Efficient Transformer for Point Cloud
Data in Geometric Deep Learning

Siqi Miao
Ph.D. Student
ML @ Georgia Tech

Joint work with Zhiyuan Lu (BUPT), Mia Liu (Purdue), Javier Duarte (UCSD), Pan Li (Gatech)

This work has also benefited from insightful discussions with Gage DeZoort (Princeton), Yongbin Feng (Fermilab), Kilian Lieret (Princeton)

Georgia
Tech

Miao, Siqi, et al. "Locality-Sensitive Hashing-Based Efficient Point Transformer with Applications in High-Energy Physics." arXiv preprint arXiv:2402.12535 (2024).

Content

« Background & Motivation

« (Efficient) Transformers

« HEPT: LSH-based Efficient Point Transformer
» Conclusion

Georgia
2 Gl" Tech.

Background & Motivation

Point Clouds in High-Energy Physics

Pileup Mitigation

A > W

___— B

\ I Pileup charged

Total neutral

/xading vertex charged =

C I CMS Simulation Preliminary
i
Il t€+PU,/s =14 TeV

Machine-Learned Particle Flow reg

f
. Charged hadrons . HFEM
i/ . Neutral hadrons Electrons
- 4 - Photons Muons
4 - . . HFHAD

\ \\\\ t
H
w 2
collision point / \3
7y ?
proton beams /

collision event

 Particle Tracking

Jet Tagging

outgomg particles
/ \A Y 5, ./

\Au

Ay

jet reconstruction jet tagging

SUISSE =

3 CERN
Prevessm_l‘ g

Latency & Throughput

100 KHz ‘ 1 KHz
1 MB/evt
40 MHz Hug!w—level Offline :
trigger reconstruction
I.I trigger
i Computing fime
1ns 1 s 100 ms 1s

| 1 1 L
1 1 1 1 >
latency constraint latency AND throughput
throughput constraint constraint

Georgia
Gl" Tech.

Geometric Deep Learning with Point Cloud Data

» Galaxy Evolution

« Drug discovery

P
=0\

rotein
: ngand ' 50 m e
A~

‘! Amundsen-Scot
Py P i Ttarctica
86 strings of DOM, o'eA Stathn, A o
set 125 meters apart A National Science Fog'
d research facility

IceCube Laboratory

Digital Optical
Module ()DOM) 2450 m
0 DOMs »

 Neutrino Detection

OOOOOO
h

string

.|".|

They all require efficient computational methods!

Cr

300 Mpc

Georgia
Tech.

Current Approach

» These point clouds are irregular, but they all hold local inductive bias P) 88
* i.e., a point would primarily interact with its local neighbors | e s
- Graph neural networks (GNNSs) are used,
» by constructing, e.g., k-NN graphs, from point clouds hg”
Lol - Points in 2D Plane - .k-Nearest Neighbors Graph (k=5) % ?
- : .t .‘:; N e ,
08{* " Lo . ot 0.81 % ¢ VA" X A3 A o% h,(,l)O"e

061 B T O k-NN 2 06 'S v AA

6@%

. :

Y axis
oo
Y axis
&
o
o
[}

o oo ool /DX - YL b “©,00000
- e) .: 0.. 1 .'.. o ..ka .::_4\.‘ '/,//,‘Z,'
) ° ."':' .. .) ~ . "." : s ’ h1(7t+1) fupdate (h(t);fagg ({hl(tt) lu € Nv}))
0.01 ° 0.01 -
00 02 04 06 08 10 00 02 04 06 08 10
X axis X axis hG = POOL ({th) | v e V})
k-NN graph construction GNNs involve
- may have 0(n?) complexity * irregular computation & random memory access
A sample can easily have over 5k or 50k points! ~. /They are not hardware-friendly!

