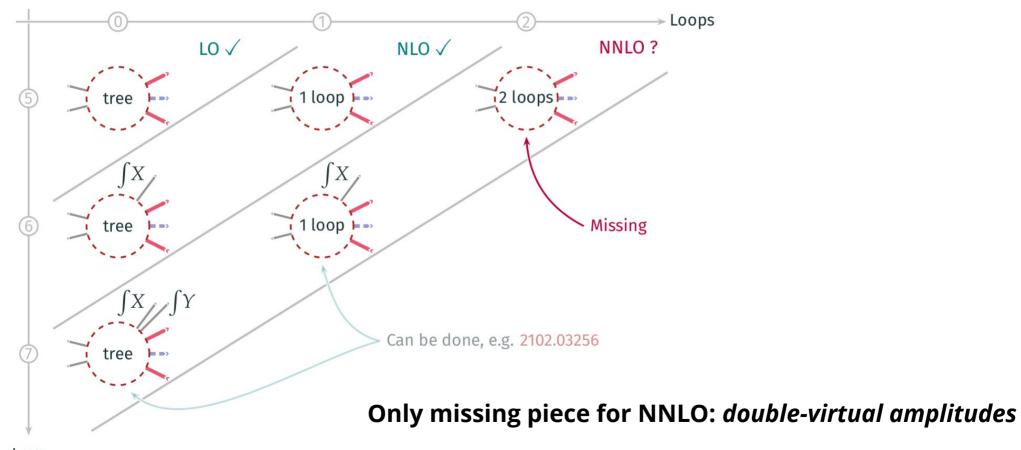
Plot: Ana Rosario Cueto Gómez; HP2 2024

Precision in ttH

- Experimental uncertainty is currently dominated by statistics ~10-15%
 - But: projected statistical uncertainties for HL-LHC ~2% [Les Houches '21; Snowmass '22]
- Calculation complete up to **NLO**
 - QCD @NLO [Dittmaier et al. '02, Dawson et al. '02]
 - EW @NLO [Frixione et al. '14]
 - QCD + EW @NLO [Denner et al. '17]
 - QCD @(NLO+NNLL) [Broggio et al. '15, Kulesza et al. '17]
 - QCD + EW @(NLO+NNLL) [Broggio et al. '19]
 - t→H fragmentation functions [Czakon et al. '21]
 - QCD @NLO to $\, {\cal O}(arepsilon^2)\,$ [Tancredi et al. '23]
- NLO QCD scale uncertainties ~10-15%: NNLO calculation needed!



$2 \rightarrow 3$ at NNLO



Legs Figure: Magerya; QCD@LHC 2024

Progress at NNLO

- NNLO calculation using approximations for the 2L amplitude
 - Soft Higgs approximation [Catani et al. '22] and massification [talk by Savoini at HP2 '24]
 - Highly accurate for total cross section ~1%
 - Expected to be less accurate in some kinematic regions
 - We want to validate this!
- IR-pole coefficients of the 2L amplitude [Wang et al. '22]
- Master integrals analytically with light quark-loops at leading color [Reina et al. '23]
- 2L amplitude in the high-energy boosted limit [Wang et al. '24]
- Quark-initiated 2L amplitude with light and heavy quark-loops, numerically [Heinrich et al. '24]

7

- **Next step:** full quark-initiated amplitude

This talk

2. Numerical Scattering Amplitudes

Calculation Workflow I

1. Amplitude Generation:

• Generate all Feynman diagrams (702 2-loop quark-initiated QCD diagrams) [QGRAF]

• Insert Feynman rules and apply projector [ALIBRARY], sum over tensor structures [COLOR.H, FORM]

$$\langle \mathcal{A}^0 | \mathcal{A} \rangle = \langle \mathcal{A}^0 | \mathcal{A}^0 \rangle + \left(\frac{\alpha_s}{2\pi}\right) \langle \mathcal{A}^0 | \mathcal{A}^1 \rangle + \left(\frac{\alpha_s}{2\pi}\right)^2 \langle \mathcal{A}^0 | \mathcal{A}^2 \rangle + \mathcal{O}(\alpha_s^3)$$

- The $\langle {\cal A}^0 | {\cal A}^2 \rangle$ piece contains ~90 000 scalar integrals

2. Reduction:

- Most integrals are **linearly dependent**: find relations through **Integration-By-Parts (IBP)** reduction
- Generate IBP system [KIRA], with **7 scales**: symbolic solutions *not feasible* currently
 - Resort to numerical strategy

