

Theoretical Prospects for Jet Substructure

ALICE Meeting at Wright Lab - Yale University

Bianka Meçaj - Yale University

Jets are emergent phenomena in QCD

Almost every LHC event contains jets

Cacciari, Salam 2006 Salam, Soyez 2007

Jets are reconstructed using jet algorithms (anti- k_T)

How can we learn the most about underlying physics from the reconstructed jets?

Jet substructure

◆ Study the internal structure of a jet → theoretical analysis and measurements of kinematic properties

 ◆ Underlying Physics and intrinsic properties are imprinted in jet substructure → clean probes of QCD

4

• Weighted cross-sections: distribution of outgoing particles/charges

$$\sigma_{\omega}(q) = \sum_{X} (2\pi)^{4} \delta^{(4)} \left(q - k_{X} \right) \omega(X) \left| \left\langle X \right| O(0) \right\rangle \right|^{2}$$

Local operator that creates the state $|X\rangle$ with momentum k_X

Weighted cross-sections: distribution of outgoing particles/charges

Local operator that creates the state $|X\rangle$ with momentum k_X

Weighted cross-sections: distribution of outgoing particles/charges

 $E_{\{X\}}$ are different permutations for all $\{X\}$ final states

7

Weighted cross-sections: distribution of outgoing particles/charges

$$\sigma_{\omega}(q) = \sum_{X} (2\pi)^{4} \delta^{(4)} \left(q - k_{X}\right) E_{\{X\}} \left(X | O(0) | 0 \right) |^{2}$$
Local operator that creates the state $|X\rangle$
Weight factor depends on the measurement
$$E_{\{X\}}$$
 are different permutations for all $\{X\}$ final states

state $|X\rangle$

For $\omega(X)$ weighted energy this expression gives the distribution of energy inside the jet.

Reformulate such event shape distributions with correlation functions!

Energy Correlators

Energy Correlators describe the calorimeter cells at infinity on the celestial sphere

Energy Flow Inside the Jet

 Distribution of energy inside the jet is described by correlation functions of the energy flow operators ⇒ Energy Correlators.

 $\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2)\ldots\varepsilon(\vec{n}_n) \mid \Psi \rangle$

$${\cal E}(ec n) = \lim_{r o \infty} \int \limits_{0}^{\infty} dt \; r^2 n^i T_{0i}(t,rec n)$$

Defined from first principles in QFT!

[Basham, Brown, Ellis, Love]

Any physics dynamics will be imprinted in the energy distributions inside the jet.

Energy correlators inside high energy jets at the LHC

 \Rightarrow small angle limit

• Energy correlators admit an OPE:

 $\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\vec{n}_1)$

[Hofman, Maldacena] [Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

Energy correlators inside high energy jets at the LHC \Rightarrow small angle limit

• Energy correlators admit an OPE:

$$\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\vec{n}_1)$$

 \Rightarrow Use LHC jets to test the leading QCD operators in this expansion

Energy correlators inside high energy jets at the LHC

Energy correlators inside high energy jets at the LHC

Energy correlators for jet substructure at LHC

Outline

- Massless Energy Correlators
- Massive Energy Correlators
- Higher Point Correlators

Energy Correlators at the LHC (Light quarks)

Energy Correlator as an observable

Energy weighted cross sections

$$\mathsf{EEC} = \sum_{i,j} d\sigma \frac{2E_i E_j}{Q^2 \sigma_{\mathsf{tot}}} \delta(\cos \theta_{ij} - \cos \chi)$$

Studied first in e^+e^- by [Basham, Brown, Ellis, Love]

Energy Correlator as an observable

$$\mathsf{EEC} = \sum_{i,j} d\sigma \frac{2E_i E_j}{Q^2 \sigma_{\mathsf{tot}}} \delta(\cos \theta_{ij} - \cos \chi)$$

- Generally one can study EEC for any angle χ
- Most interesting phenomenological case: $\chi \to 0$ and $\chi \to \pi$
- Here we study $\chi \to 0$ case.

Energy Correlators at the LHC

Factorization Formula

Two-point energy correlator The simplest jet substructure observable

- The complicated LHC environment is described by a simple observable
- Probe the OPE structure of $\langle \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2) \rangle$

 $\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\vec{n}_1)$

• A jet substructure observable that can test quantum scaling behavior of operators.

