ALICE future plans

Marco van Leeuwen, Nikhef and CERN

ALICE USA meeting - Open session Yale University 31 May 2024

ALICE upgrades in Long Shutdown 2 (2019-2021)

2 ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Run 3, 4: collect 13 nb-1 Pb-Pb: 50x more minimum bias data; 10x more triggered data

New ITS and MFT

Full pixel detector Improved spatial resolution

TPC: GEM readout

ALICE LS2 upgrade paper: [arXiv:2302.01238](http://arxiv.org/abs/2302.01238)

Run-3 physics performance: some examples

LS2 upgrades work as expected, first physics results shown at QM last year, more new results at SQM and LHCP

Run 3 data taking

Successful 2023 heavy-ion run collected 1.6 nb-1, approx. 11.5 G minimum bias events \sim 7x more central events than Run 1+2

pp 2024 off to a good start: 10.2 pb-1 recorded ALICE operational efficiency: 95%

Data taking going very well: significantly more data collected in Run 3 than in Run 1 and 2 combined

Run 3 pp results: $ψ(2s)$ to $J/ψ$ ratio

First measurement of $\psi(2s) / J/\psi$ ratio at mid-rapidity down to zero p_T at LHC Important contribution to available world data — understanding of formation process

Run 3 results: ${}^{3}\overline{\text{He}}$ elliptic flow

6

v₂ reflects geometry: largest for mid-central collisions small in central collisions

Measured v_2 agrees with coalescence model Thermal freeze-out model — blast wave does not describe data

New run 3 result

Upgrade projects

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 7

LS3 upgrades

ALICE 3: LS4

Forward Calorimeter upgrade

- Meet required performance
- Further radiation testing, tests of pads from second vendor ongoing
- High-granularity Si-W electromagnetic calorimeter
- Hadron calorimeter: Cu-scintillator
- Goal: *determine small-x gluon density in the nucleus* by measuring forward production of isolated direct photons, π^0 , jets …

Prototypes produced and tested with beams at PS and SPS

[TDR](https://alice-publications.web.cern.ch/node/8917) approved — moving towards mass production

Forward Calorimeter upgrade: $3.4 < \eta < 5.8$

More in presentation Constantin

LS3 upgrades: ITS 3 — ultra-light fully cylindrical tracking layers

- Heavy flavour reconstruction
- Di-lepton measurements

[TDR](https://alice-publications.web.cern.ch/node/9680) approved — design of final sensor in progress

ITS3: replace inner 3 tracking layers with ultra-light tracking layers Improved pointing resolution for

DPTS paper arXiv:[2212.08621](https://arxiv.org/abs/2212.08621)

DPTS test sensor

MLR1: 65 nm technology validated

Handling of stitched structures

ER1: test of stitched structures 26 x 1.4 cm sensors!

Curved sensor bonding test

Lol: [CERN-LHCC-2019-018](https://cds.cern.ch/record/2703140?ln=en)

LHC Run 5 and 6: ALICE 3

- Compact all-silicon tracker with high-resolution vertex detector: **excellent pointing resolution**
- **Particle Identification over large acceptance**: muons, electrons, hadrons, photons
- Fast read-out and online processing

Impact parameter resolution — HF benchmarks

-
- Multi-charm baryons
- $-$ Dielectron v_2

- Dielectron spectra

Temperature of the QGP: electromagnetic radiation

Light flavour hadron abundances consistent with common chemical freeze-out

• Limiting temperature: ~155 MeV

Temperature from hadron abundances 'chemical freeze-out'

Electromagnetic radiation gives access to **temperature of QGP before hadronisation**

- Cleanest signal: dilepton pairs
- Expected *T* at LHC: 300-400 MeV

Projected temperature from electromagnetic radiation

T vs energy

Temperature of the QGP: electromagnetic radiation

Light flavour hadron abundances consistent with common chemical freeze-out

• Limiting temperature: ~155 MeV

Temperature from hadron abundances 'chemical freeze-out'

Electromagnetic radiation gives access to **temperature of QGP before hadronisation**

- Cleanest signal: dilepton pairs
- Expected *T* at LHC: 300-400 MeV

Projected temperature from electromagnetic radiation

T vs energy

Dielectrons: chiral symmetry and thermal emission

-
-

systematic uncertainties related to the subtraction of the cocktail and charm contribution.

