ALICE future plans

Marco van Leeuwen, Nikhef and CERN

ALICE USA meeting - Open session Yale University 31 May 2024

ALICE upgrades in Long Shutdown 2 (2019-2021)

New ITS and MFT

Full pixel detector Improved spatial resolution

Fast Interaction Trigger

ALICE LS2 upgrade paper: <u>arXiv:2302.01238</u>

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

TPC: GEM readout

GEM 1

Run 3, 4: collect 13 nb⁻¹ Pb-Pb: 50x more minimum bias data; 10x more triggered data

Run-3 physics performance: some examples

LS2 upgrades work as expected, first physics results shown at QM last year, more new results at SQM and LHCP

Run 3 data taking

Recorded Pb-Pb luminosity

Successful 2023 heavy-ion run collected 1.6 nb⁻¹, approx. 11.5 G minimum bias events ~7x more central events than Run 1+2

Data taking going very well: significantly more data collected in Run 3 than in Run 1 and 2 combined

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

pp 2024 off to a good start: 10.2 pb⁻¹ recorded ALICE operational efficiency: 95%

4

Run 3 pp results: $\psi(2s)$ to J/ ψ ratio

First measurement of $\psi(2s) / J/\psi$ ratio at mid-rapidity down to zero p_T at LHC Important contribution to available world data — understanding of formation process

Run 3 results: ³He elliptic flow

New run 3 result

v₂ reflects geometry: largest for mid-central collisions small in central collisions

Measured v₂ agrees with coalescence model Thermal freeze-out model — blast wave does not describe data

6

Upgrade projects

LS3 upgrades

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

ALICE 3: LS4

Forward Calorimeter upgrade

Forward Calorimeter upgrade: $3.4 < \eta < 5.8$

- High-granularity Si-W electromagnetic calorimeter
- Hadron calorimeter: Cu-scintillator
- Goal: determine small-x gluon density in the nucleus by measuring forward production of isolated direct photons, π^0 , jets ...

Prototypes produced and tested with beams at PS and SPS

- Meet required performance
- Further radiation testing, tests of pads from second vendor ongoing

<u>TDR</u> approved — moving towards mass production

More in presentation Constantin

LS3 upgrades: ITS 3 — ultra-light fully cylindrical tracking layers

Curved sensor bonding test

Lol: <u>CERN-LHCC-2019-018</u>

ITS3: replace inner 3 tracking layers with ultra-light tracking layers Improved pointing resolution for

- Heavy flavour reconstruction -
- Di-lepton measurements

<u>TDR</u> approved — design of final sensor in progress

MLR1: 65 nm technology validated

DPTS paper arXiv:2212.08621

Handling of stitched structures

ER1: test of stitched structures 26 x 1.4 cm sensors!

DPTS test sensor

LHC Run 5 and 6: ALICE 3

- Compact all-silicon tracker ulletwith high-resolution vertex detector: excellent pointing resolution
- **Particle Identification over large acceptance:** ulletmuons, electrons, hadrons, photons
- Fast read-out and online processing \bullet

Impact parameter resolution — HF benchmarks

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

- Charm and beauty baryon v₂ - Dielectron spectra

- DD correlations
- Multi-charm baryons
- Dielectron v_2

11

Temperature of the QGP: electromagnetic radiation

Light flavour hadron abundances consistent with common chemical freeze-out

Limiting temperature: ~155 MeV ullet

Electromagnetic radiation gives access to temperature of QGP before hadronisation

- Cleanest signal: dilepton pairs
- Expected T at LHC: 300-400 MeV \bullet

Projected temperature from electromagnetic radiation

Temperature from hadron abundances 'chemical freeze-out'

Temperature of the QGP: electromagnetic radiation

Light flavour hadron abundances consistent with common chemical freeze-out

Limiting temperature: ~155 MeV \bullet

Electromagnetic radiation gives access to temperature of QGP before hadronisation

- Cleanest signal: dilepton pairs
- Expected *T* at LHC: 300-400 MeV

Projected temperature from electromagnetic radiation

Temperature from hadron abundances 'chemical freeze-out'

Run 3 and 4: first measurements of thermal dilepton emission at LHC \rightarrow first access to average T

HF decays produce correlated background Large for $m_{ee} \gtrsim 1 \,\mathrm{GeV}/c^2$ Can be effectively suppressed in ALICE 3

Run 3 and 4: first measurements of thermal dilepton emission at LHC \rightarrow first access to average T

HF decays produce correlated background Large for $m_{ee} \gtrsim 1 \,\mathrm{GeV}/c^2$ Can be effectively suppressed in ALICE 3

