Single top plus Higgs at LHC with CP violating top Yukawa

Ya-Juan Zheng (Iwate University)

November 6, 2024

Based on [1] Vernon Barger, Kaoru Hagiwara and YJZ, Phys.Rev.D 99 (2019) 3,031701. [2] Vernon Barger, Kaoru Hagiwara and YJZ, JHEP09(2020) 176. [3] Vernon Barger, Kaoru Hagiwara and YJZ, in preparation

HIGGS 2024

Outline

- CPV top-Yukawa coupling from an effective Lagrangian
- Helicity amplitudes: ub > dth for $pp \rightarrow thj$
- Single top/anti-top + Higgs event distributions
- Azymuthal asymmetry $A_{\phi}(\bar{A}_{\phi})$ in $pp \rightarrow thj(\bar{t}hj)$ events
- Top (anti-top) polarisation $P_2(\bar{P}_2)$ in $pp \rightarrow thj(\bar{t}hj)$ events
- Summary

- X. Zhang, S. K. Lee, K. Whisnant, and B. L. Young, "Phenomenology of a nonstandard top quark Yukawa coupling," Phys. Rev. D 50 (1994) 7042–7047, arXiv:hep-ph/9407259.
- G. Weiglein, "Constraining the CP structure of Higgs-fermion couplings with a global LHC fit, the electron EDM and baryogenesis," Eur. Phys. J. C 82 (2022) no. 7, 604,

CP-violating top Yukawa coupling

kappa framework

$$\begin{aligned} \mathcal{L} &= -g_{htt} h \bar{t} \left(\cos \xi_{htt} + i \sin \xi_{htt} \gamma_5 \right) t \\ &= -g_{htt} h (t_R^{\dagger}, t_L^{\dagger}) \begin{pmatrix} e^{-i\xi_{htt}} & 0 \\ 0 & e^{i\xi_{htt}} \end{pmatrix} \begin{pmatrix} t_L \\ t_R \end{pmatrix} \\ &= -g_{htt} h (e^{-i\xi_{htt}} t_R^{\dagger} t_L + e^{i\xi_{htt}} t_L^{\dagger} t_R) \\ g_{htt} &= \frac{m_t}{v} \kappa_{htt}, \qquad \kappa_{htt} > 0, \quad -\pi < \xi_{htt} \le \pi \end{aligned}$$

Gauge invariant Lagrangian with dimension six operator in SMEFT:

$$\mathcal{L} = -y_{\rm SM}Q^{\dagger}\phi t_R + \frac{\lambda}{\Lambda^2}Q^{\dagger}\phi t_R \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right) + \text{h.c.}$$
$$Q = (t_L, b_L)^T$$
$$\phi = ((v + H + i\pi^0)/\sqrt{2}, i\pi^-)^T$$
$$g_{\rm SM} = \frac{y_{\rm SM}}{\sqrt{2}} = \frac{m_t}{v} \quad \frac{g_{\rm SM} - ge^{i\xi}}{v^2} = \frac{\lambda}{\Lambda^2}$$

$$pp \rightarrow th + \bar{t}h + \text{anything}$$

 $\sigma_{tot}(|\xi_{htt}| = \pi) \sim 13 \sigma_{tot}^{SM}(\xi_{htt} = 0)$

change the sign of Yukawa coupling

In the SM, strong destructive interference between the htt and hWW amplitudes.

Preserving unitarity

W.Stirling, D.Summers, Phys.Lett.B283(1992)411–415 G.Bordes, B.van Eijk, Phys.Lett.B299(1993)315-320

ub > dth amplitudes in unitary gauge

$$M_{\sigma} \sim \left[u_{L}(p_{d})^{\dagger} \sigma_{-}^{\mu} u_{L}(p_{u}) \frac{-g_{\mu\nu} + q_{\mu}q_{\nu}/m_{W}^{2}}{q^{2} - m_{W}^{2}} \right]$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ g_{hWW} \frac{-g_{\rho}^{\nu}}{q} \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma), u_{L}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t}, \sigma) \right) \left\{ u_{R}^{\dagger}(p_{t}, \sigma) \right\}$$

$$\left(u_{R}^{\dagger}(p_{t},$$

common to both diagrams

Amplitudes (full process u b > d t h)

$$M_{\sigma} = \sum_{\lambda=\pm 1,0} j(u \to dW_{\lambda}^{+}) \ \hat{M}(W_{\lambda}^{+}b \to t)$$

