Brookhaven National Laboratory Office of Science | U.S. Department of Energy

Outlook for fluctuations and correlations

Jiangyong Jia May 31, 2024

2024 ALICE USA meeting at Yale

Heavy ion collisions

Three pillars of understanding: Properties, Dynamics, Initial condition

Two snap-shots: Final state particles, Nuclear structures \rightarrow Measure more observables or collide more systems

A plethora of observables

Single particle distribution Flow vector: d^2N

$$
\frac{d^2 N}{d\phi dp_T} = N(p_T) \left[1 + 2 \sum_n v_n(p_T) \cos n(\phi - \Psi_n(p_T)) \right]
$$

$$
= N(p_T) \left[\sum_{n=-\infty}^{\infty} V_n(p_T) e^{in\phi} \right]
$$
Ansotropic flow

Two-particle correlation function

$$
\left\langle \frac{d^2N_1}{d\phi dp_{\rm T}} \frac{d^2N_2}{d\phi dp_{\rm T}} \right\rangle \quad \Rightarrow \; \langle \boldsymbol{V}_{n}(p_{T1}) \boldsymbol{V}^*_{n}(p_{T2}) \rangle \quad n-n=0
$$

Multi-particle correlation function

$$
\left\langle [p_\mathrm{T}]^k \frac{d^2N_1}{d\phi dp_\mathrm{T}} \ldots \frac{d^2N_m}{d\phi dp_\mathrm{T}} \right\rangle \Rightarrow \left\langle [p_\mathrm{T}]^k \boldsymbol{V}_{n_1} \boldsymbol{V}_{n_2} \ldots \boldsymbol{V}_{n_m} \right\rangle \\ p([p_\mathrm{T}], \boldsymbol{V}_2, \boldsymbol{V}_3 \ldots) = \frac{1}{N_\mathrm{evts}} \frac{\stackrel{}{\downarrow} dN_\mathrm{evts}}{d[p_\mathrm{T}] d\boldsymbol{V}_2 d\boldsymbol{V}_3 \ldots}
$$

EbyE fluctuations of initial volume, size and shape

E-by-E flow amplitude distribution $p(v_n)$

Event-plane correlation $p(\Psi_n, \Psi_m, \Psi_k)$

 v_n amplitude correlation $p(v_n,v_m)$

From Weiyao Ke, Jetscape

Uncertainty quantification

 -1 -1

Only a subset of observables are used

- Extraction of QGP properties is limited by the initial condition
- At this moment, more observables do not necessarily improve the situation.

Initial condition & pre-equlibrium

What is the nature of quantum fluctuations? How is the energy deposited? What are the DoFs? How does the system hydrodynamize/thermalize? timescales?

Isolating the impact of initial condition

$$
\tau=0^{-}_{\tau\,=\,0^{+}}\tau=0^{+}
$$

Constraints from small system scan

What is the nature of quantum fluctuations? How is the energy deposited? What are the DoFs?

How does the system hydrodynamize/thermalize? timescales?

Three experimental approaches:

- **Explore nuclear structure**
- Longitudinal correlation
- Small system scan

Constraints from nuclear structure

Image U shape via Isobar-like U+U vs Au+Au collisions $R_{\mathcal{O}} = \langle \mathcal{O} \rangle_{U+U} / \langle \mathcal{O} \rangle_{\text{Aut-Au}}$ > Insensitive to final state parameters 1 $\langle v_{2}^{2} \rangle_{\!\tiny \text{Au}}$ $\frac{1}{\sqrt{2}}\left(\frac{1}{2}(\delta \rho T)^2\right)_{A_{\mu}}$ Au $\binom{2}{2}$ δρ $\binom{1}{1}$ $0.2 < p_{\rm T} < 3 \text{ GeV/c}$ $<(\delta p_T)^2>$ $\langle v_2^2 \rangle$ v $\check{ }$ / 0 $\widehat{\sum_{\alpha}}$

U deformation dominates the ultra-central collisions \rightarrow 50%-70% modification on <v₂²> and <(δ p_T)²>, 300% for <v₂² δ p_T>

Reasonable agreement with IPGlasma+Music+UrQMD hydro model 2005.14682

Constraints from $\langle \delta p_T^2 \rangle$ and v₂-p_T:

Isobar 96Ru+96Ru and 96Zr+96Zr collisions at RHIC 200 GeV

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}}
$$

• Insensitive to parameters in the final state

• Deviation from one reflects differences in nuclear structure

Structure influences everywhere

Nuclear structure is inherently part of Heavy ion problem

Nuclear structure via v_2 -ratio and v_3 -ratio

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a
$$

Simultaneously constrain four structure parameters

Nuclear structure via v_2 -ratio and v_3 -ratio

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a
$$

Simultaneously constrain four structure parameters

- $β_{2Ru} ~ 0.16$ increase v₂, no influence on v₃ ratio
- **n** $β_{37r}$ ~ 0.2 decrease v_2 and v_3 ratio
- $\triangle a_0$ = -0.06 fm increase v₂ mid-central,
- Radius ΔR_0 = 0.07 fm slightly affects v_2 and v_3 ratio.

Isobar ratio constraints on the initial condition

 c_n relates nuclear structure and initial condition

Longitudinal structure

- Sensitive to stopping and entropy production mechanism
- Varying the timescales $\tau \sim e^{-\Delta \eta}$
- Short-range structure sensitive to hydrodynamization (also non-flow)

Phys. Rev. C 94 (2016) 4, 044907

Jiangyong Jia, Peng Huo Phys. Rev. C 90 (2014) 034905

Long-range sees geometry, short-range sees microscopic origin of collectivity

How to deal with non-flow?

Deformation-assisted study of longitudinal structure

Observables for long-range collectivity

- nth -order long-range correlations are azimuthal flow harmonics v_n .
	- Most studies of collectivity use this, in particular small system.
- $0th$ -order long-range correlation is energy/multiplicity
	- Such correlation comes from boost invariance of initial condition. Does not require final state effects
- 1st-order long-range correlation is $\langle p_T \rangle$ or radial flow.

Small system scan

Why small systems

Need to consider full energy-momentum tensor $T_{\mu\nu}(\tau = 0)$ for the initial condition

n Interplay of different sources holds key to hydrodynamization and its timescales

Disentangle sources of collectivities

Identifying the geometry response via geometry scan

Quantify the fraction of each component

Small system scan

Design isobar collisions with drastically different geometry

QGP's rapidity structures by comparing symmetric vs asymmetric systems

Decorrelation should be different from large systems

Precision requires a scan from small to medium-sized systems. And understand the role of non-flow

Future

Require large acceptance detector and flexible collision species

any isotope for approved gas should be ok

Summary

- n Precision understanding of QGP properties, its initial condition, and dynamics.
	- \blacksquare Can we reach within 10-20% uncertainties?
- Exploration of the full 3D structure \rightarrow ALICE 3, ATLAS/CMS/LHCb
- ⁿ Design collision species with different geometries: shape, size, and correlations
- System scan from small to medium species.
	- \rightarrow Enable by LHC and SMOG2

Strategy for nuclear shape imaging

Compare two systems of similar size but different structure

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a \quad \text{arXiv: } 2111.15559
$$

Deviation from unity depends only on their structure differences c_1 - c_4 are function of centrality