Run 3 and 4: first measurements of thermal dilepton emission at LHC \rightarrow first access to average T

HF decays produce correlated background Large for $m_{ee} \gtrsim 1 \,\mathrm{GeV}/c^2$ Can be effectively suppressed in ALICE 3

Dielectron mass distribution

Dielectron mass distribution

Chiral symmetry restoration: $\rho - a_1$ mixing

- masses in QCD
 - Large mass difference between

14

Heavy-flavour transport: DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering \bullet
 - Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and n coverage
 - → heavy-ion measurement only possible with ALICE 3

Heavy-flavour transport: DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering
 - Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and n coverage
 - \rightarrow heavy-ion measurement only possible with ALICE 3

Heavy-flavour transport: DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering
 - Signal strongest at low p⊤
- Very challenging measurement:
 need good purity, efficiency and η coverage
 - → heavy-ion measurement only possible with ALICE 3

Heavy flavour transport: elliptic flow v₂

Heavy quarks: access to quark transport at hadron level

- Expect beauty thermalisation slower than charm smaller v_2
- Need baryons and mesons to disentangle hadronisation effects: interplay with light quarks

Impact of hadronisation (recombination)

Hadronisation QGP: quark transport

Heavy flavour transport: elliptic flow v₂

Heavy quarks: access to quark transport at hadron level

- Expect beauty thermalisation slower than charm smaller v₂
- Need baryons and mesons to disentangle hadronisation effects: interplay with light quarks

Hadronisation QGP: quark transport

Hadron formation: multi-HF hadrons

- Multi-charm baryons: unique probe of hadron formation
- Statistical hadronisation model: very large enhancement in AA
 - Specific relation between yields: g_c^n for *n*-charm states
- How is thermalisation approached microscopically?
 - Measure multiple states to probe dynamics of thermalisation and hadronisation

Single and double-charm baryons: Λ_c , Ξ_c , Ξ_{cc} , Ω_{cc} Multi-flavour mesons: B_c , D_s , $B_{s,...}$ Tightly/weakly bound states J/ ψ , $\chi_{c1}(3872)$, T_{cc}^+ Large mass light flavour particles: nuclei

Multi-charm baryons

New technique: strangeness tracking

Pointing of Ξ baryon provides high selectivity

 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} + \pi^{+} \qquad \Xi_{c}^{+} \rightarrow \Xi^{-} + 2\pi^{+}$

Multi-charm baryons

$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} + \pi^{+} \qquad \Xi_{c}^{+} \rightarrow \Xi^{-} + 2$$

ALICE 3: unique experim

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

thermalisation and hadronisation dynamics

nental access in Pb-Pb collisions

Net-baryon fluctuations

Projection for 6th cumulant

4σ observation in reach with ALICE 3

19

Quarkonia and $\chi_{c1}(3872)$

Goal: understand formation and dissociation of cc states

ALICE 3 muon ID and ECal enable measurement of χ_c in Pb-Pb collisions

Hard probes: γ -jet

 γ -jet, h-jet recoil jet measurements crucial for unbiased study of jet quenching

ALICE 3 acceptance, full coverage EMCal, rate capabilities dramatically improve precision \bullet

Heavy-ion collisions as a laboratory for hadron physics

- Several exotic heavy flavour states identified
- Loosely bound meson molecule or tightly bound tetraquark?
- Study binding potential with final state interactions 'femtoscopic correlations'

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Bound states produce specific pattern vs system size

Other physics topics

- **Resonance production in Ultra-peripheral** collisions
- ALP search in $\gamma\gamma$ \bullet
- Production of nuclei in $\overline{\Lambda}_b \rightarrow {}^3 \overline{\text{He}}$ decays
- Search for charm-nuclei
- Ultra-soft photons: Low's theorem lacksquare

See ALICE 3 LoI for details: <u>CERN-LHCC-2022-009</u>

R&D: tracking sensor design

- Key technology: **CMOS monolithic active pixels** (MAPS)
 - Affordable, high-precision sensors with very low noise \bullet
- Experience with ITS2: 180 nm Tower-Semi technology
- R&D for ITS3: 65 nm technology
 - Large area stitched sensors
 - Improved radiation hardness (modified process)

