Lessons from Quantum Strings for Quantum Gravity

Yuri Makeenko (ITEP)

Based on:

- Y M. $arXiv:2407.01136$
- Y. M. Phys. Lett. B 845 (2023) 138170 [arXiv:2308.05030]
- Y. M. JHEP 09 (2023) 086 [arXiv:2307.06295]
- Y. M. JHEP 05 (2023) 085 [arXiv:2302.01954]
- Y. M. JHEP 01 (2023) 110 [arXiv:2212.02241]
- Y. M. IJMPA 38 (2023) 2350010 [arXiv:2204.10205]
- J. Ambjørn, Y. M. Phys. Lett. B 756 (2016) 142 [arXiv:1601.00540]
- J. Ambjørn, Y. M. Phys. Rev. D 93 (2016) 066007 [arXiv:1510.03390]

Talk at International Conference on QCD Vacuum Structure and Confinement, Naxos, August 26–30, 2024

Two no-go theorems for string existence

———————————–

inherited from 1980's

- Non-perturbative lattice regularization (by dynamical triangulation) scales to a continuum string for $d \leq 1$ but does not for $d > 1$ (same for hypercubic latticization of Nambu-Goto string in $d > 2$) Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)
- Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) string susceptibility index of (closed) Polyakov's string is not real for $1 < d < 25$

$$
\gamma_{str} = (1-h)\frac{d-25-\sqrt{(d-1)(d-25)}}{12}+2 \qquad \boxed{\text{genus } h}
$$

Two no-go theorems for string existence

———————————–

inherited from 1980's

- Non-perturbative lattice regularization (by dynamical triangulation) scales to a continuum string for $d \leq 1$ but does not for $d > 1$ (same for hypercubic latticization of Nambu-Goto string in $d > 2$) Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)
- Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) string susceptibility index of (closed) Polyakov's string is not real for $1 < d < 25$

$$
\gamma_{\text{str}} = (1-h)\frac{d-25-\sqrt{(d-1)(d-25)}}{12}+2 \qquad \boxed{\text{genus } h}
$$

The presented solutions rely on subtleties in Quantum Field Theory enjoying diffeomorphism invariance: Strings(!) and Gravity(?) \implies

1) Continuum limit is not as in Quantum Field Theory: Lilliputian 2) Nambu-Goto and Polyakov strings differ by higher-derivative terms $\sim \Lambda^{-2}$ in emergent action which revive quantumly

Content of the talk

———————————–

- Nambu-Goto versus Polyakov strings
- Mean-field ground state of regularized bosonic string
	- instability of the classical vacuum for $d > 2$
	- the Lilliputian scaling limit
- Generalized conformal anomaly
	- path-integrating over X^{μ} and ghosts
	- tracelessness of improved energy-momentum tensor
	- equivalence with four-derivative Liouville action
	- Salieri's check at one loop
- Exact solution and minimal models
	- singular products and universality of higher-derivative actions
	- BPZ null vectors and Kac's spectrum
	- Namb-Goto string in $d=4$ as $(4,3)$ minimal model

2. Mean-field vs. classical ground state of bosonic string

Nambu-Goto and Polyakov strings

———————————–

Nambu-Goto string (imaginary Lagrange multiplier λ^{ab}) independent metric tensor g_{ab}

$$
K_0 \int d^2 \omega \sqrt{\det \partial_a X \cdot \partial_b X} = K_0 \int d^2 \omega \sqrt{g} + \frac{K_0}{2} \int d^2 \omega \lambda^{ab} (\partial_a X \cdot \partial_b X - g_{ab})
$$

Ground state $\lambda^{ab} = \overline{\lambda} \sqrt{g} g^{ab}$ classically $\overline{\lambda} = 1 \implies$ Polyakov string

$$
S = \frac{K_0}{2} \int d^2 \omega \sqrt{g} g^{ab} \partial_a X \cdot \partial_b X
$$