6 GNNs Are Slow! Gr T

Current Approach

» These point clouds are irregular, but they all hold local inductive bias L e 38
* i.e., a point would primarily interact with its local neighbors E fusc sumor
» Graph neural networks (GNNs) are used,
» by constructing, e.g., k-NN graphs, from point clouds hg”
Points in 2D Plane k-Nearest Neighbors Graph (k=5)
081> e Lo . e 0.8 ¥ » b L VA3 h(l) 0% h,(,l)O"e

4 06 . Ce O K-NN 061 K \‘\‘ A

e

% * e ® o o - % — N\ = A .7,'1. (0)0 <A>
>_O.4ﬂ ° . o : . >-0_4- N\ / e .. ol h(O)O(O)Goooeo
0.2 1) ® .: ... °,* ¢ ... 0.2 ..\ . .: '-‘\.. e ’/;’/:.'
) . ."." .. .) — . "." : . ’ h1(7t+1) fupdate (h(t)xfagg ({hl(tt) lu € Nv}))
0.01 ° 0.01 °
00 02 04 06 08 10 00 02 04 06 08 1.0
X axis X axis hG = POOL ({hf}l’) | v e V})
k-NN graph construction GNNs involve
- may have 0(n?) complexity * irregular computation & random memory access
A sample can easily have over 5k or 50k points! ~. /They are not hardware-friendly!

7| Can we have an accurate & hardware-friendly model w/ (almost) linear complexity?

(Efficient) Transformers

Vanilla Transformer
Scaled Dot-Product Attention
 Self-attention mechanism
- A token or a point u has three vectors q,, k,, v, € R?
- Stacking them for n points yields three matrices Q, K,V € R™*4
 Let's ignore normalization terms for simplicity
- Attn(Q,K,V) = exp(QKT)V
» Capture all pairwise relations
« Why is this good for computation?

 All operations are regular matrix multiplication

« Why is this bad for computation?
« The complexity of exp(QK™) is O(n?)

« We are particularly interested in efficient transformers
« These variants try to decrease the complexity to O(n logn) or O(n)

MatMul

Multi-Head Attention

Concat

i

Scaled Dot-Product .u& !

Attention

L

Ll

£
Linear

Linear

Cr

Linear

Georgia
Tech.

Efficient Transformers via Kernel Approximation

* Viewing exp(q, "k,) as a kernel
» Let's not compute it exactly
* Instead, use efficient methods to approximate it accurately...
* Ideally, we may achieve
« Hardware-friendly model with only regular computation

* No expensive graph construction
« Almost linear complexity, but may (approximately) capture pair-wise interactions

* There is no free lunch!
- Studies along this line must assume some properties of the attention matrix exp(QK™)
« for efficient and accurate approximation
« Two typical assumptions (and techniques to use)

Low-rank approximation Sparse approximation

« Random Fourier Features (RFF) < Locality-Sensitive Hashing (LSH) Which one is better for GDL tasks?

L T

'l.t': - - -'.
loa oo™ %% .~._.'_.
Bt A e et
QR LA TN . %o
il LA T
- . L
M = N SE g
R "‘--;‘ L J
L rEYR o 5
- N 8,'q
TS LT IR .
RPN P P G
e L Gr eorgia

Tech.

10

Low rank Sparse

Efficient Transformers via Kernel Approximation

Low-rank Approximation Sparse Approximation
« Random Fourier Features (RFFs) * Locality-Sensitive Hashing (LSH)

» For any properly normalized positive definite
shift-invariant kernel k(x,y) = k(x — y) with
x,y € R%and k(0) = 1

* RFFs can approximate such kernels by k(x,y) =
Y(x)TY(y) with : R -» RP

« A most common example of such y is

. Yx) = \/% (sin(w]x), cos(w]x), ..., sin(w], ,x), cos(w} /Zx))T
s w; e k*(w), and k* is the Fourier transform of k
» Consider RBF kernels k(x,y) = exp (—%le - y||2)
« Then k* is a standard Gaussian
« So, one can have
ll 11

« exp(xTy) ~ H(x) h(y) with h(x) = exp (5-) p(x)

. O (n) complexity! Gr Georgia

IfD K n Tech.

Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)

12

O (n) complexity!

IfD «n

Sparse Approximation
* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data

points into the same bucket, e.g., via h(x)

R > R

« E.g., by setting llx|ll = [lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)

 Pairs with close angular distance have large attn

« So, with high prob. in the same bucket

« Compute full attn for pairs in the same bucket

O(nlogn) complexity!

If bucket size < n

Cr

Georgia
Tech.

Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)

13

O (n) complexity!

IfD «n

Sparse Approximation

* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data

points into the same bucket, e.g., via h(x): R? - R

« E.g., by setting llx|ll = [lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)

 Pairs with close angular distance have large attn
« So, with high prob. in the same bucket
« Compute full attn for pairs in the same bucket

» There are three ways to construct LSH tables...

