
Efficient Transformer for Point Cloud
Data in Geometric Deep Learning

Siqi Miao

Ph.D. Student

ML @ Georgia Tech

Joint work with Zhiyuan Lu (BUPT), Mia Liu (Purdue), Javier Duarte (UCSD), Pan Li (Gatech)

This work has also benefited from insightful discussions with Gage DeZoort (Princeton), Yongbin Feng (Fermilab), Kilian Lieret (Princeton)

Miao, Siqi, et al. "Locality-Sensitive Hashing-Based Efficient Point Transformer with Applications in High-Energy Physics." arXiv preprint arXiv:2402.12535 (2024).

• Background & Motivation

• (Efficient) Transformers

• HEPT: LSH-based Efficient Point Transformer

• Conclusion

Content

2

Background & Motivation

Point Clouds in High-Energy Physics

4

• Particle Tracking• Pileup Mitigation

• Jet Tagging• Particle-flow Reconstruction

Latency & Throughput

The Large Hadron Collider

Geometric Deep Learning with Point Cloud Data

• Drug discovery • Neutrino Detection • Galaxy Evolution

5 They all require efficient computational methods!

GNNs Are Slow!

Current Approach

k-NN

6

• These point clouds are irregular, but they all hold local inductive bias
• i.e., a point would primarily interact with its local neighbors

• Graph neural networks (GNNs) are used,
• by constructing, e.g., k-NN graphs, from point clouds

ℎ𝑣
𝑡+1

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 ℎ𝑣
𝑡

, 𝑓𝑎𝑔𝑔 ℎ𝑢
𝑡

∣ 𝑢 ∈ 𝑁𝑣

ℎ𝐺 = POOL ℎ𝑣
(𝐿)

∣ 𝑣 ∈ 𝑉

GNNs

k-NN graph construction
• may have 𝒪(𝑛2) complexity

GNNs involve
• irregular computation & random memory access

A sample can easily have over 5k or 50k points! They are not hardware-friendly!

Current Approach

k-NN

7

• These point clouds are irregular, but they all hold local inductive bias
• i.e., a point would primarily interact with its local neighbors

• Graph neural networks (GNNs) are used,
• by constructing, e.g., k-NN graphs, from point clouds

ℎ𝑣
𝑡+1

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 ℎ𝑣
𝑡

, 𝑓𝑎𝑔𝑔 ℎ𝑢
𝑡

∣ 𝑢 ∈ 𝑁𝑣

ℎ𝐺 = POOL ℎ𝑣
(𝐿)

∣ 𝑣 ∈ 𝑉

GNNs

k-NN graph construction
• may have 𝒪(𝑛2) complexity

GNNs involve
• irregular computation & random memory access

A sample can easily have over 5k or 50k points! They are not hardware-friendly!

Can we have an accurate & hardware-friendly model w/ (almost) linear complexity?

(Efficient) Transformers

Vanilla Transformer

9

• Self-attention mechanism
• A token or a point 𝑢 has three vectors 𝒒𝑢, 𝒌𝑢, 𝒗𝑢 ∈ ℝ𝑑

• Stacking them for 𝑛 points yields three matrices 𝑸, 𝑲, 𝑽 ∈ ℝ𝑛×𝑑

• Let’s ignore normalization terms for simplicity

• Attn(𝑸, 𝑲, 𝑽) = exp 𝑸𝑲⊤ 𝑽

• Capture all pairwise relations

• Why is this good for computation?
• All operations are regular matrix multiplication

• Why is this bad for computation?
• The complexity of exp 𝑸𝑲⊤ is 𝒪(𝑛2)

• We are particularly interested in efficient transformers
• These variants try to decrease the complexity to 𝒪(𝑛 log 𝑛) or 𝒪(𝑛)

Efficient Transformers via Kernel Approximation

10

• Viewing exp 𝒒𝑢
⊤𝒌𝑢 as a kernel

• Let’s not compute it exactly

• Instead, use efficient methods to approximate it accurately…

• Ideally, we may achieve

• Hardware-friendly model with only regular computation

• No expensive graph construction

• Almost linear complexity, but may (approximately) capture pair-wise interactions

• There is no free lunch!
• Studies along this line must assume some properties of the attention matrix exp 𝑸𝑲⊤

• for efficient and accurate approximation

• Two typical assumptions (and techniques to use)

Low-rank approximation Sparse approximation

• Random Fourier Features (RFF) • Locality-Sensitive Hashing (LSH) Which one is better for GDL tasks?

