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Introduction to ttH

● First observed in 2018 
– 1804.0261 (CMS), 1806.00425 (ATLAS)

● Only 1% of all Higgs bosons are 
produced with a top-quark pair

● Why is this an interesting process?

– Direct sensitivity to the top-quark 
Yukawa coupling yt

– Probe CP properties of yt 

2208.02686 (CMS), 2303.05974 (ATLAS)

ttH

Plot: Ana Rosario Cueto Gómez; HP2 2024
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Precision in ttH 

● Experimental uncertainty is currently dominated by statistics ~10-15%
– But: projected statistical uncertainties for HL-LHC ~2% [Les Houches ‘21; Snowmass ‘22]

● Calculation complete up to NLO
– QCD @NLO [Dittmaier et al. ‘02, Dawson et al. ‘02]

– EW @NLO [Frixione et al. ‘14]

– QCD + EW @NLO [Denner et al. ‘17]

– QCD @(NLO+NNLL) [Broggio et al. ‘15, Kulesza et al. ‘17]

– QCD + EW @(NLO+NNLL) [Broggio et al. ‘19]

– t H fragmentation functions → [Czakon et al. ‘21]

– QCD @NLO to [Tancredi et al. ‘23]

● NLO QCD scale uncertainties ~10-15%: NNLO calculation needed!

NLO QCD NLO EW
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2  3 at NNLO→

Only missing piece for NNLO: double-virtual amplitudes

Figure: Magerya; QCD@LHC 2024
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Progress at NNLO

● NNLO calculation using approximations for the 2L amplitude
– Soft Higgs approximation [Catani et al. ‘22]  and massification [talk by Savoini at HP2 ‘24]

– Highly accurate for total cross section ~1%
– Expected to be less accurate in some kinematic regions
– We want to validate this!

● IR-pole coefficients of the 2L amplitude [Wang et al. ‘22]

● Master integrals analytically with light quark-loops at leading color [Reina et al. ‘23]

● 2L amplitude in the high-energy boosted limit [Wang et al. ‘24]

● Quark-initiated 2L amplitude with light and heavy quark-loops, numerically [Heinrich et al. ‘24]

– Next step: full quark-initiated amplitude

NNLO QCD

This talk



2. Numerical Scattering Amplitudes
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Calculation Workflow I

● Generate all Feynman diagrams (702 2-loop quark-initiated QCD diagrams) [QGRAF]

● Insert Feynman rules and apply projector [ALIBRARY], sum over tensor structures [COLOR.H, FORM]

● The      piece contains ~90 000 scalar integrals

● Most integrals are linearly dependent: find relations through Integration-By-Parts (IBP) reduction

● Generate IBP system [KIRA], with 7 scales: symbolic solutions not feasible currently

– Resort to numerical strategy

1. Amplitude Generation:

2. Reduction:
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Calculation Workflow II

● Substitute numbers for all 7 kinematics:

● Record an execution trace for the solution to the linear system of IBP relations [RATRACER]

– We now have a recipe of arithmetic operations that solves our linear system

– Replay the execution trace for each phase space point we need; O(minutes)

● 90 000 scalar integrals reduced to linear combination of 3005 master integrals (MIs)

● Basis not unique: selecting a ‘good’ basis of MIs is a non-trivial trial and error process

● Evaluate MIs numerically with pySecDec [Heinrich et al. ‘17, ‘18, ‘21, ‘23]

● Two step process:

1. Sector decomposition: Isolate and extract singularities as expansion in the regulator, do once

2. Quasi-Monte Carlo (QMC) integration, do once for each phase space point; O(minutes)

3. Evaluation:



3. Constructing Amplitude Grids
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Amplitude Grids

● Evaluate difficult amplitudes on a point-by-point basis

● Amplitudes are used to compute physical observables

● Problem: Integrals require millions of MC samples

– Evaluation time of amplitude at 1 point ~ O(minutes)

– Evaluation time of 1 observable ~ O(years)

● Solution: Evaluate amplitude at a few points and interpolate for values in between

– This implies there will be interpolation/grid uncertainties

– How do these uncertainties propagate to observables?

Phase space differential

Amplitude PDFs



13

Why is this difficult?

