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Background & Motivation



Point Clouds in High-Energy Physics
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Geometric Deep Learning with Point Cloud Data

» Galaxy Evolution

« Drug discovery
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They all require efficient computational methods!
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Current Approach

» These point clouds are irregular, but they all hold local inductive bias P ) 88
* i.e., a point would primarily interact with its local neighbors | e s
- Graph neural networks (GNNSs) are used,
» by constructing, e.g., k-NN graphs, from point clouds hg”
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k-NN graph construction GNNs involve
- may have 0(n?) complexity * irregular computation & random memory access
A sample can easily have over 5k or 50k points! ~. /They are not hardware-friendly!

6 GNNs Are Slow! Gr T




Current Approach
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7| Can we have an accurate & hardware-friendly model w/ (almost) linear complexity?




(Efficient) Transformers



Vanilla Transformer
Scaled Dot-Product Attention
 Self-attention mechanism
- A token or a point u has three vectors q,, k,, v, € R?
- Stacking them for n points yields three matrices Q, K,V € R™*4
 Let's ignore normalization terms for simplicity
- Attn(Q,K,V) = exp(QKT)V
» Capture all pairwise relations
« Why is this good for computation?

 All operations are regular matrix multiplication

« Why is this bad for computation?
« The complexity of exp(QK™) is O(n?)

« We are particularly interested in efficient transformers
« These variants try to decrease the complexity to O(n logn) or O(n)
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Efficient Transformers via Kernel Approximation

* Viewing exp(q, "k,) as a kernel
» Let's not compute it exactly
* Instead, use efficient methods to approximate it accurately...
* Ideally, we may achieve
« Hardware-friendly model with only regular computation

* No expensive graph construction
« Almost linear complexity, but may (approximately) capture pair-wise interactions

* There is no free lunch!
- Studies along this line must assume some properties of the attention matrix exp(QK™)
« for efficient and accurate approximation
« Two typical assumptions (and techniques to use)

Low-rank approximation Sparse approximation

« Random Fourier Features (RFF) < Locality-Sensitive Hashing (LSH) Which one is better for GDL tasks?
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Efficient Transformers via Kernel Approximation

Low-rank Approximation Sparse Approximation
« Random Fourier Features (RFFs) * Locality-Sensitive Hashing (LSH)

» For any properly normalized positive definite
shift-invariant kernel k(x,y) = k(x — y) with
x,y € R%and k(0) = 1

* RFFs can approximate such kernels by k(x,y) =
Y(x)TY(y) with : R -» RP

« A most common example of such y is

. Yx) = \/% (sin(w]x), cos(w]x), ..., sin(w], ,x), cos(w} /Zx))T
s w; e k*(w), and k* is the Fourier transform of k
» Consider RBF kernels k(x,y) = exp (—%le - y||2)
« Then k* is a standard Gaussian
« So, one can have
ll 11

« exp(xTy) ~ H(x) h(y) with h(x) = exp (5-) p(x)

. O (n) complexity! Gr Georgia
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Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)

12

O (n) complexity!

IfD «n

Sparse Approximation
* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data

points into the same bucket, e.g., via h(x)

R > R

« E.g., by setting llx|ll = [lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)

 Pairs with close angular distance have large attn

« So, with high prob. in the same bucket

« Compute full attn for pairs in the same bucket

O(nlogn) complexity!

If bucket size < n
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Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)
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O (n) complexity!

IfD «n

Sparse Approximation

* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data

points into the same bucket, e.g., via h(x): R? - R

« E.g., by setting llx|ll = [lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)

 Pairs with close angular distance have large attn
« So, with high prob. in the same bucket
« Compute full attn for pairs in the same bucket

» There are three ways to construct LSH tables...

Elements Hash Table 1
° hi(z)| Collisions ||ha(z)| Collisions AND-only LSH
o ® ° : 1 |e®e® 1 | @@ O
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Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)
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O (n) complexity!

IfD «n

Sparse Approximation

* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data
points into the same bucket, e.g., via h(x): R? - R

« E.g., by setting lixll = |lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)
 Pairs with close angular distance have large attn
« So, with high prob. in the same bucket
« Compute full attn for pairs in the same bucket

» There are three ways to construct LSH tables...
Hash Table 1
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Efficient Transformers via Kernel Approximation

Low-rank Approximation

« Random Fourier Features (RFFs)
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O (n) complexity!