Calculation Workflow II

- Substitute numbers for all 7 kinematics: $s_{12}, s_{23}, s_{34}, s_{45}, s_{51}, m_H^2, m_t^2$
- Record an *execution trace* for the solution to the linear system of IBP relations [RATRACER]
 - We now have a recipe of arithmetic operations that solves our linear system
 - Replay the execution trace for each *phase space* point we need; O(minutes)
- 90 000 scalar integrals reduced to linear combination of 3005 master integrals (MIs)
- Basis *not* unique: selecting a 'good' basis of MIs is a non-trivial trial and error process

3. Evaluation:

- Evaluate MIs numerically with pySecDec [Heinrich et al. '17, '18, '21, '23]
- Two step process:
 - 1. Sector decomposition: Isolate and extract singularities as expansion in the regulator, **do once**
 - 2. Quasi-Monte Carlo (QMC) integration, **do once for each phase space point**; O(minutes)

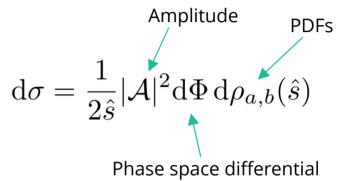
3. Constructing Amplitude Grids

Amplitude Grids

- Evaluate difficult amplitudes on a **point-by-point** basis
- Amplitudes are used to compute physical observables

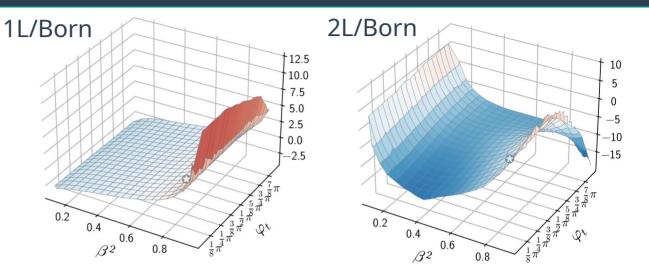
$$\langle \mathcal{O} \rangle_{\Phi} = \int_{\bar{x} \in \Phi} \mathcal{O}(\bar{x}) \mathrm{d}\sigma(\bar{x})$$

- **Problem:** Integrals require millions of MC samples
 - Evaluation time of amplitude at 1 point ~ O(minutes)
 - Evaluation time of 1 observable ~ O(years)
- Solution: Evaluate amplitude at a few points and interpolate for values in between
 - This implies there will be interpolation/grid uncertainties
 - How do these uncertainties propagate to observables?



Why is this difficult?

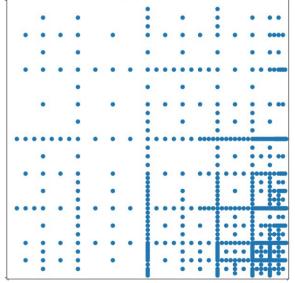
- ttH amplitudes are:
 - High-dimensional
 - Complicated at higher loops
- Points with increasing dimension:
 - 2 final-state particles: 2 variables
 - 3 final-state particles: **5 variables**



	$q\overline{q} \rightarrow t\overline{t}$	$q\overline{q} \rightarrow t\overline{t}H$
Points per dim \backslash	$\mathbf{d}=2$	$\mathbf{d} = 5$
10	100	100000
20	400	3200000
30	900	24300000

The Interpolation Problem

- Our goal: approximate $a = |A|^2$ with some \tilde{a} defined on the whole phase space, based on the knowledge of a at some data points
 - When the approximation error of \tilde{a} is "small enough", the calculation is finished
- Two main questions:
 - 1. What should \tilde{a} be? (polynomial, spline, neural network etc.)
 - 2. Where to evaluate a? (selecting interpolation nodes)
- Promising approximation methods we investigated:
 - Chebyshev polynomials
 - Spherical harmonics
 - Sparse grids
 - Spline interpolation
 - Neural networks (GATr) [2405.14806]