Run 3 and 4: first measurements of thermal dilepton emission at LHC → first access to average *T*

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 13 **22 and ACCC**

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 13 **2 1 C a** st measurements entitle Form for the decays produce correlated background • Large for $m_{ee} \gtrsim 1$ GeV/ c^2 of thermal dilepton emission at LHC $\qquad \bullet$ Large for $m_{ee} \gtrsim 1 \, \text{GeV}/c^2$ → first access to average τ $\qquad \bullet$ Can be effectively suppressed in ALICE 3

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL ¹³ **)2** *^M***ee (GeV/***^c* st measurements entitle Form for the decays produce correlated background • Large for $m_{ee} \gtrsim 1$ GeV/ c^2 of thermal dilepton emission at LHC $\qquad \bullet$ Large for $m_{ee} \gtrsim 1 \, \text{GeV}/c^2$ → first access to average τ $\qquad \bullet$ Can be effectively suppressed in ALICE 3

Dielectrons: chiral symmetry and thermal emission

-
-

systematic uncertainties related to the subtraction of the cocktail and charm contribution.

Run 3 and 4: first measurements of thermal dilepton emission at LHC → first access to average *T*

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL ¹³ **)2** *^M***ee (GeV/***^c* st measurements entitle Form for the decays produce correlated background • Large for $m_{ee} \gtrsim 1$ GeV/ c^2 of thermal dilepton emission at LHC $\qquad \bullet$ Large for $m_{ee} \gtrsim 1 \, \text{GeV}/c^2$ → first access to average τ $\qquad \bullet$ Can be effectively suppressed in ALICE 3

Dielectrons: chiral symmetry and thermal emission

-
-

systematic uncertainties related to the subtraction of the cocktail and charm contribution.

Run 3 and 4: first measurements of thermal dilepton emission at LHC → first access to average *T*

Dielectron mass distribution

Dielectrons: chiral symmetry and thermal emission

systematic uncertainties related to the subtraction of the cocktail and charm contribution.

-
-

Dielectron mass distribution

Chiral symmetry restoration: $\rho - a_1$ mixing

- **masses in QCD**
	-
-

14

Heavy-flavour transport: D**D̅** azimuthal correlations

• Angular decorrelation **directly probes QGP scattering**

- Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and η coverage
	- → **heavy-ion measurement only possible with ALICE 3**

Heavy-flavour transport: DD azimuthal correlations

• Angular decorrelation **directly probes QGP scattering**

- Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and η coverage
	- → **heavy-ion measurement only possible with ALICE 3**

Heavy-flavour transport: DD azimuthal correlations

• Angular decorrelation **directly probes QGP scattering**

- Signal strongest at low p_T
- Very challenging measurement: need good purity, efficiency and η coverage
	- → **heavy-ion measurement only possible with ALICE 3**

Heavy flavour transport: elliptic flow v_2

Heavy quarks: access to quark transport at hadron level

- Expect beauty thermalisation slower than charm $-$ smaller v_2
- Need baryons and mesons to disentangle hadronisation effects: interplay with light quarks

QGP: Hadronisation quark transport

Impact of hadronisation (recombination)

Heavy flavour transport: elliptic flow v_2

Heavy quarks: access to quark transport at hadron level

- Expect beauty thermalisation slower than charm $-$ smaller v_2
- Need baryons and mesons to disentangle hadronisation effects: interplay with light quarks

QGP: Hadronisation quark transport

Hadron formation: multi-HF hadrons

Single and double-charm baryons: Λ_c , Ξ_c , Ξ_{cc} , Ω_{cc} Multi-flavour mesons: B_c , D_s , B_s , ... Tightly/weakly bound states J/ ψ , $\chi_{c1}(3872)$, T_{cc}^+ Large mass light flavour particles: nuclei

- **Multi-charm baryons**: unique probe of hadron formation
- Statistical hadronisation model: **very large enhancement** in AA
	- Specific relation between yields: g^n_c for *n*-charm states
- How is thermalisation approached microscopically?
	- Measure multiple states to probe dynamics of thermalisation and hadronisation

Multi-charm baryons

New technique: strangeness tracking

Pointing of $≡$ baryon provides high selectivity

 $\Xi_{cc}^{++} \to \Xi_{c}^{+} + \pi^{+} \qquad \Xi_{c}^{+} \to \Xi^{-} + 2\pi^{+}$

Multi-charm baryons

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 18

nental access in Pb-Pb collisions

$$
\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} + \pi^{+} \qquad \Xi_{c}^{+} \rightarrow \Xi^{-} + 2\pi^{+}
$$

ALICE 3: unique experiment

Net-baryon fluctuations

Projection for 6th cumulant

4σ observation in reach with ALICE 3

Quarkonia and $\chi_{c1}(3872)$

Goal: understand formation and dissociation of cc states

ALICE 3 muon ID and ECal enable measurement of χ_c in Pb-Pb collisions

Hard probes: γ -jet

 γ -jet, h-jet recoil jet measurements crucial for unbiased study of jet quenching