IfD «n

Sparse Approximation

* Locality-Sensitive Hashing (LSH)

 With high probability, LSH hashes close data
points into the same bucket, e.g., via h(x): R? - R
« E.g., by setting lixll = |lyll = 1, angular distance-
based LSH can be used to approx. exp(x"y)
 Pairs with close angular distance have large attn
« So, with high prob. in the same bucket
« Compute full attn for pairs in the same bucket

» There are three ways to construct LSH tables...
Hash Table 1
m(z)| Collisions | [h:(z)| Collisions
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Efficient Transformers via Kernel Approximation

Low-rank Approximation
« Random Fourier Features (RFFs)

16

0 (n) complexity!

Sparse Approximation

O(nlogn) complexity!

Which one is better for GDL tasks?

What properties can we utilize in GDL?
Local Inductive Bias!

* Locality-Sensitive Hashing (LSH)
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HEPT: LSH-based Efficient Point Transformer



Low-Rank v.s. Sparse Approx. Under Local Inductive Bias

* To compare RFF-based and LSH-based methods

« We want to compare their approximation accuracy under the same computational budget

 So, for each method we analyze the tradeoff between

« Approximation error (¢)
« Computational complexity (F)

As F changes, how would € change?

 |f we assume for the tasks considered

A point primarily interacts with its local neighbors
« And the size of such neighborhood is O (polylog(n))

1. RFF results in an errore = 0 (%) which is consistently

-T[g »worse than LSH under subquadratic complexity, i.e.,
~ when F = 6(n?)

2. LSH is better for tasks with local inductive bias,
~ovielding e = 0 (%) via OR-only LSH. However, OR-only
C LSH finds it hard to further reduce such error if F is

18 : : =
set to be almost linear, i.e.,, F = O(n)

Notation: O, ©, and & denote soft-0,
soft-0, and soft-o, respectively. They
are variants of big-0, big-0, and Little

that suppress polylogarithmic factors.

-0

3. Utilizing both OR & AND LSH significantly improves

= F
w performance. The error e = 0 (exp (—m)

" which means that € can be further exponentially
reduced by almost linear complexity F = O(n).
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HEPT: LSH-based Efficient Point Transformer

» So, we aim at utilizing both OR & AND LSH to build an efficient transformer
* Next, we introduce HEPT in detail
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Figure 1: Pipeline of HEPT. Elements that share the same color represent points from the same local neighborhood. HEPT
employs OR & AND LSH to minimize noise caused by individual hash functions. HEPT also integrates point coordinates
as extra AND LSH codes for query-key alignment, maintaining computational regularity without compromising accuracy.
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HEPT: LSH-based Efficient Point Transformer

« We first introduce a new attn kernel w/ explicit local inductive bias

+ Je(qu k) = exp (=3 llqu — Kol
qu = [Ziu I Vzwpu]:kv — [Ev | Vzwpv]
g, k, € R? are the original query/key vectors from vanilla transformer

P, P» € RF are point coordinates
w € R* is learnable parameter to adjust attn scores

 This kernel
» Enables the use of E2LSH in a principled way
 i.e., an LSH method in Euclidian space
* If g, — k,|I* is small (thus high attn), with high prob. they will have similar hash values
» Exhibits explicit local inductive bias
- i.e. the attention score k(qy, k,) = 0 as llq,, — k,|I* increases
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HEPT: LSH-based Efficient Point Transformer

A kernel with explicit local inductive bias
* k(qu ky) = exp (—%IIqu - kaIZ)

* Then, we approximate this kernel via OR & AND E2LSH

« We construct m, hash tables (OR LSH), each with m, hash functions (AND LSH)
« Apply each hash function h,(x) = a - x, a ~ N (0,I) for all queries/keys
« Each query/key yields m; x m, raw hash values

« Denoted as Lgi),Lsc‘i) € R fori € [my] and j € [m,]

- If q,, and k,, hold small |iq, — k,|I*(thus large attn), they are likely to have close hash values LE,‘Z) and Lg)

« For each of the m; hash tables, we combine all m, hash values to yield AND hash code Tq(i), T,g) € R
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HEPT: LSH-based Efficient Point Transformer

A kernel with explicit local inductive bias
* k(qu ky) = exp (—%IIqu - kaIZ)

 Then, we approximate this kernel via OR & AND E2LSH |, aranteed low approx. error!

« If follow previous work for computational reqularity by

« sorting the AND hash code of queries Tq(i) and keys L(ii), separately O(n logn) complexity!