$$= as the z axis$$

$$M_{\sigma} = \sum_{\lambda=\pm 1,0} j(u \to dW_{\lambda}^{+}) \ \hat{M}(W_{\lambda}^{+}b \to t)$$

$$= \frac{\lambda_{i}+1}{J_{Z}=3/2}$$

$$= \frac{\lambda_{i}-1}{J_{Z}=-1/2}$$

$$= \frac{\lambda_{i}-1$$

Q and W distribution

 $Q = \sqrt{-q^2}$ invariant momentum transfer of the virtual W⁺ $W = \sqrt{P_{th}^2} = m(th)$ the invariant mass of the th system 0.14 (a) 0.016 √s = 13 TeV 0.12 0.014 do/dW[fb/GeV] do/dQ [fb/GeV] 0.1 0.012 0.01 .08 0.008 0.06 0.006 0.04 0.004 0.02 0.002 300 400500 200 300 400 500 600 100 Q[GeV]

 W_L is dominant in low Q (Q<100 GeV) and large W (W>400 GeV) —> top polarization asymmetry W_T is significant in large Q (Q>100 GeV) and small W (W<400 GeV) —> azimuthal asymmetry

asymmetry
$$A_{\phi}(\mathbb{W}) = \frac{\int_{-\pi}^{\pi} d\phi \, \operatorname{sgn}(\phi) d\sigma / d\mathbb{W} / d\phi}{d\sigma / d\mathbb{W}} \qquad > 0 \, (th) \text{ and } < 0 \, (\bar{t}h) \quad \text{for } \xi > 0$$
$$< 0 \, (th) \text{ and } > 0 \, (\bar{t}h) \quad \text{for } \xi < 0$$

Asymmetry is large at small W & large Q (W_T is comparable to W_L) small at large W & small Q (W_L dominates over W_T)

FIG. 8: Left panel: t. Right panel: \bar{t} . $d\sigma/dW/d\phi$ v.s. ϕ at W = 400 and 600 GeV for Q > 100 GeV. Black, red and green curves are for the SM ($\xi = 0$), $\xi = \pm 0.1\pi$, and $\pm 0.2\pi$. The solid curve are for $\xi \ge 0$, while the dashed curves are for $\xi < 0$.

Azimuthal asymmetry $A_{\! \phi}$

FIG. 11: Asymmetry $A_{\phi}(W)$ for $pp \to thj$ and $pp \to \bar{t}hj$ as functions of W, the invariant mass of th or $\bar{t}h$ system. Large Q (Q > 100 GeV) events are shown by solid lines, while small Q (Q < 100)GeV, events are shown by dashed curves. Results are shown for $\xi = 0$ (SM), $\xi = 0.05\pi$ (red) and 0.1π (green). $A_{\phi} > 0$ for th and $A_{\phi} < 0$ for $\bar{t}h$, when $\xi > 0$.

$$\begin{split} \left|\mathbf{M}_{+}(\mathbf{ub} > \mathbf{dth})\right|^{2} \mathbf{v.s.} \left|\overline{\mathbf{M}_{-}}(\mathbf{d\overline{b}} > \mathbf{u\overline{th}})\right|^{2} \\ \mathcal{M}_{+} &= \frac{1-\tilde{c}}{2}e^{i\phi}\sin\frac{\theta^{*}}{2}\left[\frac{1+\cos\theta^{*}}{4}\bar{\beta}A\right] \\ &+ \frac{1+\tilde{c}}{2}e^{-i\phi}\sin\frac{\theta^{*}}{2}\left[\left(\frac{1+\cos\theta^{*}}{4}\bar{\beta} + \epsilon\delta\delta'\right)A - \left(e^{-i\xi} + \delta\delta'e^{i\xi}\right)B\right] \\ &+ \frac{\tilde{s}}{2}\frac{W}{Q}\cos\frac{\theta^{*}}{2}\left[\left(\frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{W^{2}} + \epsilon\delta\delta'\right)A - \left(e^{-i\xi} + \delta\delta'e^{i\xi}\right)B\right] \\ \overline{\mathcal{M}}_{-} &= \frac{1-\tilde{c}}{2}e^{i\phi}\sin\frac{\theta^{*}}{2}\left[\left(\frac{1+\cos\theta^{*}}{4}\bar{\beta} + \epsilon\delta\delta'\right)A - \left(e^{i\xi} + \delta\delta'e^{-i\xi}\right)B\right] \\ &+ \frac{1+\tilde{c}}{2}e^{-i\phi}\sin\frac{\theta^{*}}{2}\frac{1+\cos\theta^{*}}{4}\bar{\beta}A \\ &+ \frac{1+\tilde{c}}{2}e^{-i\phi}\sin\frac{\theta^{*}}{2}\left[\left(\frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{W^{2}} + \epsilon\delta\delta'\right)A - \left(e^{i\xi} + \delta\delta'e^{-i\xi}\right)B\right] \\ &\int_{\lambda=0}^{J_{2}=3/2} \\ &+ \frac{\tilde{s}}{2}\frac{W}{Q}\cos\frac{\theta^{*}}{2}\left[\left(\frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{W^{2}} + \epsilon\delta\delta'\right)A - \left(e^{i\xi} + \delta\delta'e^{-i\xi}\right)B\right] \\ &\int_{\lambda=0}^{J_{2}=1/2} \\ &\int_{\lambda=0}^{J_{2}=3/2} \\ &+ \frac{\tilde{s}}{2}\frac{W}{Q}\cos\frac{\theta^{*}}{2}\left[\left(\frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{W^{2}} + \epsilon\delta\delta'\right)A - \left(e^{i\xi} + \delta\delta'e^{-i\xi}\right)B\right] \\ &\int_{\lambda=0}^{J_{2}=1/2} \\ &\int_{\lambda=0}^{J_{2}=3/2} \\ &\int_{\lambda=0}^$$