ITS2, 3 development are the starting point for ALICE 3 tracker sensors

Tests with irradiated sensors show improved radiation tolerance

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

65 nm test structure

DPTS test paper arXiv:2212.08621

Handling of stitched sensors

Vertex detector: mechanics

Material outgassing studies for secondary vacuum

- pressure vs time
- residual gas composition

Geometry variants, cooling design being explored

Outgassing at 10⁻⁶ mbar

Outer tracker R&D: module production

Large area: automated industrial production of multi-chip modules

First tests with dummy modules in collaboration with industry

Chip gripper

Marker scan

Position reproducible with 5 µm level accuracy

Module

Particle identification

- **TOF** and **RICH** provide hadron and electron identification \bullet
 - Complementary p_T ranges ${\bullet}$
 - Electron ID up to $p_T = 1.5$ GeV/c: thermal dilepton production measurements \bullet
 - Kaon and proton PID up to 6-10 GeV/c: HF measurement
- **Muon ID**: measurements of J/ψ down to $p_T = 0, \chi_c$, exotic states \bullet
- **EMCal** for photon ID: ALPs, χ_c , jets \bullet

R&D for timing sensors

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

CMOS pixel with gain

Laser measurement

R&D for CMOS sensors ongoing LGAD, SPAD: 20 ps resolution demonstrated/in reach (sensor only)

Ring Imaging Cherenkov R&D

Principle: aerogel + proximity focusing SiPM/SPAD integrated readout

Test beams:

- **Performance verified**
- Characterisation of aerogels and SiPMs ongoing -

R&D option: combined TOF and RICH readout with SiPMs (SPADs)

Testbeam performance

R&D for Muon Identifier

Test beam June 2023

Muon identifier: absorber followed by muon stations

- Base line technology: Scintillator bars, SiPM readout \bullet
- Alternative technologies: MWPC, RPC
- Muon identification down to $p_T \approx 1.5 \text{ GeV}/c$ \bullet

JINST 19 (2024) 04, T04006

Efficiency vs distance along bar

Scoping document: schedule and cost profile

ALICE 3 time time

	2023	2024	2025	2026	2027	202	8	2029		2030		2	2031	1	203	2	
_	Q1 Q2 Q3 Q4	Run 3 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	LS3 Q1 Q2 Q3 Q4	Q1 Q2 (Q3 Q4 Q	1 Q2 Q3	Q4 Q1	Q2 Q3	Rur Q4	1 4 Q1 C	2 Q3	3 Q4	Q1 Q2	Q3 Q4	Q1
ALICE 3	Scoping Document, WGs kickoff	Select technolog concept p	tion of gies, R&D, prototypes	R&D, TDRs, proto	engineered otypes		Ca	onstructi	on			p	Cont recc	tinge omr	ency an iissionii	d ng	
Magnet	De	sign, R&D	CDR	TDR	EDR		С	onstructio	on			Con	inge	ncy	C cor)n-sur nmiss	face ioni
IT	Des	sign	Prototy	ping TDR	Prototyping	EDR	Pre-pro	od. PRR	Pro	duction		Inte	grat	ion	Conting	gency	C
ОТ	Des	sign	Prototyping	Prototyp	ing 몇 Pre-pr	od. PRR		Productio	on, De	tector A	sser	nbly			Conting	gency	Int
TOF	Design & P	rototyping	Prototy	ping DR	Prototyping	EDR Pr	e-produ	uction	PRR	roductio	'n	Inte	grat	ion	Conting	gency	C
RICH	Design & P	rototyping	Pr	ototyping	TDR	Prototypi	ing	Pre-pro	od. PRR	F	Prod	luctio	on		Conting	gency	Int
ECal		Des	sign	Prototy	rping TDR	Pre-p	roductio	on PRR	Produ	ction, M	odu	iles A	sser	nbly	Conting	gency	
MID	Design & P	rototyping	Prototy	ping TDR	Prototyping	EDR	Pre-pro	duction	PRR PI	rod., Mo	dul	es As	sem	bly	Conting	gency	С
FCT		Design	Prototy	ping TDR	Prototyping	EDR	Pre-pro	od. PRR	Pro	duction		Inte	grat	ion	Conting	gency	C
FD			Design		Prototy	ping	TDR	Protot.	EDR Pre	e-prod.	PRR	Pro	ducti	ion	Conting	gency	Int

Preparation of 'scoping document' ongoing — draft reviewed internally

- Design considerations, R&D roadmap, preliminary view of planning, cost and resources
 - First TDRs planned by end of 2026

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Year

31

ALICE 3 scoping: cost

More detailed cost projections in preparation (De)scoping scenarios:

