

Probing CPV mixing in the Higgs sector in VBF at 1 TeV ILC

N. VUKASINOVIC, I. BOZOVIC JELISAVCIC, G. KACAREVIC

ON BEHALF OF THE ILD DETECTOR CONCEPT GROUP

VINCA Institute of Nuclear Sciences, Belgrade, Serbia

OUTLINE

- We explore the possibility that CP is violated through mixing of CP eigenstates of opposite parities
- Generic assumption that 125 GeV Higgs mass eigenstate is a mixture of scalar and pseudoscalar via mixing angle $\Psi_{CP}(h_{125} = H \cdot \cos \Psi_{CP} + A \cdot \sin \Psi_{CP})$?
- \circ $\;$ What is the precision to measure $\Psi_{\rm CP}$ in ZZ-fusion at 1 TeV e^+e^- collider ILC ?
- The first fully simulated measurement in VBF (arXiv:2205.07715v3[hep-ex], only ZH scaled to higher E and \mathcal{L})

SIGNAL AND BACKGROUND

~ 1 TeV energies are optimal due to interplay of x-section and centrality

1 TeV	σ (fb)	Expected in 8 ab ⁻¹ full range	Reconstructed with ILD			
Signal:	12	104000	$6 \cdot 10^5$ DELPHES ~ 46 ab ⁻¹			
$e^+e^- ightarrow Hee, H ightarrow b\overline{b}$	13		3495 full sim. ~ 0.27 ab ⁻¹			
$e^+e^- ightarrow q\bar{q}e^+e^-$	2.4·10 ³	19·10 ⁶	2·10 ⁵			
$e^+e^- o q\bar{q}$	3.6·10 ³	29·10 ⁶	4·10 ⁵			
$e^+e^- ightarrow q\bar{q}ev$	3·10 ³	24·10 ⁶	2.6·10 ⁶			
$e^+e^- \rightarrow llll$	8·10 ³	64·10 ⁶	1.5·10 ⁶			
$e^+e^- ightarrow eeqqqq$	37	30·10 ⁴	1.104			
$e^+e^- \rightarrow e\nu_e qqqq$	51	4·10 ⁵	1·10 ⁶			
$e^+e^- \rightarrow qq\nu_e ee\nu_e$	5.6	45·10 ³	5·10 ⁴			

Unpolarized beams

- Generator level WHIZARD V2.8.3/UFO/Higgs characterization model signal and WHIZARD 1.95/SM background
- \circ Higgs decays to 2 b-jets to avoid ee $\!\gamma$ background
- CP-odd coupling to vector bosons at loop level

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] - \frac{1}{\Lambda} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0}$$

• Generator parameters are set in a way that production cross-section depends only on Ψ_{CP} – otherwise multidimensional analysis would be reqired including variations of κ_{AZZ}

SENSITIVE OBSERVABLE

- $\circ~$ CP-sensitive observable: angle between production planes $\Delta \Phi$
- $\Delta \Phi$ carries the most information on the Higgs CP state [arXiv:2203.11707]

 $\Delta \Phi = \operatorname{sgn}(\Delta \Phi) \cdot \operatorname{arcos}(\vec{n}_1 \cdot \vec{n}_2)$

$$\operatorname{sgn}(\Delta \Phi) = \frac{\vec{q}_1 \cdot (\vec{n}_1 \times \vec{n}_2)}{|\vec{q}_1 \cdot (\vec{n}_1 \times \vec{n}_2)|}$$

$$\hat{n}_{1} = \frac{q_{e_{i}^{-}} \times q_{e_{f}^{-}}}{|q_{e_{i}^{-}} \times q_{e_{f}^{-}}|} \qquad \hat{n}_{2} = \frac{q_{e_{i}^{+}} \times q_{e_{f}^{+}}}{|q_{e_{i}^{+}} \times q_{e_{f}^{+}}|}$$

GENERATED AND RECONSTRUCTED SIGNAL

Measurement for the pure scalar $\Psi_{\rm CP}=0$

- Correction for detector acceptance in polar angles
- Generated signal is well reproduced with corrected reconstructed data