Top Polarization (mixed state)

For general mixed state, $|t\rangle = \frac{\mathcal{M}_+ |J_z = +\frac{1}{2}\rangle + \mathcal{M}_- |J_z = -\frac{1}{2}\rangle}{\sqrt{|\mathcal{M}_+|^2 + |\mathcal{M}_-|^2}}$ we introduce differential cross section matrix

$$d\sigma_{\lambda\lambda'} = \int dx_1 \int dx_2 D_{u/p}(x_1) D_{b/p}(x_2) \frac{1}{2\hat{s}} \overline{\sum} M_{\lambda} M_{\lambda'}^* d\Phi_{dth}$$

where the phase space integration can be restricted. For an arbitrary kinematical

$$\rho_{\lambda\lambda'} = \frac{d\sigma_{\lambda\lambda'}}{d\sigma_{++} + d\sigma_{--}} = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{k=1}^{3} P_k \sigma_{\lambda\lambda'}^k \right]$$

The 3-vector $\mathbf{P} = (\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3)$ gives the general polarisation of the top quark. The magnitude $P = |\mathbf{P}|$ gives the degree of polarisation (P=1 for 100% polarization, P=0 for no polarisation). The orientation gives the direction of the top quark spin in the top rest frame. $P_2 = -2 \operatorname{Im}(M_+ M_-^*) / (|M_+|^2 + |M_-|^2)$

of xi.

distributions, $d\sigma = d\sigma_{++} + d\sigma_{--}$ the polarisation density matrix is defined as

We find **P** lies in the W+b>th scattering plane in the SM (xi=0). Polarisation orthogonal to the production plane P_2 appears for nonzero xi. The sign of P_2 determines the sign

xi=0, P2=0 examine P_2 for events with $cose^* < 0$ in the next slides.

We find large $|P_2|$ when $\cos \theta^* < 0$, positive for t and negative for tbar. We therefore

Polarization P_2 of top and anti-top

FIG. 15: P_2 v.s. W for $pp \rightarrow thj$ (a) and $pp \rightarrow \bar{t}hj$ (b) in the region $-1 < \cos\theta^* < 0$. The green curves are for $\xi = 0.1\pi$, while the red curves are for $\xi = 0.05\pi$. The sold curves are for Q > 100 GeV, while the dashed curves are for Q < 100 GeV.

$pp \to thj \quad (ub \to dth)$ $reflection p\bar{p}\bar{p} \to \bar{t}hj \quad (\bar{u}\bar{b} \to \bar{d}\bar{t}h)$

In this and the production at the LHC, longitudinal contributions (W[±](λ =0)) dominate. $W^+(\lambda = 0) + b \to t + h$ CP $V^-(\lambda = 0) + \bar{b} \to \bar{t} + h$

Expected number of events @ HL-LHC

	\sqrt{s}	Number of events	Decay channel	Branching Ratio	Number of events
	14 TeV	$@3ab^{-1}$			
$\sigma(th) + \sigma(\bar{t}h)$	90 fb	270,000	$(b\ell u)(bar{b})$	0.13	34,000
			$(b\ell u)(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.0011	300
$\sigma(tar{t}h)$	613 fb	1,840,000	$(bl u)(bjj)(bar{b})$	0.17	310,000
			$(bl u)^2(bar{b})$	0.028	52,000
			$(bl\nu)(bjj)(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.0015	2,800
			$(bl u)^2(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.00025	460

•t>blv mode for CP sensitivity (t vs. \overline{t}) •h decay should not have neutrinos to determine t(t) frame.

