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Background & Motivation



Point Clouds in High-Energy Physics
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• Particle Tracking• Pileup Mitigation

• Jet Tagging• Particle-flow Reconstruction

Latency & Throughput

The Large Hadron Collider



Geometric Deep Learning with Point Cloud Data

• Drug discovery • Neutrino Detection • Galaxy Evolution 

5 They all require efficient computational methods!



GNNs Are Slow!

Current Approach 

k-NN
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• These point clouds are irregular, but they all hold local inductive bias
• i.e., a point would primarily interact with its local neighbors

• Graph neural networks (GNNs) are used,
• by constructing, e.g., k-NN graphs, from point clouds

ℎ𝑣
𝑡+1

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 ℎ𝑣
𝑡

, 𝑓𝑎𝑔𝑔 ℎ𝑢
𝑡

∣ 𝑢 ∈ 𝑁𝑣

ℎ𝐺 = POOL ℎ𝑣
(𝐿)

∣ 𝑣 ∈ 𝑉

GNNs

k-NN graph construction 
• may have 𝒪(𝑛2) complexity

GNNs involve 
• irregular computation & random memory access

A sample can easily have over 5k or 50k points! They are not hardware-friendly!
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∣ 𝑣 ∈ 𝑉

GNNs

k-NN graph construction 
• may have 𝒪(𝑛2) complexity

GNNs involve 
• irregular computation & random memory access

A sample can easily have over 5k or 50k points! They are not hardware-friendly!

Can we have an accurate & hardware-friendly model w/ (almost) linear complexity? 



(Efficient) Transformers



Vanilla Transformer
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• Self-attention mechanism
• A token or a point 𝑢 has three vectors 𝒒𝑢, 𝒌𝑢, 𝒗𝑢 ∈ ℝ𝑑

• Stacking them for 𝑛 points yields three matrices 𝑸, 𝑲, 𝑽 ∈ ℝ𝑛×𝑑

• Let’s ignore normalization terms for simplicity

• Attn(𝑸, 𝑲, 𝑽) = exp 𝑸𝑲⊤ 𝑽

• Capture all pairwise relations

• Why is this good for computation?
• All operations are regular matrix multiplication

• Why is this bad for computation?
• The complexity of exp 𝑸𝑲⊤  is 𝒪(𝑛2)

• We are particularly interested in efficient transformers
• These variants try to decrease the complexity to 𝒪(𝑛 log 𝑛) or 𝒪(𝑛)



Efficient Transformers via Kernel Approximation
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• Viewing exp 𝒒𝑢
⊤𝒌𝑢  as a kernel

• Let’s not compute it exactly

• Instead, use efficient methods to approximate it accurately…

• Ideally, we may achieve

• Hardware-friendly model with only regular computation

• No expensive graph construction

• Almost linear complexity, but may (approximately) capture pair-wise interactions

• There is no free lunch!
• Studies along this line must assume some properties of the attention matrix exp 𝑸𝑲⊤

• for efficient and accurate approximation

• Two typical assumptions (and techniques to use) 

Low-rank approximation Sparse approximation

• Random Fourier Features (RFF) • Locality-Sensitive Hashing (LSH) Which one is better for GDL tasks?