• ALICE 3 acceptance, full coverage EMCal, rate capabilities dramatically improve precision

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 22 of the Gaussian functions are corrected by a factor of $1.05,$ that accounts for a small α CE Future | ALICE US open meeting | Yale University, 31 May | MvL

Heavy-ion collisions as a laboratory for hadron physics

- Several exotic neavy flavour states identified
- Loosaly hound moson moloculo or tightly by • Loosely bound meson molecule or tightly bound tetraquark?
- α Study binding potential with final state intera • Study binding potential with final state interactions the real part of the real part of the complex and the control of the coupling α constant **g** for the T₊ 'femtoscopic correlations'

Bound states produce specific pattern vs system size

Other physics topics

- Resonance production in Ultra-peripheral collisions
- ALP search in $\gamma\gamma$
- Production of nuclei in $\overline{\Lambda}_b \rightarrow^3 \overline{\text{He}}$ decays
- Search for charm-nuclei
- Ultra-soft photons: Low's theorem

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

R&D: tracking sensor design

- Key technology: **CMOS monolithic active pixels** (MAPS)
	- Affordable, high-precision sensors with very low noise
- Experience with ITS2: 180 nm Tower-Semi technology
- R&D for ITS3: 65 nm technology
	- Large area stitched sensors
	- Improved radiation hardness (modified process)

Tests with irradiated sensors show improved radiation tolerance

ITS2, 3 development are the starting point for ALICE 3 tracker sensors

DPTS test paper arXiv[:2212.08621](https://arxiv.org/abs/2212.08621)

65 nm test structure

Handling of stitched sensors

Vertex detector: mechanics

Material outgassing studies for secondary vacuum

- pressure vs time
- residual gas composition

Outgassing at 10-6 mbar

Geometry variants, cooling design being explored

Chip holder Chip gripper Marker scan

Outer tracker R&D: module production

Large area: automated industrial production of multi-chip modules

Position reproducible with 5 µm level accuracy

Module **All Communist Communist Strategy**

First tests with dummy modules in collaboration with industry

Commercial general purpose die attach machine

- **TOF** and **RICH** provide hadron and electron identification
	- Complementary p_T ranges
	- Electron ID up to $p_T = 1.5$ GeV/*c*: thermal dilepton production measurements
	- Kaon and proton PID up to 6-10 GeV/*c*: HF measurement
- **Muon ID**: measurements of J/ψ down to $p_T = 0$, χ_c , exotic states
- **EMCal** for photon ID: ALPs, χ_c , jets

Particle identification

R&D for timing sensors

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 28

Laser measurement

LGAD, SPAD: 20 ps resolution demonstrated/in reach (sensor only)

Ring Imaging Cherenkov R&D

- **Performance** verified
- Characterisation of aerogels and SiPMs ongoing

Principle: aerogel + proximity focusing SiPM/SPAD integrated readout

Test beams:

R&D option: combined TOF and RICH readout with SiPMs (SPADs)

- Base line technology: Scintillator bars, SiPM readout
- Alternative technologies: MWPC, RPC
- Muon identification down to $p_T \approx 1.5$ GeV/*c*

R&D for Muon Identifier

Muon identifier: **absorber followed by muon stations**

Test beam June 2023

Efficiency vs distance along bar

JINST 19 (2024) 04, T04006

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

Year

Scoping document: schedule and cost profile

Preparation of 'scoping document' ongoing — draft reviewed internally

- Design considerations, R&D roadmap, preliminary view of planning, cost and resources
	- First TDRs planned by end of 2026

ALICE 3 time time

ALICE 3 scoping: cost

More detailed cost projections in preparation (De)scoping scenarios:

- Without ECal: 25 MCHF
- \bullet B = 1T: 5 MCHF

Impact on physics programme presented in scoping document

LoI cost table

ALICE future plans — summary

LS3 — smaller upgrades

- **ITS3:** improve pointing resolution, reduce material budget
- **FoCal**: new capability for forward photons, π^0 , jets

ALICE 3 in LS 4: Unique pointing resolution and extensive PID to unlock

- High-performance CMOS MAPs for tracking
- Integrated TOF sensors
- Next-generation photon sensors
- High-precision measurements of thermal radiation, chiral symmetry restoration
- Unique access to multi-charm baryon production chemical equilibrium and coalescence
- Unique precision in heavy-flavour transport approach to equlibrium
- Unique access to interactions between charm mesons nature of exotic states