- Without ECal: 25 MCHF
- B = 1T: 5 MCHF

Impact on physics programme presented in scoping document

Lol cost table

System	Technology				
Tracker	MAPS				
TOF	Monolithic timing sensors (integrated gain layer)				
	Hybrid LGADs				
RICH	Aerogel and monolithic SiPMs				
	Aerogel, analog SiPMs + read-out				
ECal	Pb-Sci sampling and PbWO ₄				
Muon ID	Steel absorber, scintillator bars, SiPMs				
FCT	MAPS (solenoid and dipoles)				
	MAPS (solenoid and separate dipole for FCT)				
Magnets	Superconducting solenoid + FCT magnet				
	Superconducting solenoid and dipoles				
Computing	Data acquisition and processing				
Common items	Beampipe, infrastructure, engineering				
Total					

ALICE future plans — summary

Clear path for future upgrades of ALICE

LS3 – smaller upgrades

- **ITS3**: improve pointing resolution, reduce material budget
- **FoCal**: new capability for forward photons, π^0 , jets

ALICE 3 in LS 4: Unique pointing resolution and extensive PID to unlock

- High-precision measurements of thermal radiation, chiral symmetry restoration
- Unique access to multi-charm baryon production chemical equilibrium and coalescence
- Unique precision in heavy-flavour transport approach to equilibrium
- Unique access to interactions between charm mesons nature of exotic states

Develop detector technologies of the future

- High-performance CMOS MAPs for tracking
- Integrated TOF sensors
- Next-generation photon sensors

						2040
	Position precision	3.1,3.4	• • •		•	
	Low X/Xo	3.1,3.4) i i i i	ĕĕ	i 🍝	i i i
	Low power	3.1,3.4	i i i i i	ŏŏ	i 🍈	• • •
Vertex	High rates	3.1,3.4	• • •	•	Ĭ	
detector ²⁾	Large area wafers ³⁾	3.1,3.4) i i i i			
	Ultrafast timing4)	3.2	• •		• •	• • •
	Radiation tolerance NIEL	3.3		Ō	•	
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4				• • •
	Low X/Xo	3.1,3.4		ŏ •	Ŏ	• • •
	Low power	3.1,3.4		ŎŎ	Ŏ	• • •
	High rates	3.1,3.4		ŤŎ		•
rackers/	Large area wafers ³⁾	3.1,3.4		• •	•	
	Ultrafast timing ⁴⁾	3.2		•	•	
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4				
	Low X/Xo	3.1,3.4				
	Low power	3.1,3.4			•	
	High rates	3.1,3.4				TIT
lorimeter	Large area wafers ³⁾	3.1,3.4				
	Ultrafast timing4)	3.2				ēē
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4		•	• •	• •
	Low X/X _o	3.1,3.4		•	• •	• •
	Low power	3.1,3.4		•	• •	
inter of flight?)	High rates	3.1,3.4				
Time of flight ^{/)}	Large area wafers ³⁾	3.1,3.4		•	• •	
	Ultrafast timing ⁴⁾	3.2			•	
	Radiation tolerance NIEL	3.3	-	Ť		-
	Radiation tolerance TID	3.3			•	
Must happen or	main physics goals cannot be met	Important to me	et several physics goals	Desirabl	to enhance	e physics reach

ALICE 3 and LHCb IIb R&D well aligned with EIC, ILC, FCC-ee needs

ALICE future plans — summary

Clear path for future upgrades of ALICE

LS3 – smaller upgrades

- **ITS3**: improve pointing resolution, reduce material budget
- **FoCal**: new capability for forward photons, π^0 , jets

ALICE 3 in LS 4: Unique pointing resolution and extensive PID to unlock

- High-precision measurements of thermal radiation, chiral symmetry restoration
- Unique access to multi-charm baryon production chemical equilibrium and coalescence
- Unique precision in heavy-flavour transport approach to equilibrium
- Unique access to interactions between charm mesons nature of exotic states

Develop detector technologies of the future

- High-performance CMOS MAPs for tracking
- Integrated TOF sensors
- Next-generation photon sensors

Let's build this program together!