Low-rank Approximation

• Random Fourier Features (RFFs)
• For any properly normalized positive definite 

shift-invariant kernel 𝑘(𝒙, 𝒚) = 𝑘(𝒙 − 𝒚) with 
𝒙, 𝒚 ∈ ℝ𝑑 and 𝑘(𝟎) = 1

• RFFs can approximate such kernels by 𝑘(𝒙, 𝒚) ≈
𝜓(𝒙)⊤𝜓(𝒚) with 𝜓: ℝ𝑑 → ℝ𝐷

• A most common example of such 𝜓 is

• 𝜓(𝒙) =
2

𝐷
sin 𝒘1

⊤𝒙 , cos 𝒘1
⊤𝒙 , … , sin 𝒘𝐷/2

⊤ 𝒙 , cos 𝒘𝐷/2
⊤ 𝒙

⊤

• 𝒘𝑖 ∼
𝑖𝑖𝑑

𝑘∗(𝒘), and 𝑘∗ is the Fourier transform of 𝑘

• Consider RBF kernels 𝑘 𝒙, 𝒚 = exp −
1

2
𝒙 − 𝒚 2

• Then 𝑘∗ is a standard Gaussian

• So, one can have

• exp 𝒙⊤𝒚 ≈ 𝜓(𝒙)⊤ 𝜓(𝒚) with 𝜓(𝒙) = exp
∥𝒙∥2

2
𝜓(𝒙)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)

11

Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛



Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data 

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket
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Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

𝒪(𝑛 log 𝑛) complexity!

If  bucket size ≪ 𝑛



Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data 

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket

• There are three ways to construct LSH tables…
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Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛
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Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛



Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation
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Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data 

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket

• There are three ways to construct LSH tables…



Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)
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Efficient Transformers via Kernel Approximation

Which one is better for GDL tasks?

What properties can we utilize in GDL?

Local Inductive Bias!

𝒪(𝑛) complexity! 𝒪(𝑛 log 𝑛) complexity!



HEPT: LSH-based Efficient Point Transformer



Low-Rank v.s. Sparse Approx. Under Local Inductive Bias
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• To compare RFF-based and LSH-based methods 
• We want to compare their approximation accuracy under the same computational budget

• So, for each method we analyze the tradeoff between 
• Approximation error (𝜖) 

• Computational complexity (𝐹)

• If we assume for the tasks considered
• A point primarily interacts with its local neighbors

• And the size of such neighborhood is 𝒪(polylog(𝑛))

1. RFF results in an error 𝜖 = ෨𝛩
𝑛

𝐹
, which is consistently 

worse than LSH under subquadratic complexity, i.e., 
when 𝐹 = 𝑜 𝑛2

2. LSH is better for tasks with local inductive bias, 

yielding 𝜖 = ෨𝛩
1

𝑛
 via OR-only LSH. However, OR-only 

LSH finds it hard to further reduce such error if 𝐹 is 
set to be almost linear, i.e., 𝐹 = ෨𝒪(𝑛)

Notation: ෨𝒪, ෩Θ, and 𝑜 denote soft-𝒪, 
soft-Θ, and soft-𝑜, respectively. They 
are variants of big-𝒪, big-Θ, and Little-𝑜 
that suppress polylogarithmic factors.

3. Utilizing both OR & AND LSH significantly improves 

performance. The error 𝜖 = ෨𝒪 exp −
𝐹

𝑛polylog(𝑛)

1

𝑛
 

which means that 𝜖 can be further exponentially 
reduced by almost linear complexity 𝐹 = ෨𝒪(𝑛).

As 𝐹 changes, how would 𝜖 change? 



• So, we aim at utilizing both OR & AND LSH to build an efficient transformer

• Next, we introduce HEPT in detail

HEPT: LSH-based Efficient Point Transformer
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• We first introduce a new attn kernel w/ explicit local inductive bias

• 𝑘 𝒒𝑢, 𝒌𝑣 = exp −
1

2
𝒒𝑢 − 𝒌𝑣

2

• 𝒒𝑢 = 𝒒𝑢 ∥ 2𝜔𝝆𝑢 , 𝒌𝑣 = ෩𝒌𝑣 ∥ 2𝜔𝝆𝑣

• 𝒒𝑢, ෩𝒌𝑣 ∈ ℝ𝑑 are the original query/key vectors from vanilla transformer

• 𝝆𝑢, 𝝆𝑣 ∈ ℝ𝑘 are point coordinates

• 𝜔 ∈ ℝ+ is learnable parameter to adjust attn scores

• This kernel 
• Enables the use of E2LSH in a principled way

• i.e., an LSH method in Euclidian space

• If 𝒒𝑢 − 𝒌𝑣
2 is small (thus high attn), with high prob. they will have similar hash values