Develop detector technologies of the future

ALICE 3 and LHCb IIb R&D well aligned with EIC, ILC, FCC-ee needs

Clear path for future upgrades of ALICE

ALICE future plans — summary

LS3 — smaller upgrades

- **ITS3:** improve pointing resolution, reduce material budget
- **FoCal**: new capability for forward photons, π^0 , jets

ALICE 3 in LS 4: Unique pointing resolution and extensive PID to unlock

- High-performance CMOS MAPs for tracking
- Integrated TOF sensors
- Next-generation photon sensors
- High-precision measurements of thermal radiation, chiral symmetry restoration
- Unique access to multi-charm baryon production chemical equilibrium and coalescence
- Unique precision in heavy-flavour transport approach to equlibrium
- Unique access to interactions between charm mesons nature of exotic states

Develop detector technologies of the future

ALICE 3 and LHCb IIb R&D well aligned with EIC, ILC, FCC-ee needs

Clear path for future upgrades of ALICE

Let's build this program together!

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 34

Parton interactions in the medium: Collisional + radiative

'Improved Langevin model':

Y. Xu et al, PRC 97, 014907

Different formulations exist in literature — use this as an example

in light flavour models)

Parton interactions in the medium: Collisional + radiative

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 35

'Improved Langevin model':

Y. Xu et al, PRC 97, 014907

Different formulations exist in literature — use this as an example

in light flavour models)

Transport coefficients:

Parton interactions in the medium: Collisional + radiative

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 35

'Improved Langevin model':

Y. Xu et al, PRC 97, 014907

Different formulations exist in literature — use this as an example

Over time: approach thermalisation 'limiting behaviour'

Transport coefficients:

Mass and momentum dependence of transport coefficients

 $\langle r^2 \rangle = 6 D_{\rm s} t$ **Heavy quark spatial** diffusion coefficient *Ds*

Mass independent, limit $p \rightarrow 0$

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 36

Rapp et al, arXiv: 1803.03824

Relaxation time

\n
$$
\tau_Q = (m_Q/T) \, D_s
$$
\ndrag coefficient

\n
$$
\gamma = \frac{T}{m_Q \, D_s}
$$

 \Rightarrow Beauty thermalises more slowly than charm

Beauty vs charm: important handle on understanding phenomenology Xu, Y and Bass, S er at, PRC 99, 1, 014902

Other key quantities do depend on mass:

Elliptic flow of charm beauty quarks: impact of mass

 J/ψ and γ elliptic flow

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 37

Non-prompt D mesons (open beauty) show smaller v_2

Quarkonia: flow generated by quark flow and coalescence Charmonia: large elliptic flow — Bottomonia: compatible with no flow

Beauty quarks flow less than charm quarks: larger mass, smaller kicks Impact of hadronisation, light quark flow, to be further understood

Open charm, beauty elliptic flow

-
- -

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL

ITS3 performance: non-prompt Ds+

- The much better tracking resolution of ITS3 allows a much cleaner identification of the different templates
- Machine learning allows to select a high fraction of non-prompt D_s ⁺ even with ITS2
- However, with ITS2 one then pays a prize in significance while this does not happen for ITS3

Magnet design

- Nb-Ti
	- Al co-extruded cable not commercially available anymore; R&D at CERN to re-establish production
	- Cu stabilised cable being produced for EPIC@EIC
- $MgB₂$
	- Commercially available (e.g. ASG former Ansaldo), R&D needed for experiment magnet implementation

Superconducting solenoid B = 2T R=1.8m, L=7.5m

Outer tracker R&D: thermal testing

- Layout concept for outer tracker: optimise module geometry
- Lab tests of cooling: air vs water vs hybrid cooling

41

Test setup with heater boards

Overall mechanics, integration, and installation

ALICE Future | ALICE US open meeting | Yale University, 31 May | MvL 42

- Overall mechanical concepts being studied: impact on installation sequence
	- Goal: flexible installation order; ability to install outer detectors last

Electromagnetic radiation ($\propto T^2$)

Physics beyond Run 4

- ➟ interaction potentials
- susceptibilty to conserved charges
- Progress beyond run 3 and 4 relies on
	- **• precision measurements of dileptons**
		- ➟ evolution of the quark gluon plasma
		- ➟ mechanisms of chiral symmetry restoration in the quark-gluon plasma
	- **• systematic measurements of (multi-)heavy-flavoured hadrons**
		- ➟ transport properties in the quark-gluon plasma
		- ➟ mechanisms of hadronisation from the quark-gluon plasma

• hadron correlations

Hadron abundances 'hadrochemistry'

Hadron momentum distributions, azimuthal anisotropy

Hadron correlations, fluctuations