- **Preselection electron isolation**:
- $\circ m_{e^+e^-} > 200 \text{ GeV}$ (veto HZ)
- $\circ \quad E_{e\pm} > 60 \text{ GeV}$
- DELPHES electron isolation

$$\circ \quad p_{\text{Tmin}} = 0.5 \text{ GeV}$$

$$\circ \quad I = \frac{\sum_{i \neq P}^{p_T(i) > p_T^{min}} p_T(i)}{p_T(P)} < 0.12$$

Signal preselection efficiency: ~85%

• Background is CP insensitive

EVENT SELECTION

\circ Selection cuts:

 $◦ m_{j\bar{j}} > 110 \ GeV,$ $◦ p_{Tj_2} > 160 \ GeV,$ $◦ N_{PFO_{1,2}} > 10,$ ◦ Selection efficiency: 82%

o Total signal efficiency with preselection: ~ 70%
 o Unbiased selection w.r.t. △Φ
 o Background is fully suppressed

ANGULAR OBSERVABLE $\Delta\Phi$ and mixing angle $\Psi_{\rm CP}$

 $\circ~$ Minimum of $\Delta \Phi$ shifts for non-zero $\Psi_{\rm CP}$

 $\circ~$ Relation between $\Psi_{\rm CP}$ and $\Delta\Phi$ has to be extracted **empirically**

RECONSTRUCTION OF MIN($\Delta \Phi$)

- 1. Determine position of the local minimum from experimental data (corrected, selected S+B): $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot cos(a \cdot \Delta \Phi - b)$
- b/a defines minimum from the principle of the first derivative

MIN($\Delta \Phi$) VS. MIXING ANGLE Ψ_{CP}

DETERMINATION OF Ψ_{CP} FROM MIN($\Delta \Phi$)

4. Retrieve Ψ_{CP} by solving the quadratic equation: $k \cdot \Psi_{CP}^{2} + m \cdot \Psi_{CP} - (b/a) = 0$ (k, m – fit parameters from simulation b, a – fit parameters from the reconstructed data)

Generated values of Ψ_{CP} are correctly reproduced

0.05

0

0.1

0.15

0.2

 Ψ_{true} [rad]

PSEUDO-EXPERIMENTS

- \circ 2000 pseudo-experiments at $\Psi_{\rm CP}$ = 0, with 8 ab⁻¹ of unpolarised data
- Pull distribution indicates that uncertainties are correctly estimated
- Fit parameters' uncertainties give ~1 mrad systematic error

DISCUSSION

- First measurement in VBF (HZZ vertex)
- Full background simulation of ILD detector and fast simulation of the signal, realistic ILC running scenario
- Sensitivity in line with the targeted precision from theory (benchmark point 2HDM to explain barion asymetry) $(f_{CP}, 68\% \text{ CL}, \text{ pure scalar})$ [arXiv:2205.07715v3]

				•••								
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	$14,\!000$	100,000	250	350	500	1,000	$1,\!300$	125	125	$3,\!000$	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	8,000	$1,\!000$	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	1.44 ·10 ⁻⁵	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	\checkmark	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	-	$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	_	-	_	-	_	_	-	-	$< 10^{-2}$
$Ht\bar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_	_	\checkmark	$< 10^{-2}$
H au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$	-	_	-	_	-	_	-	_	_	\checkmark	_	$< 10^{-2}$

 $f_{CP} = sin^2(\varDelta \Psi_{CP}) = (1.44 \pm 0.02) \cdot 10^{-5}$ with 68% CL

SUMMARY

- First measurement in VBF in HZZ vertex (arXiv:2205.07715v3[hep-ex], only ZH scaled to higher E and \mathcal{L})
- Realistic simulation of ILD experiment (luminositiy spectrum, machine background, event reconstruction)
- Demonstrating feasibility of linear e^+e^- colliders to probe CPV in VBF at high center-of-mass energies (~ 1 TeV)
- Input to the ECFA Study on Higgs/top/EW factories ILD-PHYS-PUB–2024-002
- Published in <u>Phys. Rev. D 110, 032011 (2024)</u>

THANK YOU!

BACKUP

82 % @ 500 GeV

41.7 % @ 1 TeV

21.8 % @ 1.4 TeV