Experimental results

Talk by N.Sahoo and A.Tamis at HARD PROBES-March 2023

STAR collaboration $\sqrt{s} = 200 GeV$

• ALICE collaboration $\sqrt{s} = 5TeV$, 20GeV, 40GeV, 60GeV

Experimental results

²²

Beautiful and Charming Energy Correlators

Application on Heavy Jets

Introduce an additional scale

- At the LHC energies there is access to the transition phase from massless to massive behaviour ⇒ more complexity
- Also very interesting!
 - Can probe intrinsic mass effects of quarks before confinement into hadrons

Factorization theorem

Can compute any higher point correlators on massive quarks at LHC at NLL

Heavy quark jet function Result

$$J_Q^{EEC}(z, M, \mu) = \delta(z) \left(1 + \frac{\alpha_s C_F}{4\pi} \left[-\left(\gamma_{qq}^{(0)}(3) + \gamma_{gq}^{(0)}(3)\right) \left(\frac{1}{\epsilon_{\rm UV}} + \ln\frac{\mu^2}{M^2}\right) - \frac{19}{6} \right] \right)$$

 $+\frac{\alpha_s C_F}{\pi z} \frac{1}{z} \left[\frac{3}{4} - \frac{5}{2} \delta^2 - \frac{\delta^4}{1 + \delta^2} + 3\delta^3 \arctan\left(\frac{1}{\delta}\right) + \frac{1}{2} \delta^2 \left(1 - \delta^2\right) \ln \frac{\delta^2}{1 + \delta^2} \right]$

The mass should not affect the UV behavior of the jet function. This can be seen from comparing the UV poles with the light quark jet function.

$$J_{q}^{EEC} = \delta(z) + \frac{\alpha_{s}C_{F}}{4\pi} \left[\delta(z) \left(-\left(\gamma_{qq}^{(0)}(3) + \gamma_{gq}^{(0)}(3)\right) \frac{1}{\epsilon_{\rm UV}} - \frac{37}{3} \right) + 3\frac{Q^{2}}{\mu^{2}} \mathcal{L}_{0}\left(\frac{Q^{2}}{\mu^{2}}z\right) \right]$$

[Craft, Lee, BM, Moult]

Massive jets

Massive Energy Correlator Jet Function

Virtuality $\sim p_T R_L + m_O^2$

- **Formation time changes** \bullet with the mass of the quark.
- Can clearly see this from • the two-point EEC.

Massive two point correlator

First massive jet substructure observable at NLL

- Scaling behaviour identical to massless case for larger scales.
- A turn-over for $R_L \rightarrow m_Q/p_T$
- The change in the slope is perturbative effect contrary to massless jets: $R_L \rightarrow \Lambda_{QCD}/p_T$
- The turn-over region is of interest for improving heavy quark description in parton shower.

[Craft, Lee, BM, Moult]

Dead-cone effect in QCD

Fundamental phenomena

- Parton-shower pattern depends on the mass of the emitting parton.
- Angular suppression $\propto \frac{M}{E}$.

Observable used for the observation of the dead-cone effect in LHC data

$$R(\theta) = \frac{1}{N^{D^0 \text{ jets}}} \frac{\mathrm{d}n^{D^0 \text{ jets}}}{\mathrm{d}\ln(1/\theta)} \Big/ \frac{1}{N^{\text{inclusive jets}}} \frac{\mathrm{d}n^{\text{inclusive jets}}}{\mathrm{d}\ln(1/\theta)} \Big|_{k_{\mathrm{T}}, E_{\mathrm{Radiator}}}$$

Explore content V About the journal V Publish with us V

nature > articles > article

Article | Open access | Published: 18 May 2022

Direct observation of the dead-cone effect in quantum chromodynamics

ALICE Collaboration

Can we observe the dead-cone with EEC?

Intrinsic mass effects

[Craft, Lee, BM, Moult]

- Ratios of the massive and massless EEC isolate mass (IR) effects.
- A transition region related to the quark mass: perturbatively calculable.
- Excellent agreement with MC.
- Small angle suppression can be interpreted as a dead-cone effect.

Higher point correlators

The light-ray OPE

- The leading scaling behavior at the LHC is described by the leading terms in the OPE: **twist two light-ray operators**.
- Light-ray OPE is a rigorous and convergent expansion in CFT.

 $\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2) \mid \Psi \rangle = \sum c_i \theta^{\gamma_i} \mathcal{O}_i(\vec{n}_1)$

$$\left\langle \varepsilon\left(\vec{n}_{1}\right)\varepsilon\left(\vec{n}_{2}\right)\cdots\varepsilon\left(\vec{n}_{k}\right)\right\rangle =\frac{1}{R_{L}^{2}}\left\{f_{q}^{\left[k\right]}\left(u_{i},v_{i}\right)\mathbb{O}_{q}^{\left[k+1\right]}\left(\vec{n}_{1}\right)+f_{g}^{\left[k\right]}\left(u_{i},v_{i}\right)\mathbb{O}_{g}^{\left[k+1\right]}\left(\vec{n}_{1}\right)\right\}+\mathcal{O}\left(R_{L}^{0}\right)\right\}$$

$$u_{i} = \left(\frac{x_{i_{1}i_{2}}x_{i_{3}i_{3}}}{x_{i_{1}i_{3}}x_{i_{2}i_{4}}}\right)^{2} \qquad v_{i} = \left(\frac{x_{i_{1}i_{2}}x_{i_{3}i_{4}}}{x_{i_{1}i_{4}}x_{i_{2}i_{3}}}\right)^{2}$$

$$\overrightarrow{\mathbb{O}}^{[J]} = \left(\mathbb{O}_q^{[J]}, \mathbb{O}_g^{[J]}\right)^T = \lim_{r \to \infty} r^2 \int_0^\infty dt \overrightarrow{\mathcal{O}}^{[J]}(t, r\vec{n})$$

$$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} \left(i D^{+} \right)^{J-1} \psi,$$

