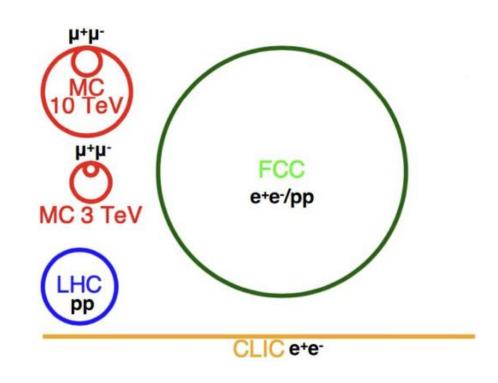


Higgs self-coupling possibilities at a multi-TeV Muon Collider

R. Gargiulo (INFN Rome-1) on behalf of International Muon Collider Collaboration Higgs 2024 - Uppsala, Sweden, November 6, 2024

A Muon Collider

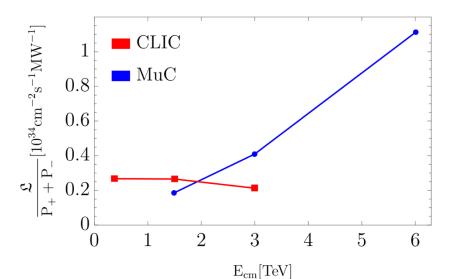

- A Muon Collider is being considered as an option for a next generation accelerator facility
- Studies at 3 and 10 TeV showed several advantages but also technological challenges

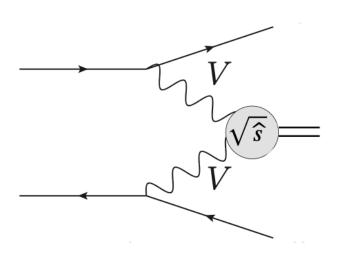
Muon Collider pros:

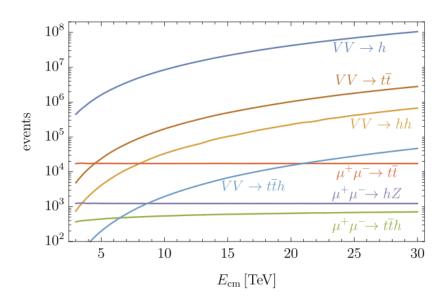
- $m_{\mu} > m_{e}$ hence negligible synchrotron radiation
- Point-like particle: all energy is available for the collision
- Perfect for direct search of new heavy states
- Low QCD background wrt to hadronic machines
- broad physics reach: SM precision tests, BSM direct and indirect search, lepton flavour universality tests

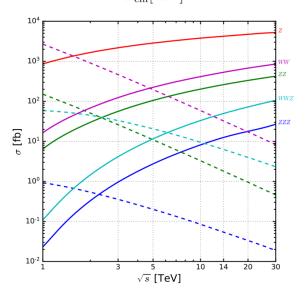
Muon Collider cons:

- τ_0 = 2.2 μ s: very fast cooling and fast-ramping magnet system needed
- μ decay + interaction with machine: beam-induced background (BIB), partially shielded by nozzles
- Intensive neutrino flux