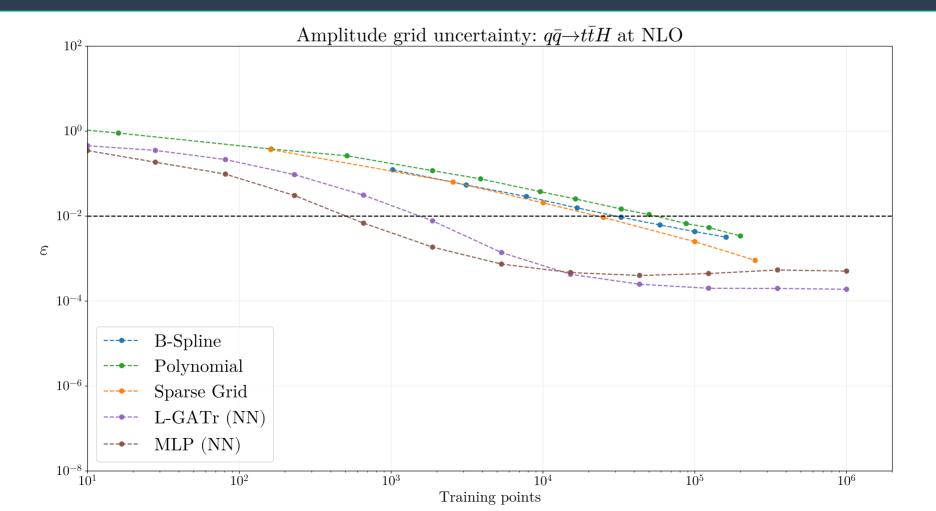
Spatially adaptive sparse grid

Error Estimation

- Validation should consider the desired use-case, i.e. *observables*
 - Some phase space points are more important
 - Ignore large errors in physically insignificant regions
- Take physically relevant samples: $x \sim w$ and $arepsilon = rac{1}{N} \sum_i arepsilon_i$
- Also possible: sample uniformly and suppress errors: $x\sim 1$ and $arepsilon=rac{1}{N}\sum_i w_i\,arepsilon_i$
- Incorporate into interpolation procedure
 - Target function $f = w \cdot |\mathcal{A}|^2$
 - Any weight is allowed, try to flatten f

- Normalized error metric
$$\varepsilon = rac{||f - \tilde{f}||_1}{||f||_1} = rac{\sum_i |a(x_i) - \tilde{a}(x_i)|}{\sum_i |a(x_i)|}$$
 with $x \sim w$

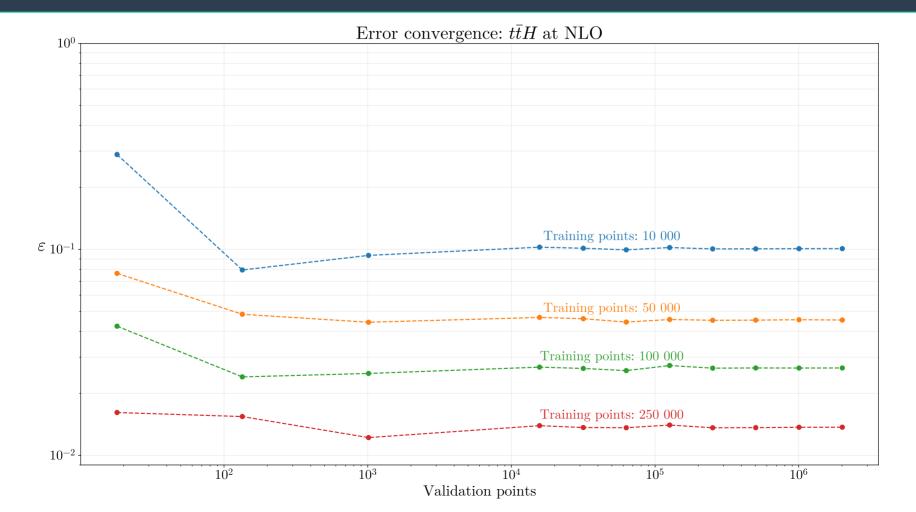
Comparison of Interpolation Methods



Summary

- We have a fully numerical setup to calculate complicated amplitudes ($t\bar{t}H$)
- Grids are required to include results into MC event generators
 - Especially for $2 \rightarrow 3$ processes with slow numerical evaluation times
 - This requires careful consideration of grid uncertainties
 - Grids can be optimized towards observables through physical arguments
- **Currently:** Finalize full $q\overline{q}$ -channel and construct an amplitude grid
- Future: Include gg-channel

Backup: How many validation points are required?



