Higgs self-coupling @ Linear Collider

Higgs self-coupling @ Linear Collider

[courtesy: N. Craig @ LCWS 2023]

Junping Tian (U. Tokyo)

Higgs 2024 @ Uppsala U. Nov. 4-8, 2024

Collaborators:

Bryan Bliewert, Jenny List, Julie Torndal (DESY)

Dimitris Ntounis, Caterina Vernieri (SLAC)

λ_{HHH}: di-Higgs & single-Higgs processes

Goal: update the projections in ESU 2020

[Physics Briefing Book, arXiv:1910.11775]

- based on global SMEFT fits
- HL-LHC di-Higgs contribution was always combined

 current focus: detailed look in Single-Higgs about other NLO effects; potential improvement in Di-Higgs analyses

Higgs self-coupling studies @ ILC

- √s~500 GeV: e+e- —> ZHH
- $\sqrt{s} \sim 1$ TeV: e+e- --> $v_e v_e HH$

full simulation studies @ ILC

dominant channels covered

<5	0%

Z decay mode	HH decay mode	BranchingRatio
$Z \rightarrow e^+ e^-$	$HH \to b\bar{b}b\bar{b}$	1.1%
$Z ightarrow \mu^+ \mu^-$	$HH \to b\bar{b}b\bar{b}$	1.1%
$Z \to \nu^+ \bar{\nu}$	$HH \to b\bar{b}b\bar{b}$	6.7%
$Z \to b \bar{b}$	$HH \to b\bar{b}b\bar{b}$	5.0%
$Z \to q\bar{q}$	$HH \to b\bar{b}b\bar{b}$	17%
$Z \to b\bar{b}$	$HH \to b\bar{b}WW^*, WW^* \to 4q$	1.7%
$Z \to c\bar{c}$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow 4q$	1.4%
$Z \to b\bar{b}$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow l\nu 2q$	1.1%
$Z \to c\bar{c}$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow l\nu 2q$	0.92%
$Z \rightarrow l^+ l^-$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow 4q$	0.76%
$Z \rightarrow l^+ l^-$	$HH \rightarrow b\bar{b}WW^*, WW^* \rightarrow l\nu 2q$	0.50%

Table 1: signal channels analysed for $e^+e^- \rightarrow ZHH$ at $\sqrt{s} = 500$ GeV.

(for e+e- ->vvHH@1TeV: HH->bbbb/bbWW* are covered)

full simulation studies @ ILC

[analysis ~10y ago]

- generator: *Whizard* 1.95, *Physsim* (realistic beamsstrahlung, ISR, pile-up)
- parton shower & hadronization: Pythia 6
- detector model: ILD (as realistic as possible material budget, blind areas)
- simulation & reconstruction: Geant 4, iLCSoft (realistic algorithms for tracking, particle flow (PandoraPFA), flavor tagging (LCFI+), jet-clustering, etc)
- event selection: full SM background, realistic cuts, careful categorization, kinematic fitting, multivariate method

full simulation studies @ ILC

• results (example individual channels)

ZHH channel	$s (HH \rightarrow bbbb)$	b	σ_e	eff.
eeHH	$3.9 \pm 0.03 \ (2.6)$	7 ± 0.6	1.29σ	59%
$\mu\mu HH$	$5.1 \pm 0.03 \ (2.8)$	9 ± 0.5	1.48σ	55%
u u HH	$5.6 \pm 0.04 \ (5.5)$	7 ± 1.0	1.78σ	19%
bbHH	8.5 ± 0.10 (8.0)	22 ± 1.3	1.75σ	29%
qqHH	$12.6 \pm 0.1 \ (10.9)$	55 ± 2.0	1.65σ	15%

Table 2: Results of the event selection of ZHH with $HH \rightarrow bbbb$ corresponding to an integrated luminosity of $\mathcal{L} = 2$ ab⁻¹ and a beam polarisation of $P(e^+e^-) = (0.3, -0.8)$.

major bkg.: tt, ZZ, ZZZ, ZZH

results (combined)

\sqrt{s}	$\int L \mathrm{d}t$	$\Delta\sigma/\sigma$	$\Delta \lambda_{HHH} / \lambda_{HHH}$
ZHH @ 500 GeV	4 ab ^{-1 (*)}	17%	27%
vvHH @ 1 TeV	4 ab ^{-1 (**)}	15%	10%

