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Jets are emergent phenomena in QCD

Almost every LHC event contains jets

Jets are reconstructed using jet algorithms (anti-k;)

How can we learn the most about underlying physics from the reconstructed jets?
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Jet substructure

4+ Study the internal structure of a jet —theoretical analysis and
measurements of kinematic properties

4+ Underlying Physics and intrinsic properties are imprinted in jet
substructure — clean probes of QCD

Robust Jet Substructure Observables!
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Event Shapes

 Weighted cross-sections: distribution of outgoing particles/charges

6,(@) = Y. @n)*s™ (g~ ky) 0(X) | (X[0(0))0) |

| L

Local operator that creates the state | X) with momentum £k,



Event Shapes

 Weighted cross-sections: distribution of outgoing particles/charges

o)=Y 2r)*6W (g — ky)(@(X)) (X[0(0))0)

Local operator that creates the state | X) with momentum &k,

Weight factor depends on the
measurement



Event Shapes

 Weighted cross-sections: distribution of outgoing particles/charges

6,(@) = ), Cm*s® (q - ky) €;x) )(X[0(0)] 0)

Local operator that creates the state | X) with momentum £k,

Weight factor depends on the
measurement

For w(X) weighted energy this expression gives the
distribution of energy inside the jet.

E |y, are different permutations for all { X} final states



Event Shapes

 Weighted cross-sections: distribution of outgoing particles/charges

6,(@) = ), Cm*s® (q - ky) €;x) )(X[0(0)] 0)
X

Local operator that creates the state | X)
Weight factor depends on the

measurement Ex, are different permutations for all { X} final states

For w(X) weighted energy this expression gives the
distribution of energy inside the jet.

 Reformulate such event shape distributions with correlation functions!
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Energy Correlators

Energy Correlators describe the calorimeter cells at infinity on the celestial sphere

x (P | 8(771)8(772) - '°8(ﬁn) | ') j



Energy Flow Inside the Jet

 Distribution of energy inside the jet is described by correlation  [Basham, Brown, Ellis, Love]
functions of the energy flow operators = Energy Correlators.

(V| e(nye(n,)...e(n,) | V) Q’\ﬁ

oo

E(n) = lim [ dt r2n'To:(t, rii)

0

Defined from first principles in QFT!

Any physics dynamics will be imprinted
in the energy distributions inside the jet.
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Scaling Behavior

Energy correlators inside high energy jets at the LHC
=small angle limit

Corresponds to w(X) = EE;

0,(@) = ), )69 (q = ky) @(X) | (X] 0(0)|0) |
X

 Energy correlators admit an OPE:

(W | e(n)e(n,) | ¥) ~ ), 0"0(n;)

[Hofman, Maldacena]
[Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]



Scaling Behavior

Energy correlators inside high energy jets at the LHC
=small angle limit

* Energy correlators admit an OPE:

(P | &7, )e(ity) | P) ~ 29%

= Use LHC jets to test the leading QCD operators in this
expansion
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Scaling Behavior

Energy correlators inside high energy jets at the LHC
=small angle limit

 Energy

= Use LHC jets to test the leading QCD operators in this
expansion
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Scaling Behavior

Energy correlators inside high energy jets at the LHC
=small angle limit

110+

HEAT CAPACITY (J/MokK)
)
-,
-

(P | &7, )e(ity) | P) ~ 29%

= Use LHC jets to test the leading QCD op 70| |
expansion 0 100 200
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Energy correlators for jet substructure at LHC

Outline

 Massless Energy Correlators

 Massive Energy Correlators

 Higher Point Correlators
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Energy Correlators at the LHC
(Light quarks)




Energy Correlator as an observable

Energy weighted cross sections

g

- . LT~

| ( 2EE))
| EEC = 2 do 5(cos 0, — cos y)

Q%ctot

Studied first in e e~ by [Basham, Brown, Ellis, Love]




Energy Correlator as an observable

2EE,

o(cos 8. — cos y)
E 5 oot

» Generally one can study EEC for any angle y

« Most interesting phenomenological case: y — 0

andy - 7«

« Here we study y — 0 case.