Low-rank Approximation

• Random Fourier Features (RFFs)
• For any properly normalized positive definite

shift-invariant kernel 𝑘(𝒙, 𝒚) = 𝑘(𝒙 − 𝒚) with
𝒙, 𝒚 ∈ ℝ𝑑 and 𝑘(𝟎) = 1

• RFFs can approximate such kernels by 𝑘(𝒙, 𝒚) ≈
𝜓(𝒙)⊤𝜓(𝒚) with 𝜓: ℝ𝑑 → ℝ𝐷

• A most common example of such 𝜓 is

• 𝜓(𝒙) =
2

𝐷
sin 𝒘1

⊤𝒙 , cos 𝒘1
⊤𝒙 , … , sin 𝒘𝐷/2

⊤ 𝒙 , cos 𝒘𝐷/2
⊤ 𝒙

⊤

• 𝒘𝑖 ∼
𝑖𝑖𝑑

𝑘∗(𝒘), and 𝑘∗ is the Fourier transform of 𝑘

• Consider RBF kernels 𝑘 𝒙, 𝒚 = exp −
1

2
𝒙 − 𝒚 2

• Then 𝑘∗ is a standard Gaussian

• So, one can have

• exp 𝒙⊤𝒚 ≈ 𝜓(𝒙)⊤ 𝜓(𝒚) with 𝜓(𝒙) = exp
∥𝒙∥2

2
𝜓(𝒙)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)

11

Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket

12

Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

𝒪(𝑛 log 𝑛) complexity!

If bucket size ≪ 𝑛

Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket

• There are three ways to construct LSH tables…

13

Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket

• There are three ways to construct LSH tables…

14

Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

15

Efficient Transformers via Kernel Approximation

𝒪(𝑛) complexity!

If 𝐷 ≪ 𝑛

• Locality-Sensitive Hashing (LSH)
• With high probability, LSH hashes close data

points into the same bucket, e.g., via ℎ(𝒙): ℝ𝑑 → ℝ

• E.g., by setting 𝒙 = 𝒚 = 𝟏, angular distance-
based LSH can be used to approx. exp 𝒙⊤𝒚

• Pairs with close angular distance have large attn

• So, with high prob. in the same bucket

• Compute full attn for pairs in the same bucket

• There are three ways to construct LSH tables…

Low-rank Approximation

• Random Fourier Features (RFFs)

Sparse Approximation

• Locality-Sensitive Hashing (LSH)

16

Efficient Transformers via Kernel Approximation

Which one is better for GDL tasks?

What properties can we utilize in GDL?

Local Inductive Bias!

𝒪(𝑛) complexity! 𝒪(𝑛 log 𝑛) complexity!

HEPT: LSH-based Efficient Point Transformer

Low-Rank v.s. Sparse Approx. Under Local Inductive Bias

18

• To compare RFF-based and LSH-based methods
• We want to compare their approximation accuracy under the same computational budget

• So, for each method we analyze the tradeoff between
• Approximation error (𝜖)

• Computational complexity (𝐹)

• If we assume for the tasks considered
• A point primarily interacts with its local neighbors

• And the size of such neighborhood is 𝒪(polylog(𝑛))

1. RFF results in an error 𝜖 = ෨𝛩
𝑛

𝐹
, which is consistently

worse than LSH under subquadratic complexity, i.e.,
when 𝐹 = 𝑜 𝑛2

2. LSH is better for tasks with local inductive bias,

yielding 𝜖 = ෨𝛩
1

𝑛
 via OR-only LSH. However, OR-only

LSH finds it hard to further reduce such error if 𝐹 is
set to be almost linear, i.e., 𝐹 = ෨𝒪(𝑛)

Notation: ෨𝒪, ෩Θ, and 𝑜 denote soft-𝒪,
soft-Θ, and soft-𝑜, respectively. They
are variants of big-𝒪, big-Θ, and Little-𝑜
that suppress polylogarithmic factors.

3. Utilizing both OR & AND LSH significantly improves

performance. The error 𝜖 = ෨𝒪 exp −
𝐹

𝑛polylog(𝑛)

1

𝑛

which means that 𝜖 can be further exponentially
reduced by almost linear complexity 𝐹 = ෨𝒪(𝑛).

As 𝐹 changes, how would 𝜖 change?

• So, we aim at utilizing both OR & AND LSH to build an efficient transformer

• Next, we introduce HEPT in detail

HEPT: LSH-based Efficient Point Transformer

19

• We first introduce a new attn kernel w/ explicit local inductive bias

• 𝑘 𝒒𝑢, 𝒌𝑣 = exp −
1

2
𝒒𝑢 − 𝒌𝑣

2

• 𝒒𝑢 = 𝒒𝑢 ∥ 2𝜔𝝆𝑢 , 𝒌𝑣 = ෩𝒌𝑣 ∥ 2𝜔𝝆𝑣

• 𝒒𝑢, ෩𝒌𝑣 ∈ ℝ𝑑 are the original query/key vectors from vanilla transformer

• 𝝆𝑢, 𝝆𝑣 ∈ ℝ𝑘 are point coordinates

• 𝜔 ∈ ℝ+ is learnable parameter to adjust attn scores

• This kernel
• Enables the use of E2LSH in a principled way

• i.e., an LSH method in Euclidian space

• If 𝒒𝑢 − 𝒌𝑣
2 is small (thus high attn), with high prob. they will have similar hash values