P(e+, e-) = *: equally shared by (-0.8,+0.3) and (+0.8,-0.3); **: (-0.8,+0.2)

[analysis ~10y ago]

from di-Higgs cross section to λ_{HHH}

interference: constructive in ZHH, destructive in vvHH

Di-Higgs cross section: break down & impact of √s

$$\sigma = S\lambda^2 + I\lambda + B$$

updated projection $\Delta\lambda_{HHH}$

- two production channels combined at all √s: WW-fusion channel rapidly becomes useful just a little above 500 GeV
- Iuminosity now also scaled proportionally to √s

Higgs self-coupling: when $\lambda_{\text{HHH}} \neq \lambda_{\text{SM}}$?

- λ_{HHH} can be enhanced significantly O(1) in BSM **[J. Braathen @ ECFA'24]**
- complementarity between ZHH & vvHH (& LHC): interference nature
- if $\lambda_{HHH} / \lambda_{SM} = 2$, λ_{HHH} be measured to ~10% using ZHH @ ILC550 GeV

Higgs self-coupling: when $\lambda_{HHH} \neq \lambda_{SM}$?

- λ_{HHH} can be enhanced significantly O(1) in BSM \longrightarrow [J. Braathen @ ECFA'24]
- complementarity between ZHH & vvHH (& LHC): interference nature
- if $\lambda_{HHH} / \lambda_{SM} = 2$, λ_{HHH} be measured to ~10% using ZHH @ ILC550 GeV

prospect: $\Delta \lambda_{HHH}$ a factor of 5 from "perfect"

how far can we go?

limiting factor: new jet-clustering algorithm?

ZHH->vvbbbb (BG: ZZH and ZZZ)

scatter plot of two Higgs masses

- the mis-clustering of particles degrades significantly the separation between signal and BG.
- * it is studied that using perfect color-singlet-jet-clustering can improve $\delta\lambda/\lambda$ by 40%

new development on flavor tagging by ML

ParticleTransformer

[T. Suehara @ LCWS '24]

ParticleNet

[<u>M. Meyer @ ECFA '23]</u>

ongoing full ZHH analysis for next ESU

UН

common ILC & C³

B. Bliewert @ ECFA '24

(ii) λ_{HHH} from Single-Higgs

+ many more operators in the same NLO order

How to discriminate with HZZ coupling

[McCullough, '13]

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

- $\delta \sigma_{ZH} < 1\%$ is a necessity; but not sufficient
- δσ could receive contributions from many other sources
 —> δh ~ O(500)% at 250GeV only; [Gu, et al, arXiv:1711.03978]

b "easy" solution: lift degeneracy by multiple √s

(iv) How to discriminate with HZZ coupling

[McCullough, '13]

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

difficult solution: using differential cross section

- angular meas.; radiative return —> [G. Durieux @ ECFA mini-WS '23]
- effect of λ may connect to anomalous HZZ coupling

$$\mathcal{L} = m_Z^2 (\frac{1}{\nu} + \frac{a}{\Lambda}) H Z^{\mu} Z_{\mu} + \frac{b}{2\Lambda} H Z^{\mu\nu} Z_{\mu\nu} + \frac{\tilde{b}}{\Lambda} H Z^{\mu\nu} \tilde{Z}_{\mu\nu}$$

How to discriminate with top-Yukawa coupling

mitigated by LHC top-Yukawa measurement

[Durieux, Gu, Vyronidou, Zhang, '18]

How to discriminate with 4-fermion interaction might be most pressing

 the effects from (many) eett operators have just been calculated! [<u>Asteriadis, Dawson,</u> <u>Giardino, Szafron, arXiv:2406.03257</u>]