Energy Correlators at the LHC

Factorization Formula

Can calculate any higher point
correlator at the LHC

dx 1 N 1 —cos 6,
= Z; (PrsNs ®J dx x" 7 (z,x, prR, L=
dprdndz Z,: <pT ! ,u) 0 I @ xpritb) @ ’
2E.
/ / \ X = ?

Hard function: includes pdfs . .
Energy correlator jet function

[Lee, BM, Moult]




Two-point energy correlator

The simplest jet substructure observable

« The complicated LHC environment is described by a simple observable

* Probe the OPE structure of (¢(7))e(1,)) Two-Point Energy Correlator

(W | e(ii)etiiy) | W) ~ X 070,G) (£165)

O
= 10 $ CMS Open Data 1
_a:; 0.8 '*:;‘J L
E o BENLL
e A jet substructure observable that g
.

can test quantum scaling behavior of
operators.

0.4} AKS Jets, | < 1.9
pr = 500-550 GeV

0.2¢

o'00.02 0.05 0.10 0.20 0.50

[Lee, BM, Moult]
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Normalized EEC

Experimental results
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Direct observation of the transition from free hadrons to
quarks/gluons at a universal scaling!

Talk by J.Mulligan and R.Cruz-Torres
at HARD PROBES-March 2023
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Normalized EEC

Experimental results
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Direct observation of the transition from free hadrons to

quarks/gluons at a universal scaling! Universal behavior of the transition region.
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Normalized EEC

Experimental results
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Beautiful and Charming Energy Correlators

120

100

= = Light Jet
[ = = Charm Jet
= = Beauty Jet

Normalized EEC

AKS5 Jets, || < 1.9
pr = 500-550 GeV |

%001 0.005 0.010 0.050 0.100 0.500

Ry,
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Application on Heavy Jets

Introduce an additional scale

» At the LHC energies there is access to the transition phase from
massless to massive behaviour = more complexity

e Also very interesting!

« Can probe intrinsic mass effects of quarks before confinement into
hadrons
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Factorization theorem

Can compute any higher point correlators on massive quarks at LHC at NLL

Hard function (NNLO)

509 (R ) = [ 4oV (Ry ) - F (1.7
L Pr- Mg, 1 ) X ESRGM (x,p rH ) [Craft, Lee, BM, Moult]

~ [Czakon, Generet, Mitov, Poncelet; 2021]
Hg ~ Pr

1y~ prR

Massive Energy Correlator Jet Function (NLO)

P N i NP . W

IH(:)’ me g
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Heavy quark jet function

Result

a,C
15 Mo = 5| 1+ 25 |E(196) + 193

| re—

4 2 1+ 62

C-113 5 54 1 1 52
+as F [— 2 + 383 arctan <g> +562 (1 - 52) In ]

Tz 1+ 62

The mass should not affect the UV behavior of the jet function.
This can be seen from comparing the UV poles with the light quark jet function.

C
50 _ 50+ aij [ 5@(_ (ygq»@) +700))
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Massive jets

Z[N] (RL’p%’ mQ,’u) = J

* Formation time changes
with the mass of the quark.

e Can clearly see this from
the two-point EEC.

Massive Energy Correlator Jet Function

0

- 2
Virtuality ~ prR; +myg

Hard function

120f

100+

Normalized EEC

= = Light Jet
80 o = Charm Jet
= = Beauty Jet

Two-Point Energy Correlator

AKS Jets, |n| < 1.9
pr = 500-550 GeV |

[Craft, Lee, BM, Mouli]
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Massive two point correlator

First massive jet substructure observable at NLL

* Scaling behaviour identical to massless
case for larger scales.