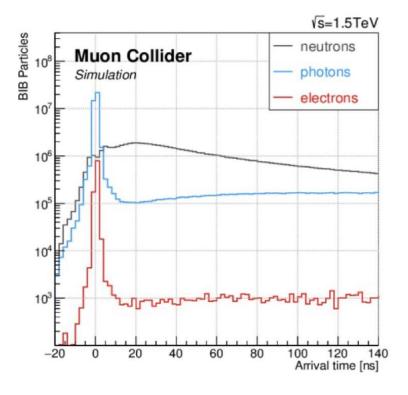


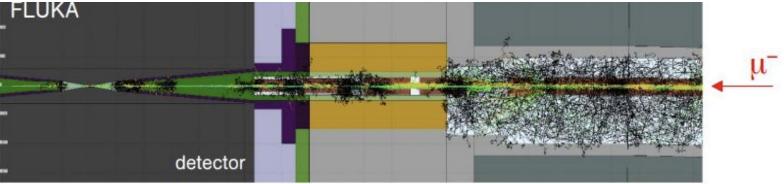



The unique high-energy path



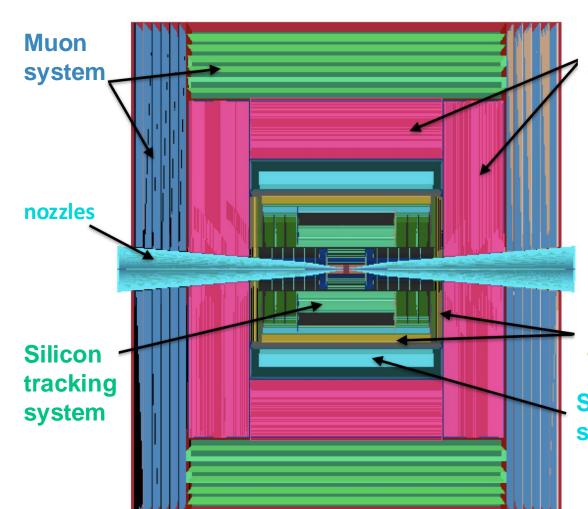
- Unique combination of properties at higher energies
 - VBF fusion XS increases with energy
 - No QCD background and small annihilation XS -> clean physics environment
 - Possibility to do precision electroweak physics
 - Lumi/power ratio improves linearly with energy





MInternational UON Collider Collaboration Beam Induced Background

- Muons decay → decay products interact with machine elements
- → Tungsten nozzles mitigate radiation coming to the detector
- Still working on the MDI optimization for 10 TeV
- Despite the nozzles \rightarrow intense fluxes of particles reach the detector:
 - high multiplicity of particles in the tracker (mainly in first layers)
 - diffuse low-energy background in calorimeters
- BIB is off-time wrt bunch crossing \rightarrow algorithms and detectors tailored to exploit these features
- Innovative techniques and optimised algorithms are fundamental to mitigate the impact of BIB



10 TeV Detector concept

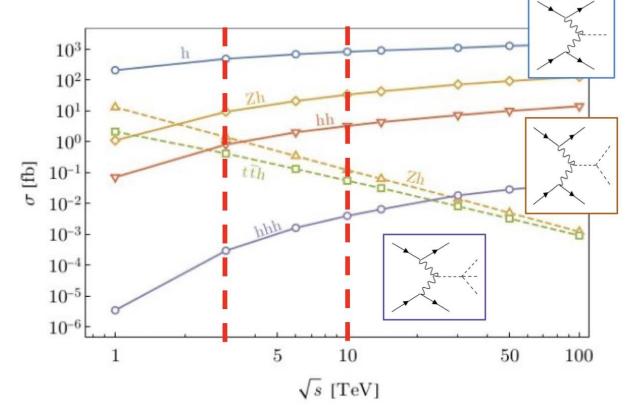
- Main physics requirements → ability to reconstruct:
 - boosted low-pT physics objects from Standard Model processes;
 - central energetic physics objects from decays of BSM massive states;
 - exotic experimental signatures: disappearing tracks, displaced leptons, displaced photons or jets, ...
- Machine background conditions: high levels of BIB dictates technological choices, reconstructed algorithms and detector design
- Studies at 3 TeV performed with a legacy detector concept from CLIC

HCAL (Fe-Scintillator)

ECAL (PbF₂ and SiPMs)

Superconductive solenoid (5T)