	$\sqrt{s} = 2$	$40 {\rm GeV}$	$\sqrt{s} = 365 { m GeV}$		
	Δ_i/Λ^2	$ar{\Delta}_i/\Lambda^2$	Δ_i/Λ^2	$ar{\Delta}_i/\Lambda^2$	
C_{ϕ}	$-7.22 \cdot 10^{-3}$	0	$-1.00 \cdot 10^{-3}$	0	
$C_{uW}[3,3]$	$-1.63 \cdot 10^{-3}$	$4.01 \cdot 10^{-3}$	$3.36 \cdot 10^{-3}$	$6.25 \cdot 10^{-3}$	
$C_{uB}[3,3]$	$0.15 \cdot 10^{-3}$	$-2.22 \cdot 10^{-3}$	$-2.96 \cdot 10^{-3}$	$-3.20 \cdot 10^{-3}$	
$C_u \phi[3,3]$	$0.32 \cdot 10^{-3}$	0	$-1.09 \cdot 10^{-3}$	0	
$C^{(1)}_{\phi q}[3,3]$	$-1.34 \cdot 10^{-3}$	$-4.10 \cdot 10^{-3}$	$-4.39 \cdot 10^{-3}$	$-4.31 \cdot 10^{-3}$	
$C_{\phi q}^{(3)}[3,3]$	$0.51\cdot10^{-3}$	$4.12 \cdot 10^{-3}$	$4.15 \cdot 10^{-4}$	$7.58 \cdot 10^{-4}$	
$C_{\phi u}[3,3]$	$-0.54 \cdot 10^{-3}$	$3.49 \cdot 10^{-3}$	$5.37 \cdot 10^{-3}$	$3.11 \cdot 10^{-3}$	
$C_{eu}[1,1,3,3]$	$0.01\cdot 10^{-3}$	$-1.39 \cdot 10^{-2}$	$-3.73 \cdot 10^{-2}$	$-3.23 \cdot 10^{-2}$	
$C_{lu}[1,1,3,3]$	$-0.02 \cdot 10^{-3}$	$1.73 \cdot 10^{-2}$	$4.64 \cdot 10^{-2}$	$4.01 \cdot 10^{-2}$	
$C_{lq}^{(1)}[1,1,3,3]$	$-0.37 \cdot 10^{-2}$	$-1.80 \cdot 10^{-2}$	$-6.09 \cdot 10^{-2}$	$-4.18 \cdot 10^{-2}$	
$C_{lq}^{(3)}[1,1,3,3]$	$-0.37 \cdot 10^{-2}$	$1.29 \cdot 10^{-2}$	$4.54 \cdot 10^{-2}$	$3.29 \cdot 10^{-2}$	
$C_{qe}[3, 3, 1, 1]$	$0.30\cdot10^{\text{-}2}$	$1.45 \cdot 10^{-2}$	$4.90\cdot10^{\text{-}2}$	$3.36 \cdot 10^{-2}$	

How to discriminate with 4-fermion interaction

• need projection for eett at HL-LHC & e+e-

All e+e- colliders improve the bounds on the top sector dramatically High-energy operation is important to provide the strongest global bounds

[M. Vos @ ECFA '24]

first look at the global fit with NLO eett for $\Delta\lambda_{HHH}$

[ongoing work by: Yong Du, Jiayin Gu, JT]

- based on a fitting program for last ESU: 23 (Higgs + WW + EWPO) + 5 (eett) operators
- take directly covariance matrix as eett bounds (from Victor Miralles)
- reproduced (almost) the NLO calculation about eett in ZH

extra uncertainty induced by eett on σ_{ZH} δσ_{ZH} ~ 0.3% (1.5%) for 240 (365) GeV a test fit for 5000 fb⁻¹ (240) + 1500 fb⁻¹ (365)

 $\delta\lambda_{HHH}$ mildly degraded from 57% to 77%

[warning: this is very preliminary, many things to be done, e.g. include NLO eett in other observables as well.] 23

similar issue in double-Higgs approach

• degeneracies from same-order SMEFT resolved

summary

- Challenging task to measure Higgs self-coupling at future colliders
- Many progresses on theory, di-Higgs & single-Higgs approaches
- Ongoing di-Higgs analysis to update λ_{HHH} projection: huge room existing by new advanced analysis tools
- A new global SMEFT fit is being worked out to address the opportunity / challenges in probing λ_{HHH} using single-Higgs
 - welcome to join the adventure!

backup

Higgs self-coupling: impact of ECM

Challenges: $\delta \sigma_{ZH} << 1\%$?

- A: yes! Just give me 1 million recoil Higgs events —>0.1%
- B: likely! Assume only 1/4 of the 1M events useful -> 0.2%
- C: let's look at some systematics first

a crucial requirement for measuring σ_{ZH} using recoil mass technique: independent of how Higgs decay —> who not just test it!

Challenges: δσ_{ZH} << 1%?