	Decay channel	Branching ratio	
$t \rightarrow$	bjj	0.67	h
	$b\ell u(\ell=e,\mu)$ 🗸	0.22	
	b au u	0.11	

•For a few percent asymmetry measurement, h> bb is necessary

Summary

- because the htt and hWW amplitudes interfere strongly.
- Azimuthal asymmetry between the u>dW⁺ emission and the W⁺b>th production planes probes the sign of CP violating phase.

$$A_{\phi} \sim \int_{0}^{\pi} (|M_{+}|^{2} + |M_{-}|^{2}) d\phi - \int_{-\pi}^{0} (|M_{+}|^{2} + |M_{-}|^{2}) d\phi \propto \sin \xi_{htt}$$

Polarization can be measured by using the density matrix.

$$\rho_{\lambda\lambda'} = \frac{1}{\int (|M_+|^2 + |M_-|^2) d\Phi} \int \begin{pmatrix} |M_+|^2 & M_+M_-^* \\ M_-M_+^* & |M_-|^2 \end{pmatrix} d\Phi = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{k=1}^3 P_k \sigma_{\lambda\lambda'}^k \right]$$

phase between the two helicity amplitudes

$$P_2 = \frac{-2\mathrm{Im}(M_+M_-^*)}{|M_+|^2 + |M_-|^2} \propto \sin\xi_{htt}$$

• We find significant asymmetry reaching Ap $\sim +8\%$ (th), -10%(th), whereas negative.

Single top+Higgs production is an ideal probe of the top Yukawa coupling

Polarization perpendicular to the scattering plane measures the relative

$P_2 \sim +18\%$ (th), -15% (th) for xi=0.1pi. All the asymmetries change sign if ξ is

A gauge invariant top Yukawa sector

Dimension-6 operator

$$\mathcal{L} = -y_{\rm SM} Q^{\dagger} \phi t_R + \frac{\lambda}{\Lambda^2} Q^{\dagger} \phi t_R \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) + \text{h.c.} \qquad Q = (t_L, b_L)^T \\ \phi = ((v + H + i\pi^0)/\sqrt{2}, i\pi^{-})^T$$
Additional tiHH and tiHHH coupling
$$\int e^{i\xi} - g_{\rm SM} \left\{ Ht_L^{\dagger} t_R + \frac{H}{v} \left[(H + i\pi^0)t_L^{\dagger} + i\sqrt{2}\pi^{-}b_L^{\dagger} \right] t_R \right\} \\ - (ge^{i\xi} - g_{\rm SM}) \left\{ Ht_L^{\dagger} t_R + \frac{H}{v} \left[(H + i\pi^0)t_L^{\dagger} + i\sqrt{2}\pi^{-}b_L^{\dagger} \right] t_R \right\} \\ - (ge^{i\xi} - g_{\rm SM}) \left\{ \left[\frac{H^2}{2v} + \frac{(\pi^0)^2}{2v} + \frac{\pi^{+}\pi^{-}}{v} \right] t_L^{\dagger} t_R \\ + \frac{H^2}{2v^2} - \left[(H + i\pi^0)t_L^{\dagger} + i\sqrt{2}\pi^{-}b_L^{\dagger} \right] t_R \right\} + h.c.,$$

$$g_{\rm SM} = \frac{y_{\rm SM}}{\sqrt{2}} = \frac{m_t}{v} \qquad \underbrace{g_{\rm SM} - ge^{i\xi}}{v^2} = \frac{\lambda}{\Lambda^2} \qquad \underbrace{f_{\rm L}^{\rm SM} + h.c.}_{v \to v} = \frac{3(g_{\rm SM} - ge^{i\xi})}{v} \frac{H^2}{2} t_L^{\dagger} t_R + h.$$

$$\mathcal{L} = -y_{\rm SM} Q^{\dagger} \phi t_R + \frac{\lambda}{\Lambda^2} Q^{\dagger} \phi t_R \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) + \text{h.c.} \qquad \begin{aligned} Q &= (t_L, b_L)^T \\ \phi &= ((v + H + i\pi^0)/\sqrt{2}, i\pi^-)^T \end{aligned}$$