Higgs Physics @ Muon Collider

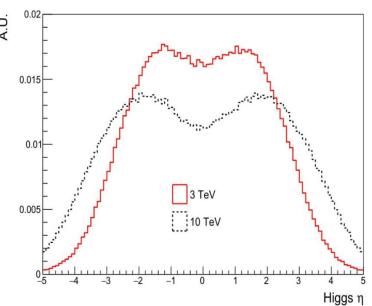


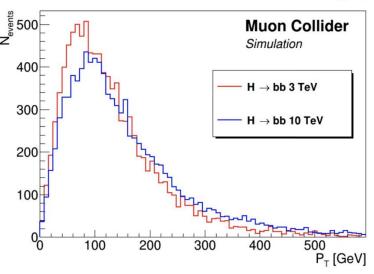
The last ESPPU identified Higgs Physics as the main physics target at future colliders:

- Measure Higgs couplings to fermions and bosons at ~O(1%) level
- Measure Higgs potential with multi-Higgs processes

The Muon Collider is by all means a Higgs factory

Energy	Luminosity	number of Higgs
3 TeV	1 ab ⁻¹	5 x 10 ⁵
10 TeV	10 ab ⁻¹	9.5 x 10 ⁶
14 TeV	20 ab ⁻¹	2.2 x 10 ⁷
30 TeV	90 ab ⁻¹	1.2 x 10 ⁹





Higgs physics with detailed detector simulation

- Higgs Physics at 10 TeV is similar to 3 TeV
 - Objects more boosted in the forward region
 - Transverse momentum distributions similar
- While configuring 10 TeV detector, a study has been done for Higgs Physics at 3 TeV, using detailed detector simulation
- Main purposes of <u>this work</u>:
 - Prove that BIB is under control
 - Compare results with the no-BIB case
- List of studies:
 - Higgs cross-sections (bb, WW*, ZZ*, μμ, γγ)
 - Higgs width Γ
 - Double Higgs cross-section (This talk)
 - Trilinear self-coupling λ₃ (This talk)

Results at 3 TeV: realistic vs. no BIB case

 Results of full simulation compared with studies obtained without BIB

 Results are overall in good agreement in most channels

→ BIB is under control

Decay channel	With BIB	Without BIB
H→bb	0.75%	0.76%
H→WW	2.9%	1.7%
H→ZZ	17%	11%
H→μμ	38%	40%
Н→γγ	7.6%	6.1%

 We are confident to reach the results obtained by <u>phenomenological studies</u> despite the BIB presence

Coupling precisions and potential

- Coupling measurements simulated with full and parametric simulations → results are consistent and very close to the phenomenological studies
 - See talk from A. Montella on single Higgs couplings
- Di-Higgs production is sensitive to trilinear Higgs self-coupling λ₃
 - Extrapolation to higher energies and luminosities from pheno studies →
 Muon Collider provides competitive results wrt other machines
- Possibility to access Higgs quartic self-coupling λ_4 (only pheno study for now), expectations: $\delta\lambda_4 = 50\%$ at $E_{com} = 14$ TeV with 20 ab⁻¹

After HL-LHC a
 MuCol would
 improve more the
 sensitivity wrt
 FCC-ee, except
 for Z and c
 couplings

	HL-LHC	$\begin{array}{c c} \text{HL-LHC} \\ +10\text{TeV} \end{array}$	$egin{array}{c} ext{HL-LHC} \ +10 ext{TeV} \ +\ ee \end{array}$
κ_W	1.7	0.1	0.1
κ_Z	1.5	0.4	0.1
κ_g	2.3	0.7	0.6
κ_{γ}	1.9	0.8	0.8
$\kappa_{Z\gamma}$	10	7.2	7.1
κ_c	-	2.3	1.1
κ_b	3.6	0.4	0.4
κ_{μ}	4.6	3.4	3.2
$\kappa_ au$	1.9	0.6	0.4
κ_t^*	3.3	3.1	3.1