• Exhibits explicit local inductive bias

• i.e., the attention score 𝑘 𝒒𝑢, 𝒌𝑣 → 0 as 𝒒𝑢 − 𝒌𝑣
2 increases 

HEPT: LSH-based Efficient Point Transformer
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• A kernel with explicit local inductive bias

• 𝑘 𝒒𝑢, 𝒌𝑣 = exp −
1

2
𝒒𝑢 − 𝒌𝑣

2

• Then, we approximate this kernel via OR & AND E2LSH
• We construct 𝑚1 hash tables (OR LSH), each with 𝑚2 hash functions (AND LSH)

• Apply each hash function ℎ𝒂 𝒙 = 𝒂 ⋅ 𝒙, 𝒂 ∼ 𝒩(0, 𝑰) for all queries/keys

• Each query/key yields 𝑚1 × 𝑚2 raw hash values 

• Denoted as 𝐿𝒒𝑢

(𝑖𝑗)
, 𝐿𝒌𝑣

(𝑖𝑗)
∈ ℝ for 𝑖 ∈ 𝑚1  and 𝑗 ∈ 𝑚2

• If 𝒒𝑢 and 𝒌𝑣 hold small 𝒒𝑢 − 𝒌𝑣
2(thus large attn), they are likely to have close hash values 𝐿𝒒𝑢

(𝑖𝑗)
 and 𝐿𝒌𝑣

(𝑖𝑗)

• For each of the 𝑚1 hash tables, we combine all 𝑚2 hash values to yield AND hash code 𝑇𝒒𝑢

(𝑖)
, 𝑇𝒌𝑣

(𝑖)
∈ ℝ

HEPT: LSH-based Efficient Point Transformer
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• A kernel with explicit local inductive bias

• 𝑘 𝒒𝑢, 𝒌𝑣 = exp −
1

2
𝒒𝑢 − 𝒌𝑣

2

• Then, we approximate this kernel via OR & AND E2LSH
• If follow previous work for computational regularity by

• sorting the AND hash code of queries 𝑇𝒒𝑢

(𝑖)
 and keys 𝐿𝒌𝑣

(𝑖𝑗)
, separately

• and truncating the buckets to be equal-sized

• We find a misalignment issue…

• We integrate point coordinates in the AND hash code to align Q-K

• Then sort & truncate buckets and compute pairwise attn in each bucket

HEPT: LSH-based Efficient Point Transformer

Hardware-friendly!

𝒪(𝑛 log 𝑛) complexity!

Guaranteed low approx. error!
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• Datasets

HEPT: LSH-based Efficient Point Transformer
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• The datasets are derived from the TrackML challenge
• The task is formulated as a representation learning problem

• i.e., learn close embeddings for points originating from the same particle

• The dataset is generated with 200PU
• The task is formulated as a binary point classification problem

• i.e., predict if a neutral particle is from pileup collisions or not



• Experiments

HEPT: LSH-based Efficient Point Transformer

Better accuracy than SOTA GNNs & up to 100x speedup*!24

*Implemented purely PyTorch, may be further accelerated by applying quantization, FlashAttn, hardware-aware co-design, etc.



Conclusion



• We analyze the error-computation tradeoff of RFF and LSH
✓We highlight the superiority of LSH-based methods in GDL tasks

✓LSH with both OR & AND construction yields the best performance

• We propose a novel efficient point transformer HEPT
✓SOTA accuracy
✓ Up to 100x faster on GPUs (NVIDIA Quatro RXT 6000) compared to SOTA GNNs

• Our code is released
✓ https://github.com/Graph-COM/HEPT

• Our paper is online
✓ https://arxiv.org/abs/2402.12535

Conclusion

Thank you!
26

https://github.com/Graph-COM/HEPT
https://arxiv.org/abs/2402.12535


Questions?
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