$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} \left(iD^{+}\right)^{J-2} F_{a}^{\mu +}$$

Leading twist light-ray OPE Control scaling at leading power

- Twist-2 operators in QCD are characterized by a spin J and transverse spin j=0,2.
- They can be transformed to a twist-2 light-ray operator vector parametrized by J

$$\begin{split} & \mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} \left(i D^{+} \right)^{J-1} \psi, & \lim_{r \to \infty} r^{2} \int_{0}^{\infty} dt & \overrightarrow{O}_{q}^{[J]}(\vec{n}) = \begin{pmatrix} \mathcal{O}_{q}^{[J]}(\vec{n}) \\ \mathcal{O}_{g}^{[J]}(\vec{n}) \\ \mathcal{O}_{g}^{[J]}(\vec{n}) \\ \mathcal{O}_{g,+}^{[J]}(\vec{n}) \\ \mathcal{O}_{\bar{g},+}^{[J]}(\vec{n}) \\ \mathcal{O}_{\bar{g},-}^{[J]}(\vec{n}) \\ \mathcal{O}_{\bar{g},-}^{[J]}(\vec{n}) \\ \mathcal{O}_{\bar{g},-}^{[J]}(\vec{n}) \\ \mathcal{O}_{\bar{g},-}^{[J]}(\vec{n}) \\ \end{split}$$

Leading twist light-ray OPE Control scaling at leading power

- Twist-2 operators in QCD are characterized by a spin J and transverse spin j=0,2.
- They can be transformed to a twist-2 light-ray operator vector parametrized by J

$$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi,$$

$$\lim_{r \to \infty} r^{2} \int_{0}^{\infty} dt$$

$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\mu +}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$\mathcal{O}_{g,\lambda}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu +} (iD^{+})^{J-2} F_{a}^{\nu +} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

Unpolarized Scaling LHC scenario

- Probe the unpolarized spin j = 0 operators
- The leading scaling behavior is determined by the anomalous dimension $\gamma(N+1)$ for an operator of spin N+1.

 \rightarrow can isolate the anomalous dimensions!

The jet spectrum Higher-point correlators

- Asymptotic energy flux directly probes the spectrum of (twist-2) lightray operators at the quantum level
- Ratio of the higher-point correlators with the two-point isolates anomalous scaling!
- The anomalous scaling behavior depends on N (slope increases with N)
- First hand probe of the anomalous dimensions of QCD operators.

[Lee, BM, Moult]

[Chen, Moult, Zhang, Zhu]

The jet spectrum Higher-point correlators

- Non-perturbative effects cancel in the ratio
- A clean measurement of strong coupling

$$\theta^{\gamma} \to \exp(\frac{\hat{\gamma}}{2\beta_0} \ln \frac{\alpha_s(\theta Q)}{\alpha_s(Q)})$$

 Can be observed at the high energies at the LHC at high precision

[Lee, BM, Moult] [Chen, Moult, Zhang, Zhu]

Heavy Projected Energy Correlators

Resolve the UV scaling behaviour

- Ratios of higher point correlators with the two point EEC are independent of IR effects, including quark mass.
- The exact behavior as the massless case.
- Non-trivial cross check of the factorization theorem!
- Anomalous dimensions should not be affected by the IR physics.

[Craft, Lee, BM, Moult]

Jet substructure from first principles!

• Energy correlator is a jet substructure observable defined from first principles in QFT \Rightarrow No ambiguity between what is measured and the theory calculation.

- Formalism can be applied for any conserved charge for LHC processes.
- No jet grooming or pruning is needed to extract the final results, pure QFT calculation!
- Not sensitive to soft and wide angle radiations.

Applications of these results

- Precision measurements: α_s measurement
- Jet modeling in MC simulations: heavy flavours
- Precision in parton showers: "reference resummation" for testing DGLAP finite moments.
- Understand properties of the QGP: multi-scale problem too, global properties of plasma.

[Andres, Dominguez, Kunnawalkam Elayawalli, Holguin, Marquet, Moult,...]

Conclusions

• Factorization formula for calculating energy correlators for jet substructure at the LHC.

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}p_T \mathrm{d}\eta \mathrm{d}z} = \sum_i \mathscr{H}_i \left(p_T z, \eta, \mu \right) \otimes \int_0^1 dx \, x^N \mathscr{J}_{ij}(z, x, p_T R, \mu) \, J_j^{[N]}(z, x, \mu)$$

- Intrinsic mass effects of strongly interacting elementary particles.
- Higher-point correlators can be calculated for LHC and probe anomalous scaling dimension of QCD operators.

Thank You!