						2040
	Position precision	3.1,3.4	• • •		•	
	Low X/Xo	3.1,3.4) i i i i	ĕĕ	i 🍝	i i i
	Low power	3.1,3.4	i i i i i	ŏŏ	i 🍈	• • •
Vertex	High rates	3.1,3.4	• • •	•	Ĭ	
detector ²⁾	Large area wafers ³⁾	3.1,3.4) i i i i			
	Ultrafast timing4)	3.2	• •		• •	• • •
	Radiation tolerance NIEL	3.3		Ō	•	
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4				• • •
	Low X/Xo	3.1,3.4		ŏ •	Ŏ	• • •
	Low power	3.1,3.4		ŎŎ	Ŏ	• • •
	High rates	3.1,3.4		ŤŎ		•
rackers/	Large area wafers ³⁾	3.1,3.4		• •	•	
	Ultrafast timing ⁴⁾	3.2		•	•	
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4				
	Low X/Xo	3.1,3.4				
	Low power	3.1,3.4			•	
	High rates	3.1,3.4				TIT
lorimeter	Large area wafers ³⁾	3.1,3.4				
	Ultrafast timing4)	3.2				ēē
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4		•	• •	• •
	Low X/X _o	3.1,3.4		•	• •	• •
	Low power	3.1,3.4		•	• •	
inter of flight?)	High rates	3.1,3.4				
Time of flight ^{/)}	Large area wafers ³⁾	3.1,3.4		•	• •	
	Ultrafast timing ⁴⁾	3.2			•	
	Radiation tolerance NIEL	3.3	-	Ť		-
	Radiation tolerance TID	3.3			•	
Must happen or	main physics goals cannot be met	Important to me	et several physics goals	Desirabl	to enhance	e physics reach

ALICE 3 and LHCb IIb R&D well aligned with EIC, ILC, FCC-ee needs

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Parton interactions in the medium: Collisional + radiative

Different formulations exist in literature — use this as an example

'Improved Langevin model':

Drag

(often not used/present in light flavour models) Y. Xu et al, PRC 97, 014907

Parton interactions in the medium: Collisional + radiative

Different formulations exist in literature — use this as an example

'Improved Langevin model':

Drag

(often not used/present in light flavour models)

Transport coefficients:

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Y. Xu et al, PRC 97, 014907

Parton interactions in the medium: Collisional + radiative

Different formulations exist in literature — use this as an example

'Improved Langevin model':

Transport coefficients:

Over time: approach thermalisation 'limiting behaviour'

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Y. Xu et al, PRC 97, 014907

Mass and momentum dependence of transport coefficients

Heavy quark spatial $\langle r^2 \rangle = 6 D_s t$ diffusion coefficient D_s

Mass independent, limit $p \rightarrow 0$

Other key quantities do depend on mass:

Relaxation time
$$\tau_Q = (m_Q/T) D_s$$

Drag coefficient $\gamma = \frac{T}{m_Q D_s}$

 \Rightarrow Beauty thermalises more slowly than charm

Beauty vs charm: important handle on understanding phenomenology

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Rapp et al, <u>arXiv:1803.03824</u>

Xu, Y and Bass, S er at, PRC 99, 1, 014902

36

Elliptic flow of charm beauty quarks: impact of mass

 J/ψ and Υ elliptic flow

Quarkonia: flow generated by quark flow and coalescence Charmonia: large elliptic flow — Bottomonia: compatible with no flow

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Open charm, beauty elliptic flow

Non-prompt D mesons (open beauty) show smaller v₂

Beauty quarks flow less than charm quarks: larger mass, smaller kicks Impact of hadronisation, light quark flow, to be further understood

- Lifetime: $c\tau \approx 135 \ \mu m$

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

ITS3 performance: non-prompt D_s^+

- The much better tracking resolution of ITS3 allows a much cleaner identification of the different templates
- Machine learning allows to select a high fraction of non-prompt D_s^+ even with ITS2
- However, with ITS2 one then pays a prize in significance while this does not happen for ITS3

Magnet design

Superconducting solenoid B = 2TR=1.8m, L=7.5m

Superconducting cable options being explored:

- Nb-Ti
 - Al co-extruded cable not commercially available anymore; R&D at CERN to re-establish production
 - Cu stabilised cable being produced for EPIC@EIC
- MgB₂
 - Commercially available (e.g. ASG former Ansaldo), R&D needed for experiment magnet implementation

Outer tracker R&D: thermal testing

- Layout concept for outer tracker: optimise module \bullet geometry
- Lab tests of cooling: air vs water vs hybrid cooling \bullet

Test setup with heater boards

41

Overall mechanics, integration, and installation

Overall mechanical concepts being studied: impact on installation sequence

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Goal: flexible installation order; ability to install outer detectors last

Physics beyond Run 4

- Progress beyond run 3 and 4 relies on
 - precision measurements of dileptons
 - evolution of the quark gluon plasma
 - mechanisms of chiral symmetry restoration in the quark-gluon plasma
 - systematic measurements of (multi-)heavy-flavoured hadrons
 - transport properties in the quark-gluon plasma
 - mechanisms of hadronisation from the quark-gluon plasma

hadron correlations

- interaction potentials
- susceptibility to conserved charges

Electromagnetic radiation ($\propto T^2$)

Hadron momentum distributions, azimuthal anisotropy

Hadron abundances 'hadrochemistry'

Hadron correlations, fluctuations