• Z—> $\mu\mu$: δ Efficiency ~ 1%

[Yan et al, arXiv:1604.07524]

16.3 %

2.3 %

$H \rightarrow XX$	bb	cc	gg	$\tau \tau$	WW*	ZZ^*	$\gamma\gamma$	γZ	
BR (SM)	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.23%	0.16%	
$\mathrm{BDT}>$ - 0.25	88.90%	89.04%	88.63%	89.12%	88.96%	89.11%	88.91%	88.28%	
$M_{ m rec} \in [110, 155] \; { m GeV}$	88.25%	88.35%	87.98%	88.43%	88.33%	88.52%	88.21%	87.64%	

	Decay mode	$arepsilon_{\mathscr{L}>0.65}^{ ext{vis.}}$	$arepsilon_{\mathscr{L}>0.60}^{ ext{invis.}}$	$arepsilon^{\mathrm{is.}}+arepsilon^{\mathrm{invis.}}$
	$H \rightarrow invis.$	<0.1 %	23.5 %	23.5 %
	${ m H} ightarrow { m q} \overline{ m q}/{ m gg}$	22.6 %	<0.1 %	22.6 %
	$\mathrm{H} \to \mathrm{W}\mathrm{W}^*$	22.1 %	0.1~%	22.2%
	${ m H} ightarrow { m ZZ}^*$	20.6~%	1.1~%	$21.7 \ \%$
 Z—>qq: OETTICIENCY ~ 15% 	$\rm H {\rightarrow} \tau^{+}\tau^{-}$	25.3 %	0.2%	25.5 %
	${ m H} ightarrow \gamma \gamma$	25.7~%	<0.1 %	25.7 %
	$H \to Z \gamma$	18.6~%	0.3 %	18.9 %
[Thomson, arXiv:1509.02853]	$H \rightarrow WW^* \rightarrow q\overline{q}q\overline{q}$	20.8~%	<0.1 %	20.8 %
	$H \to WW^* \to q \overline{q} \ell \nu$	23.3 %	<0.1 %	23.3 %
[Iomita 2015; Milyamoto, arXiv:1311.2248]	$H \to WW^* \to q \overline{q} \tau \nu$	23.1 %	<0.1 %	23.1 %
	$H \to WW^* \to \ell \nu \ell \nu$	26.5 %	0.1~%	26.5 %
	${ m H} ightarrow { m W} { m W}^* ightarrow \ell u au u$	21.1 %	0.5~%	21.6%

▶ trash 99% of those 1M events unless one can improve the bias

 $H \to WW^* \to \tau \nu \tau \nu$

 $18.7 \,\%$

Top and trilinear

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. \rightarrow 0

- Uncertainties on the top have a big effect on the Higgs
 - Higgsstr. run: insufficient
 - Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
 - Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
 - Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus top@HL-LHC$: top contam. in \bar{c}_{gg} only

Gauthier Durieux – ECFA mini-workshop – Higgs self-coupling – 15 May 2024

Differential hZ information

[Back-of-the-envelope calculations!!] and discussions with Fabio Maltoni & Xiaoran Zhao

ZZh loop κ_{λ} vertex: $F_a(p_i^2) (\epsilon_1 \cdot \epsilon_2) + F_b(p_i^2) (p_1 \cdot \epsilon_2)(p_2 \cdot \epsilon_1)$ with $F_b/F_a \sim 10^{-2}$ so only $\lesssim 10^{-4}$ differential effect

¿exploitable with an optimal discriminant?

Gauthier Durieux – ECFA mini-workshop – Higgs self-coupling – 15 May 2024

(ii) single-Higgs: lift degeneracies

can energy scan around 240-250 help? or using radiative return from 365/380 GeV?

[Durieux, et al, preliminary]

(i) beyond SMEFT: large δλ_{hhh}; light scalars (examples)

- profound effect on di-Higgs processes
- complementarity between ZHH & vvHH (& LHC): different interference
- if $\lambda_{HHH} / \lambda_{SM} = 2$, λ_{HHH} be *discovered* (~13%) using ZHH at 500 GeV e+e-

(i) beyond SMEFT: large $\delta \lambda_{hhh}$; light scalars

[recent models with even larger hierarchy δ_{hhh} / δ_{hvv}: Durieux, McCullough, Salvioni, '22]