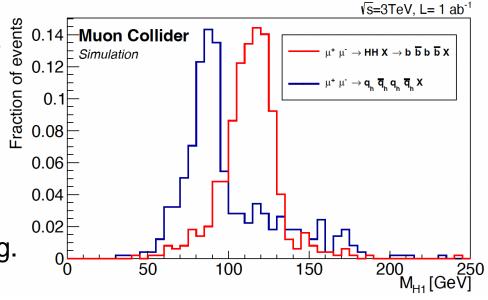
^{*} No input used for the MuC

Experiment	Luminosity	COM Energy	$\delta \lambda_3$
CLIC	5 ab ⁻¹	3 TeV	-7%,+11%
ILC	8 ab ⁻¹	1 TeV	10%
FCC-hh	30 ab ⁻¹	100 TeV	3% -
Muon Collider	2 ab ⁻¹	3 TeV	15%
Muon Collider	10 ab ⁻¹	10 TeV	3.5%
Muon Collider	20 ab ⁻¹	14 TeV	2.5%
Muon Collider	90 ab ⁻¹	30 TeV	1%

The Muon Collider is definitely competitive in the landscape of future colliders

Reauires

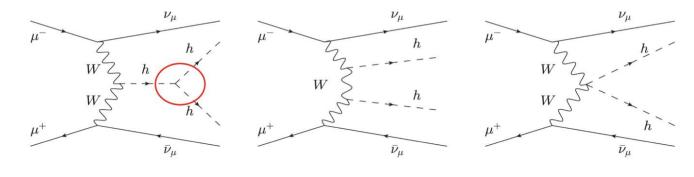
than MuC

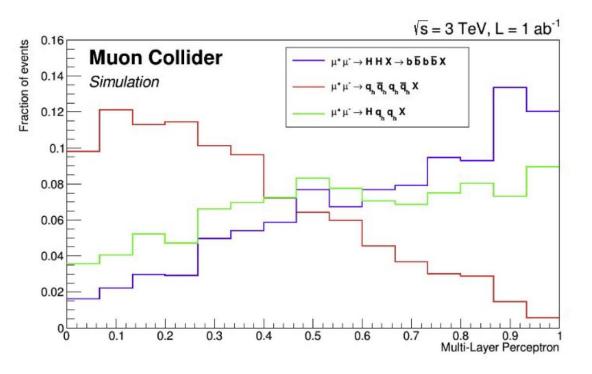


Di-Higgs production

- Di-Higgs production is particularly sensitive to trilinear Higgs self-coupling $\lambda_{\rm 3}$
- Here only the HH→bbbb channel has been considered
- Event selection: 4 jets with p_T > 20 GeV e |η|<2.5
 - HH candidates are obtained by minimising $\sqrt{[(m_{12}-mH)^2+(m_{34}-mH)^2]}$
 - B-jet tagging identification algorithms required for one jet per di-jet pair
- Neural Network to separate signal from background
- Result at 3 TeV with 1 ab⁻¹ in 5y: Δσ/σ ~ 33%
- At 10 TeV we can combine this result with other channels, e.g.
 HH→bbWW

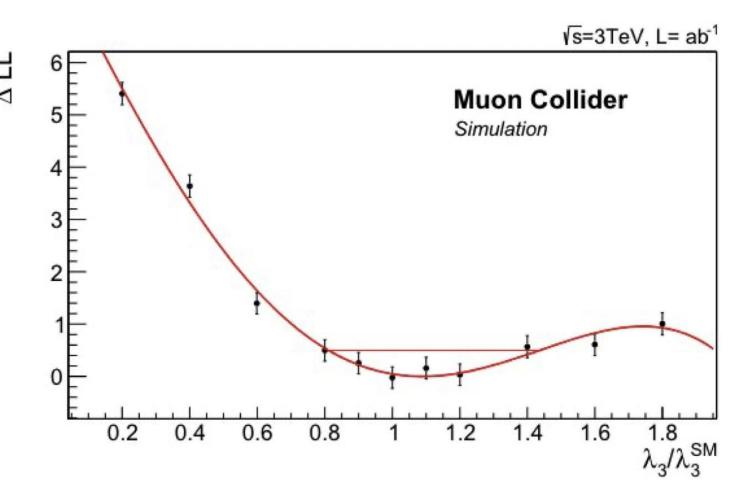
Background: double quark-antiquark production (very abundant at LHC, small at muon collider)