» and truncating the buckets to be equal-sized
« We find a misalighment issue...

« We integrate point coordinates in the AND hash code to align Q-K Hardware-friendly!
« Then sort & truncate buckets and compute pairwise attn in each bucket
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HEPT: LSH-based Efficient Point Transformer

 Datasets

@ Hits from a particle
7 Track to reconstruct

(a) Charged Particle Tracking

° o 0® ©

o .000
°© o

eLC oPCs

(b) Pileup Mitigation

23

The datasets are derived from the TrackML challenge

The task is formulated as a representation learning problem
* i.e,learn close embeddings for points originating from the same particle

The dataset is generated with 200PU

The task is formulated as a binary point classification problem
* j.e, predictif a neutral particle is from pileup collisions or not
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HEPT: LSH-based Efficient Point Transformer

* Experiments

Table 1: Predictive performance on the three datasets. The Tab}ie 2: Erain}ng and {eSt tif(l)% (ms) per sample. Ela‘Ch eéltfy

'l' :]: . . is the median from at least measurements evaluated on
B(_)ld , Bold”, and BOld, highlight th,e ﬁ_rSt’, second, and an NVIDIA Quatro RTX 6000. Numbers in (-) are the time
third best results, respectively. Underline indicates the best used to pre-construct input graphs that may be saved during
transformer baselines. training if pre-processing is allowed. Note that real-time

inference requires building graphs on the fly. The Bold'

Tracking-6k (AP@k) Tracking-60k (APQFk) Pileup-10k (AUC) i ; . o
highlights the best results, and Bold and Underline indicate

Random 5.88 571 4.22

@ Hits from a particle SOTA GNNs 91.00¢ 90.89¢ 40.26 the best transformer and GNN baselines, respectively.
A Track t truct
raci 1o Teconstre Reformer 72.37 7247 36.70 : : :
(a) Charged Particle Tracking SMYRF 72.98 71.18 25.20 Tracking-6k Tracking-60k Pilup-10k
Performer 73.17 72.07 28.36 Train Test Train Test Train Test
FLT _ 72.55 71.45 25.26 SOTAGNNs 559 221 0OM 5781 432(322) 362
ScatterBrain 73.35 72.06 30.95 Reformer 355  23.1 2570 251 833 234
o © © o PointTrans 72.33 70.81 40.26 SMYRF 348 8.7 2343 69.6 58.6 12.4
e © FlatFormer 74.22 7023 38.61 Performer 343 83 2407 68.7 527 128
©o o © GCN 7061 75 33 1010 FLT 341 84 2369 71.6 559 127
0, © o DGCNN 00.74 88.66 33.75 SciatterBrajn 357 13.1 2562 r129 109 34.6
o e © ° GravNet 90.11 87.99 40.10 P;)““Trans 47??;18?;0) ;4;‘: 73212((?%17) ;243 37;?33) 1‘;423
° o GatedGNN 80.98 78.49 40.26 FlatFormer . . ) .
GCN 471(129) 138  7332(5009) 5123  376(322) 342
eLC oPCs g ;f[i‘;;r;ezkHEPT Z;'?; ??'gg 4?;]2';111 DGCNN 563 287 14008 11779 325 204
“*HEPT : : : GravNet 593 251 13597 11684 312 278
(b) Pileup Mitigation FlatFormer-kugpr 88.18 85.06 39.99 GatedGNN  512(131) 158 T7476(5013) 5263 432(328) 362
HEPT 92.667 91.93f 40.39° HEPT 338t 7.0f 2312 579" 403" 107

*| :
24 Better accuracy than SOTA GNNs & up to 100x speedup*! G Seoroia

*Implemented purely PyTorch, may be further accelerated by applying quantization, FlashAttn, hardware-aware co-design, etc.
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Conclusion

« We analyze the error-computation tradeoff of RFF and LSH
v"We highlight the superiority of LSH-based methods in GDL tasks
v'LSH with both OR & AND construction yields the best performance

« We propose a novel efficient point transformer HEPT

v'SOTA accuracy
v Up to 100x faster on GPUs (NVIDIA Quatro RXT 6000) compared to SOTA GNNs

e Qur code is released
v’ https://qithub.com/Graph-COM/HEPT

* Our paper is online
v https://arxiv.org/abs/2402.12535

Thank you!
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https://github.com/Graph-COM/HEPT
https://arxiv.org/abs/2402.12535

Questions?
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