● ttH amplitudes are:
– High-dimensional
– Complicated at higher loops

● Points with increasing dimension:
– 2 final-state particles: 2 variables

– 3 final-state particles: 5 variables

2L/Born1L/Born
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● Our goal: approximate                   with some     defined on the whole phase space, based on the 
knowledge of      at some data points

– When the approximation error of      is “small enough”, the calculation is finished

● Two main questions:
1. What should      be? (polynomial, spline, neural network etc.)

2. Where to evaluate    ? (selecting interpolation nodes)

● Promising approximation methods we investigated:
– Chebyshev polynomials
– Spherical harmonics
– Sparse grids
– Spline interpolation
– Neural networks (GATr) [2405.14806]

The Interpolation Problem

Spatially adaptive sparse grid
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● Validation should consider the desired use-case, i.e. observables

– Some phase space points are more important

– Ignore large errors in physically insignificant regions

● Take physically relevant samples:          and  

● Also possible: sample uniformly and suppress errors:             and 

● Incorporate into interpolation procedure

– Target function 

– Any weight is allowed, try to flatten 

– Normalized error metric with 

 

Error Estimation
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Comparison of Interpolation Methods

101 102 103 104 105 106Training points10 8

10 6

10 4

10 2

100

102

ε

Amplitude grid uncertainty: qq̄→tt̄H at NLO

B-SplinePolynomialSparse GridL-GATr (NN)MLP (NN)
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Summary

● We have a fully numerical setup to calculate complicated amplitudes (   )

● Grids are required to include results into MC event generators

– Especially for 2  3 processes with slow numerical evaluation times→

– This requires careful consideration of grid uncertainties

– Grids can be optimized towards observables through physical arguments

● Currently: Finalize full qq-channel and construct an amplitude grid

● Future: Include gg-channel
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Backup: How many validation points are required?

102 103 104 105 106Validation points10 2

10 1

100

ε

Error convergence: tt̄H at NLO
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Backup: Selecting an IBP basis

● An IBP basis is not unique, which master integrals should be selected?

● Four criteria: 1. finiteness, 2. D-factorising, 3. fast to evaluate with pySecDec,         
4. simple denominators in IBP coefficients

● Finiteness and D-factorisation is achieved by dimension shifts and dotted propagators
– d=4,6,8 for most integrals (d=2 for some easy ones with 4 propagators)

– 2 dots in most sectors, in some lower sectors there are more dots (up to 6 for a three propagator integral)

● Fast evaluation and simple denominators is done through trial and error
– Generate a basis that fulfills finiteness and D-factorisation

– Perform reductions while neglecting sub-sectors for sets of master integrals, select the set with smallest 
denominator factors

– Benchmark which master integrals in this set are fast to evaluate with pySecDec

– Repeat the process while restricting the basis to include the fast to evaluate masters
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● Targets dimensionally regulated Feynman integrals

● Transforms integral into sums of expansions in the regulator

● Singularities are extracted as poles in regulator with simple subtraction terms

Backup: Sector Decomposition

Finite piece, integrate numerically!

Parameter integrals
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Backup: Contour Deformation

● Sector decomposition extracts endpoint singularities only

– Bulk singularities are avoided with contour deformation 

● Contour deformation works in most cases, but is computationally very expensive

– New ideas to avoid having to use contour deformation [2407.06973]

Complicates integrand massively
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● Observation:      ,    take          from a low discrepancy sequence (R1SL-rule)

● Estimate of integral is achieved through random shifts

● Error convergence:   and

Backup: QMC Integration I

Random samples (MC) Quasi-random samples (QMC) Random shifts (RQMC)
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● Classical QMC error bound:       (Star disc. ; Hardy and Krause variance) 

● Smooth integrands have:       (dimension dependent?!)

● In certain weighted function spaces convergence becomes independent of dimension

● Example: Korobov space of periodic smooth functions

– Our integrands are usually smooth but not periodic: Apply Korobov transformation

– Differentiable integrands after Korobov transformation have error scaling:

– Convergence is independent of dimension 

Backup: QMC Integration II
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Backup: 2-Dimensional Case (H+j)
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Amplitude grid uncertainty: gg→Hg at LO

B-SplineSparse GridL-GATr (NN)Sparse Grid + B-splineMLP (NN)
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Backup: Interpolation in gg-channel
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Amplitude grid uncertainty: gg→tt̄H at NLO

B-SplinePolynomialSparse GridL-GATr (NN)MLP (NN)
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Backup: Interpolation at LO vs NLO
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Amplitude grid uncertainty: qq̄→tt̄H at NLO
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