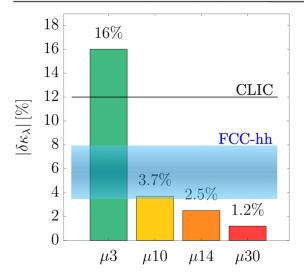
Trilinear coupling from Di-Higgs

- HH→bbbb can be used to probe the precision on the trilinear Higgs self-coupling λ₃
- Samples of HH→bbbb have been simulated with WHIZARD for different values of κ_λ=λ₃/λ_{SM}
- Two MLPs are used to separate:
 - HH→bbbb from backgrounds
 - Trilinear contribution from other HH processes
- Pseudo-datasets are generated from 2D distributions of the two MLPs outputs
- Maximum-likelihood template fit performed for each κ_{λ} hypothesis



Trilinear coupling: results at 3 TeV

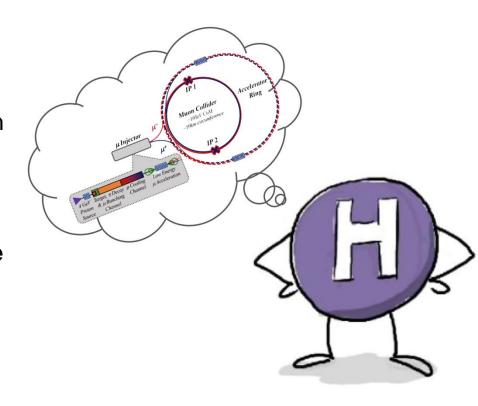
- Result: bound $0.81 < \kappa_{\lambda} < 1.44$ at 68% CL for 3 TeV, $1ab^{-1}$ in 5y
- Good precision despite 0.3 fb XS
- Full simulation study shows
 comparable results wrt expectations
 from pheno studies
 (15% at 3 TeV with 2ab⁻¹)
- Pheno studies extrapolation show that very high energy Muon Colliders (> 10 TeV) provide the most precise results among all future colliders



Going towards 10 TeV

- Having understood the 3 TeV case, we are studying the 10 TeV
 Muon Collider
 - Detector concept defined
- Several considerations can be done:
 - BIB is going to impact as 3 TeV case (or even less with MDI well optimised)
 - Reconstruction algorithm to be optimized
 - Algorithms will be tailored for physics cases (e.g. ML for jets reconstruction)
- The Muon Collider is one of the most interesting machine to study Higgs Physics
 - Surpasses FCC-ee, except for a few decay channels and width measurements
 - Competitive with FCC-hh
 - Only parametric studies for now and requiring more time than MuC

Object	Requirements
muons	$\frac{\Delta p_T}{p_T} = 0.4\%$
photons	$\frac{\Delta E}{E} = 3\%$
jets	$\frac{\Delta p_T}{p_T} = 15\%$
b-jets	$\frac{\Delta p_T}{p_T} = 15\%$
	b efficiency = 60 %
9	c mistag = 20 %
<i>b</i> -jets	$\frac{\Delta p_T}{p_T} = 10\%$
(for λ_3)	b efficiency = 76 %
-	c mistag = 20%



Summary + take home message

- Precision Higgs Physics will be the next milestone for future colliders
- The Muon Collider provides clear advantages:
 - Several high energy stages (at 10 TeV and beyond)
 - High statistics and access to multi-Higgs processes
 - Higgs physics reach competitive with FCC-hh, above FCC-ee (in almost all observables)
- Together with some important challenges:
 - R&D effort to satisfy machine requirements
 - Detector and algorithms optimisation to cope with BIB presence
- Higgs physics at 10 TeV is similar to 3 TeV
 - The 3 TeV Higgs physics case has been well understood
 - Study with detailed detector simulation provides excellent agreement with pheno parametric studies
 - This study paves the way to future studies at 10 TeV in time for the next ESPPU