« Aturn-over for R, — my/pr

 The change in the slope is perturbative
effect contrary to massless jets:

R, — AQCD/pT

e The turn-over region is of interest for
improving heavy quark description in
parton shower.
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Normalized EEC
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Heavy Two-Point Energy Correlator

B NLL Charm
= NLL Beauty

(£182)

Pythia
= = Charm Jet

= = Beauty Jet
AKS5 Jets, [n| < 1.9
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0.100
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0.010
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[Craft, Lee, BM, Moult]




Dead-cone effect in QCD

Fundamental phenomena

* Parton-shower pattern depends on the mass of the emitting parton. f
>
,}Q

. M
 Angular suppression ="

Observable used for the observation of the dead-cone effect in LHC data

1 anO jets / 1 dninclusive jets

R(6) = — .
NDies dIn(1/) /- Ninclusieiets din(1/6) |, nature
Explore content v About the journal v  Publish with us v
nature > articles > article
¢ Can we Observe the dead-cone With EEC? Article | Open access | Published: 18 May 2022

Direct observation of the dead-cone effect in quantum
chromodynamics

ALICE Collaboration
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Intrinsic mass effects

Dead-cone effect 20

8
é“é
= NLO
= 15 8 5 )
) 1¢2/ Beauty = = Pythia
S|
S (E1E9) 1
E 1ol 162 nght ) - -
g 0.5 .
o AKS Jets, |n| < 1.9
- - pr = 500-550 GeV
%% 001 0005 0010 0050 0100 0.500
Ry

[Craft, Lee, BM, Moult]

Ratios of the massive and massless EEC isolate mass (IR) effects.

A transition region related to the quark mass: perturbatively calculable.

Excellent agreement with MC.

Small angle suppression can be interpreted as a dead-cone effect.
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Higher point correlators

3.0

NLL Projected Correlators

° B8 E3C/EEC
&~ EAC/EEC i
| == E5C/EEC
& E6C/EEC

N
[

N
1=

ENC/EEC Ratios

-
[3,)

-
o

32



The light-ray OPE

* The leading scaling behavior at the LHC is described by the leading terms in
the OPE: twist two light-ray operators.

e Light-ray OPE is a rigorous and convergent expansion in CFT.

(W | e(ipe(n,) | W) = 3, c0"0(n))

e ) € ) (7)) = {49 (o) O () 419 () O (1) } + 0 (RY)

2 2
N N
4= X; 0. X %= X; 1 X;; /1 1 +(ip+)!
11137V i1igVipls @q = El//j/ (lD ) "/8

T (e o]
oV = (o, 0) = lim er d(6V\(s, rif) ol = — Lpre (ip+) 2 g
8 2] a a

r—o0 0
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Leading twist light-ray OPE

Control scaling at leading power

» Twist-2 operators in QCD are characterized by a spin J and transverse spin j=0,2.

 They can be transformed to a twist-2 light-ray operator vector parametrized by J

1 OY\i)
o =i+ (iD*) "y, e
T i)y lim | dt
r—o0 0 —> N @[‘]] I/_i
[J] ut [+ J=2 s+ @[J](n) — g ( )
OY' = — —F}* (iD*)" " F}
V1 (5
oYl = _LF/H‘ (iD+)J Flte, ¢
8.4 J 4 a “Autiy (U)[_J] (ﬁ)
g.—
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Leading twist light-ray OPE

Control scaling at leading power

» Twist-2 operators in QCD are characterized by a spin J and transverse spin j=0,2.

 They can be transformed to a twist-2 light-ray operator vector parametrized by J

| R 2

01 = El//}”r (iD*)" . 0 oV(i)
lim 72| dt 7 :
1 r—o ) Unpolarized
- — o

Of) = = ki (iD*)" Byt . oV(it) = )

| J ol (i)
@E'J/]l == ?Fc/lﬁ (iD+) Fi'e u€aw Polarized

oV i)
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Unpolarized Scaling

LHC scenario

 Probe the unpolarized spin j = 0 operators

 The leading scaling behavior is determined by the anomalous dimension
y(N + 1) for an operator of spin N + 1.