Elements Hash Table 1
° hi(z)| Collisions ||ha(z)| Collisions AND-only LSH
o ® ° : 1 |e®e® 1 | @@ O
2 (X) 2 leo 0@ @
:: - 3 eoeeeee| 3 00000 = (X X]
4 |e ° 4 |@o o
0® o o 5 |ee® 5| @ .

Cr

Georgia
Tech.

Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)

14

O (n) complexity!

IfD «n

Sparse Approximation

* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data
points into the same bucket, e.g., via h(x): R? - R

« E.g., by setting lixll = |lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)
 Pairs with close angular distance have large attn
« So, with high prob. in the same bucket
« Compute full attn for pairs in the same bucket

» There are three ways to construct LSH tables...
Hash Table 1

hi(z)| Collisions
1 |leee@®
2 o0
Elements 3 lececee
o [] ° 4 |e ® OR-only LSH
° ® ° 5 |ee® o eeee
[] PY -p -) @00 00
o, Hash Table 2)
ha(z)| Collisions
® ¢ e © 1 | @@
y 2 |escoe Gr Georgia
3 (eoeeee TECh.
4 (ee
5 ®

Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)

15

O (n) complexity!

IfD «n

Sparse Approximation

* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data
points into the same bucket, e.g., via h(x): R? - R
« E.g., by setting lixll = |lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)
 Pairs with close angular distance have large attn
« So, with high prob. in the same bucket
« Compute full attn for pairs in the same bucket

» There are three ways to construct LSH tables...
Hash Table 1
m(z)| Collisions | [h:(z)| Collisions

1 |eee 1| @@

2 o0 2 |levoe
Elements 3 leseeee 3 eeoeee®
Py 4 |e® ° 4 |@o@
® []
. . 5 ee 5| e | OR & AND LSH |
° - i :
o e Hash Table 2
[] hy(x)| Collisions | |a(x)| Collisions

Efficient Transformers via Kernel Approximation

Low-rank Approximation
« Random Fourier Features (RFFs)

16

0 (n) complexity!

Sparse Approximation

O(nlogn) complexity!

Which one is better for GDL tasks?

What properties can we utilize in GDL?
Local Inductive Bias!

* Locality-Sensitive Hashing (LSH)

Cr

Georgia
Tech.

HEPT: LSH-based Efficient Point Transformer

Low-Rank v.s. Sparse Approx. Under Local Inductive Bias

* To compare RFF-based and LSH-based methods

« We want to compare their approximation accuracy under the same computational budget

 So, for each method we analyze the tradeoff between

« Approximation error (¢)
« Computational complexity (F)

As F changes, how would € change?

 |f we assume for the tasks considered

A point primarily interacts with its local neighbors
« And the size of such neighborhood is O (polylog(n))

1. RFF results in an errore = 0 (%) which is consistently

-T[g »worse than LSH under subquadratic complexity, i.e.,
~ when F = 6(n?)

2. LSH is better for tasks with local inductive bias,
~ovielding e = 0 (%) via OR-only LSH. However, OR-only
C LSH finds it hard to further reduce such error if F is

18 : : =
set to be almost linear, i.e.,, F = O(n)

Notation: O, ©, and & denote soft-0,
soft-0, and soft-o, respectively. They
are variants of big-0, big-0, and Little

that suppress polylogarithmic factors.

-0

3. Utilizing both OR & AND LSH significantly improves

= F
w performance. The error e = 0 (exp (—m)

" which means that € can be further exponentially
reduced by almost linear complexity F = O(n).

2

Cr

Georgia
Tech.

HEPT: LSH-based Efficient Point Transformer

» So, we aim at utilizing both OR & AND LSH to build an efficient transformer
* Next, we introduce HEPT in detail

@]

\
]
J
\
e
S
J
%
@99

ee
EEE]

RBEE| @]
[C]
2
®
3
S
o
®
©

i | Align

Bloc]5 o
Attn

®

@
S |z oS

y

®

©CCCC0EEe

'.':: DR AND

SH| B

0
0
=!
w
]

B & & O
Cee
EEE

] @ Bl E ElEE E)

Q0
0
CEe
EEE

Block
_-.—
Attn

€ee
EEE

Il

(.
©
(mm

(=
0
o

_

®
®

X Miss Heavy Entries!