• Exhibits explicit local inductive bias

• i.e., the attention score 𝑘 𝒒𝑢, 𝒌𝑣 → 0 as 𝒒𝑢 − 𝒌𝑣
2 increases

HEPT: LSH-based Efficient Point Transformer

20

• A kernel with explicit local inductive bias

• 𝑘 𝒒𝑢, 𝒌𝑣 = exp −
1

2
𝒒𝑢 − 𝒌𝑣

2

• Then, we approximate this kernel via OR & AND E2LSH
• We construct 𝑚1 hash tables (OR LSH), each with 𝑚2 hash functions (AND LSH)

• Apply each hash function ℎ𝒂 𝒙 = 𝒂 ⋅ 𝒙, 𝒂 ∼ 𝒩(0, 𝑰) for all queries/keys

• Each query/key yields 𝑚1 × 𝑚2 raw hash values

• Denoted as 𝐿𝒒𝑢

(𝑖𝑗)
, 𝐿𝒌𝑣

(𝑖𝑗)
∈ ℝ for 𝑖 ∈ 𝑚1 and 𝑗 ∈ 𝑚2

• If 𝒒𝑢 and 𝒌𝑣 hold small 𝒒𝑢 − 𝒌𝑣
2(thus large attn), they are likely to have close hash values 𝐿𝒒𝑢

(𝑖𝑗)
 and 𝐿𝒌𝑣

(𝑖𝑗)

• For each of the 𝑚1 hash tables, we combine all 𝑚2 hash values to yield AND hash code 𝑇𝒒𝑢

(𝑖)
, 𝑇𝒌𝑣

(𝑖)
∈ ℝ

HEPT: LSH-based Efficient Point Transformer

21

• A kernel with explicit local inductive bias

• 𝑘 𝒒𝑢, 𝒌𝑣 = exp −
1

2
𝒒𝑢 − 𝒌𝑣

2

• Then, we approximate this kernel via OR & AND E2LSH
• If follow previous work for computational regularity by

• sorting the AND hash code of queries 𝑇𝒒𝑢

(𝑖)
 and keys 𝐿𝒌𝑣

(𝑖𝑗)
, separately

• and truncating the buckets to be equal-sized

• We find a misalignment issue…

• We integrate point coordinates in the AND hash code to align Q-K

• Then sort & truncate buckets and compute pairwise attn in each bucket

HEPT: LSH-based Efficient Point Transformer

Hardware-friendly!

𝒪(𝑛 log 𝑛) complexity!

Guaranteed low approx. error!

22

• Datasets

HEPT: LSH-based Efficient Point Transformer

23

• The datasets are derived from the TrackML challenge
• The task is formulated as a representation learning problem

• i.e., learn close embeddings for points originating from the same particle

• The dataset is generated with 200PU
• The task is formulated as a binary point classification problem

• i.e., predict if a neutral particle is from pileup collisions or not

• Experiments

HEPT: LSH-based Efficient Point Transformer

Better accuracy than SOTA GNNs & up to 100x speedup*!24

*Implemented purely PyTorch, may be further accelerated by applying quantization, FlashAttn, hardware-aware co-design, etc.

Conclusion

• We analyze the error-computation tradeoff of RFF and LSH
✓We highlight the superiority of LSH-based methods in GDL tasks

✓LSH with both OR & AND construction yields the best performance

• We propose a novel efficient point transformer HEPT
✓SOTA accuracy
✓ Up to 100x faster on GPUs (NVIDIA Quatro RXT 6000) compared to SOTA GNNs

• Our code is released
✓ https://github.com/Graph-COM/HEPT

• Our paper is online
✓ https://arxiv.org/abs/2402.12535

Conclusion

Thank you!
26

https://github.com/Graph-COM/HEPT
https://arxiv.org/abs/2402.12535

Questions?

	Slide 1: Efficient Transformer for Point Cloud Data in Geometric Deep Learning
	Slide 2: Content
	Slide 3: Background & Motivation
	Slide 4: Point Clouds in High-Energy Physics
	Slide 5: Geometric Deep Learning with Point Cloud Data
	Slide 6: Current Approach
	Slide 7: Current Approach
	Slide 8: (Efficient) Transformers
	Slide 9: Vanilla Transformer
	Slide 10: Efficient Transformers via Kernel Approximation
	Slide 11: Efficient Transformers via Kernel Approximation
	Slide 12: Efficient Transformers via Kernel Approximation
	Slide 13: Efficient Transformers via Kernel Approximation
	Slide 14: Efficient Transformers via Kernel Approximation
	Slide 15: Efficient Transformers via Kernel Approximation
	Slide 16: Efficient Transformers via Kernel Approximation
	Slide 17: HEPT: LSH-based Efficient Point Transformer
	Slide 18: Low-Rank v.s. Sparse Approx. Under Local Inductive Bias
	Slide 19: HEPT: LSH-based Efficient Point Transformer
	Slide 20: HEPT: LSH-based Efficient Point Transformer
	Slide 21: HEPT: LSH-based Efficient Point Transformer
	Slide 22: HEPT: LSH-based Efficient Point Transformer
	Slide 23: HEPT: LSH-based Efficient Point Transformer
	Slide 24: HEPT: LSH-based Efficient Point Transformer
	Slide 25: Conclusion
	Slide 26: Conclusion
	Slide 27: Questions?