Backup: Selecting an IBP basis

- An IBP basis is not unique, which master integrals should be selected?
- Four criteria: 1. finiteness, 2. D-factorising, 3. fast to evaluate with pySecDec,
 4. simple denominators in IBP coefficients
- Finiteness and D-factorisation is achieved by dimension shifts and dotted propagators
 - d=4,6,8 for most integrals (d=2 for some easy ones with 4 propagators)
 - 2 dots in most sectors, in some lower sectors there are more dots (up to 6 for a three propagator integral)
- Fast evaluation and simple denominators is done through trial and error
 - Generate a basis that fulfills finiteness and D-factorisation
 - Perform reductions while neglecting sub-sectors for sets of master integrals, select the set with smallest denominator factors
 - Benchmark which master integrals in this set are fast to evaluate with pySecDec
 - Repeat the process while restricting the basis to include the fast to evaluate masters

Backup: Sector Decomposition

Targets dimensionally regulated Feynman integrals

$$I \sim \int_0^\infty \prod_{j=1}^N \mathrm{d}x_j x_j^{\nu_j - 1} \delta(1 - \sum_{i=1}^N x_i) \frac{\mathcal{U}(\bar{x})^{N_\nu - (L+1)D/2}}{\mathcal{F}(\bar{x}, p^2, m^2)^{N_\nu - LD/2}}$$

L loops

 $D = 4 - 2\varepsilon$

 $N_{\nu} = \sum_{j=1}^{N} \nu_j$

$$\prod_{j=1}^{n} \frac{dx_j x_j}{dx_j x_j} = O(1 - \sum_{i=1}^{n} \frac{x_i}{\mathcal{F}(\bar{x}, p^2, m^2)^{N_{\nu} - LD/2}}$$

Transforms integral into sums of expansions in the regulator

$$I \to \sum_{\text{Sectors}} \sum_{n=-r}^{2L} C_n(p^2, m^2) \frac{1}{\varepsilon^n} + \mathcal{O}(\varepsilon^{r+1})$$
Parameter integrals

Singularities are extracted as poles in regulator with simple subtraction terms

$$\int_{0}^{1} \mathrm{d}x \, x^{-1-\varepsilon} \mathcal{I}(x,\varepsilon) = \frac{-1}{\varepsilon} \mathcal{I}(0,\varepsilon) + \underbrace{\int_{0}^{1} \mathrm{d}x \, x^{-1-\varepsilon} [\mathcal{I}(x,\varepsilon) - \mathcal{I}(0,\varepsilon)]}_{\text{Finite piece, integrate numerically!}} = \frac{C_{1}}{\varepsilon} + C_{0}$$

Backup: Contour Deformation

- Sector decomposition extracts endpoint singularities only
 - Bulk singularities are avoided with contour deformation
- Contour deformation works in most cases, but is computationally very expensive
 - New ideas to avoid having to use contour deformation [2407.06973]

$$0 = \oint_{c} \prod_{j=1}^{N} \mathrm{d}z_{j} \mathcal{I}(\vec{z}) = \int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \mathcal{I}(\vec{x}) + \int_{\gamma} \prod_{j=1}^{N} \mathrm{d}z_{j} \mathcal{I}(\vec{z}(\vec{x})) \xrightarrow{\mathrm{Im}(z)} \int_{0}^{1} \mathcal{I}(\vec{z}(\vec{x})) = \mathcal{F}(\vec{x}) - i \lambda \sum_{j} x_{j}(1 - x_{j}) \left(\frac{\partial \mathcal{F}}{\partial x_{j}}\right)^{2} + \mathcal{O}(\lambda^{2}) \xrightarrow{0} \xrightarrow{\mathrm{Im}(z)} \int_{0}^{1} \mathcal{I}(\vec{z}(\vec{x})) \xrightarrow{\mathrm{Im}(z)} \int_{0}^{1} \mathcal{I}(\vec{z}(\vec{x})) = \mathcal{I}(\vec{x}) - i \lambda \sum_{j} x_{j}(1 - x_{j}) \left(\frac{\partial \mathcal{F}}{\partial x_{j}}\right)^{2} + \mathcal{O}(\lambda^{2})$$
Complicates integrand massively

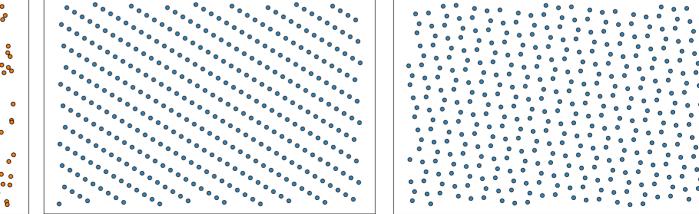
Backup: QMC Integration I

- Observation: $\varepsilon \leq \text{Discrepancy}\{x_i\} \cdot V[\mathcal{I}]$, take $\{x_i\}$ from a low discrepancy sequence (R1SL-rule)
- Estimate of integral is achieved through random shifts