$$\mathcal{L}_{uH}^{\rm SMEFT} = -m_t t_L^{\dagger} t_R - g_{\rm SM} \left[(H + i\pi^0) t_L^{\dagger} + i\sqrt{2}\pi^- b_L^{\dagger} \right] t_R \\ - (ge^{i\xi} - g_{\rm SM}) \left\{ Ht_L^{\dagger} t_R + \frac{H}{v} \left[(H + i\pi^0) t_L^{\dagger} + i\sqrt{2}\pi^- b_L^{\dagger} \right] t_R \right\} \\ - (ge^{i\xi} - g_{\rm SM}) \left\{ \left[\frac{H^2}{2v^2} + \frac{\pi^+ \pi^-}{v} \right] t_L^{\dagger} t_R \\ + \frac{H^2}{2v^2} \left[(\frac{H}{2} + i\pi^0) t_L^{\dagger} + i\sqrt{2}\pi^- b_L^{\dagger} \right] t_R \right\} + h.c., \end{aligned}$$

$$g_{\rm SM} = \frac{y_{\rm SM}}{\sqrt{2}} = \frac{m_t}{v} \qquad \underbrace{g_{\rm SM} - ge^{i\xi}}_{v^2} = \frac{\lambda}{\Lambda^2} \end{aligned}$$

$$\mathcal{L}_{tHH}^{\rm SMEFT} = \frac{3(g_{\rm SM} - ge^{i\xi})}{v^2} \frac{H^2}{2} t_L^{\dagger} t_R + h. \end{aligned}$$

Feynman-Diagram (FD) gauge

• Weak bosons are 5-components $W^{\pm M}=(W^{\pm \mu},\pi^{\pm})$, EOM mixes $W^{\pm \mu}$ and $\pi^{\pm \nu}$ unlike in R_{ξ} gauge.

• FD c

gauge propagator
$$iG_V^{\text{FD}}(q)_{MN} = \frac{iP_V^{\text{FD}}(q)_{MN}}{q^2 - m_V^2 + i\epsilon}$$

 $P_V^{\text{FD}}(q)_{MN} = \begin{pmatrix} -g_{\mu\nu} + \frac{q_{\mu}n(q)_{\nu} + n(q)_{\mu}q_{\nu}}{n(q)\cdot q} & im_V \frac{n(q)_{\mu}}{n(q)\cdot q} \\ -im_V \frac{n(q)_{\nu}}{n(q)\cdot q} & 1 \end{pmatrix} \qquad n(q)_{\text{FD}}^{\mu} = (\text{sgn}(q^0), -\vec{q}/|\vec{q}|)$

• Helicity ±1 states don't mix with the Goldstone boson. Helicity 0 state is a mixture of

$$-\frac{Q n^{\mu}}{n \cdot q} = \epsilon^{\mu}(q, h = 0) - \frac{q^{\mu}}{Q}, \quad Q =$$

and the Goldstone boson.

• Because the Goldstone bosons are parts of the physical weak boson, all Goldstone boson vertices contribute to the scattering amplitudes in the FD gauge

[1] Kaoru Hagiwara, Junichi Kanzaki and Kentarou Mawatari, 'QED and QCD helicity amplitudes in Parton-shower gauge.' Eur. Phys. J.C 80(2020) 6, 584 [2] Junmou Chen, Kaoru Hagiwara, Junichi Kanzaki and Kentarou Mawatari, 'Helicity amplitudes without gauge cancellation for electroweak processes' Eur. Phys. J.C 83 (2023). [3] Junmou Chen, Kaoru Hagiwara, Junichi Kanzaki, Kentarou Mawatari and YJZ, 'Helicity amplitudes in light-cone and Feynman-diagram gauges' Eur. Phys. J. Plus 139 (2024).

$$\sqrt{|q^2|}$$

ub > dtH amplitudes in the FD gauge

Preliminary findings:

• Gauge invariance

$$\hat{\mathcal{M}}_{h\sigma}^{\mathrm{U(a)}} + \hat{\mathcal{M}}_{h\sigma}^{\mathrm{U(b)}} = \hat{\mathcal{M}}_{h\sigma}^{\mathrm{FD(a)}} + \hat{\mathcal{M}}_{h\sigma}^{\mathrm{FD(c)}}$$

- We identify the 'unphysical ' gauge cancellation in the U gauge between $M_{U}^{(a)}$ and $M_{U}^{(b)}$.
- At high m(tH), the ξ dependence is dominated by M_{FD}

(c)
$$\propto y_{
m SM} - y e^{i\xi}$$