€ee
EEE

. O Queries (O[] Noise Q, K
1= 1M [l Keys @ Bucket ID

Figure 1: Pipeline of HEPT. Elements that share the same color represent points from the same local neighborhood. HEPT
employs OR & AND LSH to minimize noise caused by individual hash functions. HEPT also integrates point coordinates
as extra AND LSH codes for query-key alignment, maintaining computational regularity without compromising accuracy.

Georgia
19 Gl" Tech.

HEPT: LSH-based Efficient Point Transformer

« We first introduce a new attn kernel w/ explicit local inductive bias

+ Je(qu k) = exp (=3 llqu — Kol
qu = [Ziu I Vzwpu]:kv — [Ev | Vzwpv]
g, k, € R? are the original query/key vectors from vanilla transformer

P, P» € RF are point coordinates
w € R* is learnable parameter to adjust attn scores

 This kernel
» Enables the use of E2LSH in a principled way
 i.e., an LSH method in Euclidian space
* If g, — k,|I* is small (thus high attn), with high prob. they will have similar hash values
» Exhibits explicit local inductive bias
- i.e. the attention score k(qy, k,) = 0 as llq,, — k,|I* increases

Georgia
20 Gl" Tech.

HEPT: LSH-based Efficient Point Transformer

A kernel with explicit local inductive bias
* k(qu ky) = exp (—%IIqu - kaIZ)

* Then, we approximate this kernel via OR & AND E2LSH

« We construct m, hash tables (OR LSH), each with m, hash functions (AND LSH)
« Apply each hash function h,(x) = a - x, a ~ N (0,I) for all queries/keys
« Each query/key yields m; x m, raw hash values

« Denoted as Lgi),Lsc‘i) € R fori € [my] and j € [m,]

- If q,, and k,, hold small |iq, — k,|I*(thus large attn), they are likely to have close hash values LE,‘Z) and Lg)

« For each of the m; hash tables, we combine all m, hash values to yield AND hash code Tq(i), T,g) € R

L@y Y 7 pm))

C DO |E| D EH

o P38 =8m
° 8| =8

Gr Georgia
] O Queries TECh
1= MM 0 Keys [0 @ Bucket ID

HEPT: LSH-based Efficient Point Transformer

A kernel with explicit local inductive bias
* k(qu ky) = exp (—%IIqu - kaIZ)

 Then, we approximate this kernel via OR & AND E2LSH |, aranteed low approx. error!

« If follow previous work for computational reqularity by

« sorting the AND hash code of queries Tq(i) and keys L(ii), separately O(n logn) complexity!

» and truncating the buckets to be equal-sized
« We find a misalighment issue...

« We integrate point coordinates in the AND hash code to align Q-K Hardware-friendly!
« Then sort & truncate buckets and compute pairwise attn in each bucket

FPRERRPRRRE]

Block
Attn

=

EEEEEEE

ElEEEEEEE

Block 5 u
Attn

CEC
[Eeel

22

€CCEEELeEE

e

=

Georgia
Gl" Tech.

1 Noise Q, K

) Bucket ID X Miss Heavy Entries!

HEPT: LSH-based Efficient Point Transformer

 Datasets

@ Hits from a particle
7 Track to reconstruct

(a) Charged Particle Tracking

° o 0® ©

o .000
°© o

eLC oPCs

(b) Pileup Mitigation

23

The datasets are derived from the TrackML challenge

The task is formulated as a representation learning problem
* i.e,learn close embeddings for points originating from the same particle

The dataset is generated with 200PU

The task is formulated as a binary point classification problem
* j.e, predictif a neutral particle is from pileup collisions or not

Georgia
Gl" Tech.

HEPT: LSH-based Efficient Point Transformer

* Experiments

Table 1: Predictive performance on the three datasets. The Tab}ie 2: Erain}ng and {eSt tif(l)% (ms) per sample. Ela‘Ch eéltfy

'l' :]: . . is the median from at least measurements evaluated on
B(_)ld , Bold”, and BOld, highlight th,e ﬁ_rSt’, second, and an NVIDIA Quatro RTX 6000. Numbers in (-) are the time
third best results, respectively. Underline indicates the best used to pre-construct input graphs that may be saved during
transformer baselines. training if pre-processing is allowed. Note that real-time

inference requires building graphs on the fly. The Bold'

Tracking-6k (AP@k) Tracking-60k (APQFk) Pileup-10k (AUC) i ; . o
highlights the best results, and Bold and Underline indicate