Error convergence: $\varepsilon_{MC} \sim \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ and $\varepsilon_{RQMC} \sim \mathcal{O}\left(\frac{1}{n}\right)$ $I[\mathcal{I}] \approx \bar{Q}_{n,m}[\mathcal{I}] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[\mathcal{I}], \quad Q_n^{(k)}[\mathcal{I}] \equiv \frac{1}{n} \sum_{i=0}^{n-1} \mathcal{I}\left(\left(\frac{i\mathbf{z}}{n} + \Delta_k\right) \mod 1\right)$

Random samples (MC)

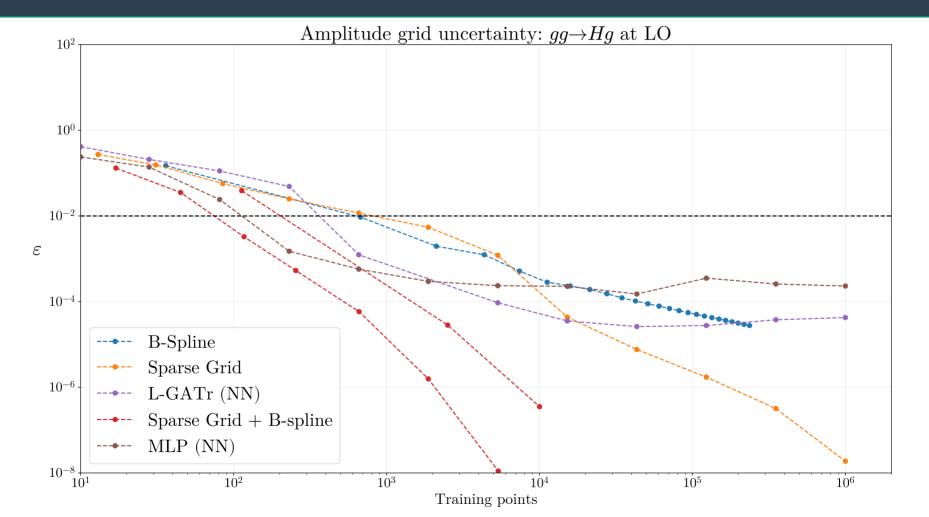
Random shifts (RQMC)



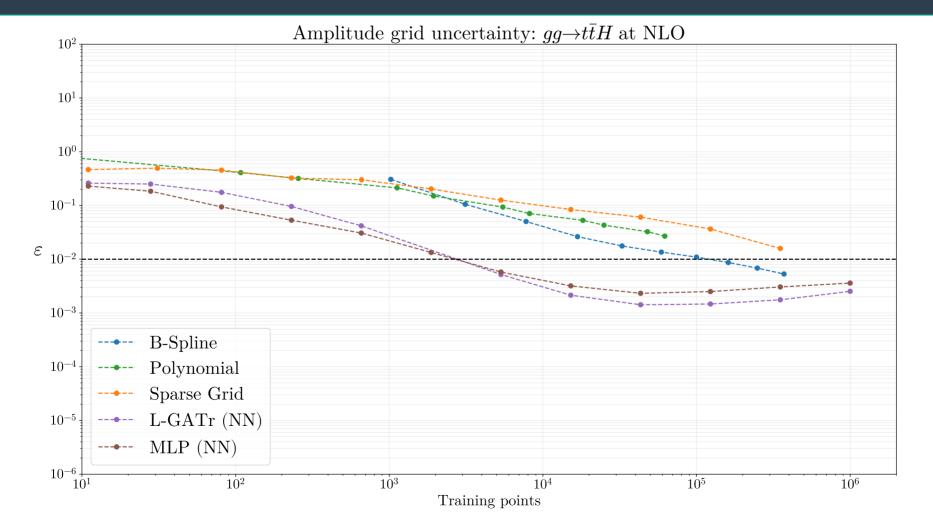
Backup: QMC Integration II

- Classical QMC error bound: $\varepsilon \leq \text{Discrepancy}\{x_i\} \cdot V[\mathcal{I}]$ (Star disc. ; Hardy and Krause variance)
- Smooth integrands have: $\mathcal{O}((\log n)^d/n)$ (dimension dependent?!)
- In certain *weighted function spaces* convergence becomes independent of dimension
- Example: Korobov space of periodic smooth functions
 - Our integrands are usually smooth but not periodic: Apply Korobov transformation
 - Differentiable integrands after Korobov transformation have error scaling: $\mathcal{O}\left(\frac{1}{n}\right)$
 - Convergence is independent of dimension

Backup: 2-Dimensional Case (H+j)



Backup: Interpolation in gg-channel



Backup: Interpolation at LO vs NLO