— can isolate the anomalous dimensions!
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The jet spectrum

Higher-point correlators

Asymptotic energy flux directly probes the 3o
spectrum of (twist-2) lightray operators at NLL Projected Correlators
the quantum level 25} ,
] = e
Ratio of the higher-point correlators with = v ESCjEEC i
the two-point isolates anomalous scaling! é ! EGC/EEC
%)
Z. 1.5}
The anomalous scaling behavior depends =
on N (slope increases with N) ol

i 0.01 0.02 0.05 0.10
First hand probe of the anomalous R
L

dimensions of QCD operators.

[Lee, BM, Moult]

[Chen, Moult, Zhang, Zhu]
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The jet spectrum

Higher-point correlators

3.0 T
] ] ] NLL Projected Correlators
* Non-perturbative effects cancel in the ratio 28l
z | B8 E3C/EEC
* A clean measurement of strong coupling = —— E4C/EEC i
g 20} E5C/EEC
a (0 K —— E6C/EEC
0" — exp( ” In o Q)) g
2:30 as(Q) L:!ZJ 1.5}¢
 Can be observed at the high energies at
the LHC at high precision 1.0f
0.101 0‘62 O.E)S 0.'10
Ry

[Lee, BM, Moult]
[Chen, Moult, Zhang, Zhu]

38




Heavy Projected Energy Correlators

Resolve the UV scaling behaviour

» Ratios of higher point correlators with
the two point EEC are independent of
IR effects, including quark mass.

* The exact behavior as the massless
case.

 Non-trivial cross check of the
factorization theorem!

« Anomalous dimensions should not be
affected by the IR physics.
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4 — E5C/EEC

| NLL Heavy Projected Correlators

B E3C/EEC
— E4C/EEC

—— E6C/EEC

AKS Jets, n| < 1.9 |
pr = 500-550 GeV

8 1 1 1 1
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1 1
0.20 0.50

[Craft, Lee, BM, Moult]



Experimental Results

CMS 36.3fb™" (13 TeV)
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Jet substructure from first principles!

 Energy correlator is a jet substructure observable defined from first principles in QFT
= No ambiguity between what is measured and the theory calculation.

(W|E(FL) -+ E(Tig-1) W) (¥|0V)(#)|)
Light-Ray OPE

 Formalism can be applied for any conserved charge for LHC processes.

* No jet grooming or pruning is needed to extract the final results, pure QFT
calculation!

* Not sensitive to soft and wide angle radiations.
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Applications of these results

 Precision measurements: o, measurement

 Jet modeling in MC simulations: heavy flavours

* Precision in parton showers: “reference resummation”
for testing DGLAP finite moments.

 Understand properties of the QGP: multi-scale problem
too, global properties of plasma.

[Andres, Dominguez, Kunnawalkam Elayawalli, Holguin, Marquet, Moult,...]
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Conclusions

» Factorization formula for calculating energy correlators for jet substructure at the LHC.

Two-Point Energy Correlator
(6182)

Ry, $ CMS Open Data
L
BENLL
AKS Jets, || < 19
Pr = 500-350 GeV'

dx

1
_ = % 1, d B i\(Ky Ay R, J[N] s /vy

rmalized EEC

Nor

0.10
Ry

* Intrinsic mass effects of strongly interacting elementary particles. . oy TPt By ol

[ NLL Charm
E= NLL Beauty

Normalized EEC

* Higher-point correlators can be calculated for LHC and
probe anomalous scaling dimension of QCD operators.

EX
NLL Projected Correlators

*Sl @ E3C/EEC
—— E4C/EEC
200 =—— E5C/EEC
= E6C/EEC

ENC/EEC Ratios

.01 0.02
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Thank You!