Random 5.88 571 4.22

@ Hits from a particle SOTA GNNs 91.00¢ 90.89¢ 40.26 the best transformer and GNN baselines, respectively.
A Track t truct
raci 1o Teconstre Reformer 72.37 7247 36.70 : : :
(a) Charged Particle Tracking SMYRF 72.98 71.18 25.20 Tracking-6k Tracking-60k Pilup-10k
Performer 73.17 72.07 28.36 Train Test Train Test Train Test
FLT _ 72.55 71.45 25.26 SOTAGNNs 559 221 0OM 5781 432(322) 362
ScatterBrain 73.35 72.06 30.95 Reformer 355 23.1 2570 251 833 234
o © © o PointTrans 72.33 70.81 40.26 SMYRF 348 8.7 2343 69.6 58.6 12.4
e © FlatFormer 74.22 7023 38.61 Performer 343 83 2407 68.7 527 128
©o o © GCN 7061 75 33 1010 FLT 341 84 2369 71.6 559 127
0, © o DGCNN 00.74 88.66 33.75 SciatterBrajn 357 13.1 2562 r129 109 34.6
o e © ° GravNet 90.11 87.99 40.10 P;)““Trans 47??;18?;0) ;4;‘: 73212((?%17) ;243 37;?33) 1‘;423
° o GatedGNN 80.98 78.49 40.26 FlatFormer . .) .
GCN 471(129) 138 7332(5009) 5123 376(322) 342
eLC oPCs g ;f[i‘;;r;ezkHEPT Z;'?; ??'gg 4?;]2';111 DGCNN 563 287 14008 11779 325 204
“*HEPT : : : GravNet 593 251 13597 11684 312 278
(b) Pileup Mitigation FlatFormer-kugpr 88.18 85.06 39.99 GatedGNN 512(131) 158 T7476(5013) 5263 432(328) 362
HEPT 92.667 91.93f 40.39° HEPT 338t 7.0f 2312 579" 403" 107

*| :
24 Better accuracy than SOTA GNNs & up to 100x speedup*! G Seoroia

*Implemented purely PyTorch, may be further accelerated by applying quantization, FlashAttn, hardware-aware co-design, etc.

Conclusion

Conclusion

« We analyze the error-computation tradeoff of RFF and LSH
v"We highlight the superiority of LSH-based methods in GDL tasks
v'LSH with both OR & AND construction yields the best performance

« We propose a novel efficient point transformer HEPT

v'SOTA accuracy
v Up to 100x faster on GPUs (NVIDIA Quatro RXT 6000) compared to SOTA GNNs

e Qur code is released
v’ https://qithub.com/Graph-COM/HEPT

* Our paper is online
v https://arxiv.org/abs/2402.12535

Thank you!

26

Cr

Georgia
Tech.

https://github.com/Graph-COM/HEPT
https://arxiv.org/abs/2402.12535

Questions?

	Slide 1: Efficient Transformer for Point Cloud Data in Geometric Deep Learning
	Slide 2: Content
	Slide 3: Background & Motivation
	Slide 4: Point Clouds in High-Energy Physics
	Slide 5: Geometric Deep Learning with Point Cloud Data
	Slide 6: Current Approach
	Slide 7: Current Approach
	Slide 8: (Efficient) Transformers
	Slide 9: Vanilla Transformer
	Slide 10: Efficient Transformers via Kernel Approximation
	Slide 11: Efficient Transformers via Kernel Approximation
	Slide 12: Efficient Transformers via Kernel Approximation
	Slide 13: Efficient Transformers via Kernel Approximation
	Slide 14: Efficient Transformers via Kernel Approximation
	Slide 15: Efficient Transformers via Kernel Approximation
	Slide 16: Efficient Transformers via Kernel Approximation
	Slide 17: HEPT: LSH-based Efficient Point Transformer
	Slide 18: Low-Rank v.s. Sparse Approx. Under Local Inductive Bias
	Slide 19: HEPT: LSH-based Efficient Point Transformer
	Slide 20: HEPT: LSH-based Efficient Point Transformer
	Slide 21: HEPT: LSH-based Efficient Point Transformer
	Slide 22: HEPT: LSH-based Efficient Point Transformer
	Slide 23: HEPT: LSH-based Efficient Point Transformer
	Slide 24: HEPT: LSH-based Efficient Point Transformer
	Slide 25: Conclusion
	Slide 26: Conclusion
	Slide 27: Questions?