Closed bosonic string winding once around compactified dimension of circumference β , propagating (Euclidean) time L with topology of cylinder or torus (bagel). No tachyon if β is large enough Gaussian path integral over X_q^{μ} by splitting $X^{\mu} = X_{\text{cl}}^{\mu} + X_q^{\mu}$: \implies Emergent (or effective)

$$
S[\varphi, \lambda^{ab}] = K_0 \int d^2 \omega \sqrt{g} + \frac{K_0}{2} \int d^2 \omega \lambda^{ab} (\partial_a X_{cl} \cdot \partial_b X_{cl} - g_{ab})
$$

$$
+ \frac{d}{2} \text{tr} \log \left(-\frac{1}{\sqrt{g}} \partial_a \lambda^{ab} \partial_b \right) + \text{ ghosts}
$$

2D determinants regularized by ultraviolet cutoff Λ

Minimum of effective action is reached at (quantum ground state)

$$
\bar{\lambda} = \frac{1}{2} \left(1 + \frac{\Lambda^2}{K_0} + \sqrt{\left(1 + \frac{\Lambda^2}{K_0} \right)^2 - \frac{2d\Lambda^2}{K_0}} \right)
$$
\n
$$
\hat{g}_{ab} = \bar{\rho} \hat{g}_{ab}, \qquad \bar{\rho} = \frac{\bar{\lambda}}{\sqrt{\left(1 + \frac{\Lambda^2}{K_0} \right)^2 - \frac{2d\Lambda^2}{K_0}}}
$$
\n
$$
S_{\text{mf}} = K_0 \bar{\lambda} L \sqrt{\beta^2 - \frac{\pi(d - 2)}{3K_0 \bar{\lambda}}} \qquad \text{(Alvarez-Arvis)}
$$

Variational mean field (like Peierls (1930s)) becomes exact at large d. Like $O(N)$ sigma-model at large N where Lagrange multiplier does not fluctuate (summing the bubble graphs).

Square root is well-defined for $d \geq 2$ if $K_0 >$ critical value = continuum

$$
K_* = \left(d - 1 + \sqrt{d^2 - 2d}\right)\Lambda^2 \implies \bar{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right) < 1
$$

Instability of classical ground state

———————————–

Energy of zero-point fluctuations (one-loop) Brink, Nielsen (1973)

$$
E_{1l} = \left[K_0 - \frac{(d-2)}{2}\Lambda^2\right]\beta - \frac{\pi(d-2)}{6\beta}
$$

bulk term Casimir energy

is usually made finite by introducing the renormalized string tension

$$
K_R = K_0 - \frac{(d-2)}{2} \Lambda^2
$$

It is assumed to works order by order about the classical ground state.

However this does not work for the mean-field energy

$$
E_{\rm mf} = K_0 \overline{\lambda} \sqrt{\beta^2 - \frac{\pi (d - 2)}{3 K_0 \overline{\lambda}}}
$$

which never vanishes with changing K_0 (except for $\beta = \beta_{\text{min}}$). Thus the one-loop correction simply lowers for $d > 2$ the energy of the classical ground state which may indicate its instability.

Who's right me or textbooks?

Instability of classical ground state (cont.)

Adding a source term like in QFT

———————————–

$$
S_{\rm src} = \frac{K_0}{2} \int d^2 \omega \, j^{ab} g_{ab}
$$

defining the field

 $\Gamma(\bar{\rho}) = \Big(1 +$

$$
\rho_{ab}(j)=-\frac{2}{K_0}\frac{\delta}{\delta j^{ab}}\log Z
$$

Minimizing for constant $j^{ab} = j\delta^{ab}$ we find Ambjørn, Y.M. (2017) "Effective potential" given by the Legendre transformation

$$
\Gamma(\bar{\rho}) = -\frac{1}{K_0 L \beta} \log Z - j(\bar{\rho}) \bar{\rho}
$$

 $\bar{\rho}$ – $\sqrt{\frac{2dA^2}{K}}$

 K_0

In the mean-field approximation

 Λ^2

 \setminus

 K_0

Classical vacuum $\bar{\rho} = 1$ is unstable and stable minimum occurs at $\bar{\rho}(0) = \bar{\rho}_{\text{m.f.}}$ if $K_0 > K_*$ (same value as before)

 $\bar\rho(\bar\rho-1)$

3. Two scaling regimes: Gulliver's vs. Lilliputian

Particle-like scaling limit (Gulliver's)

The ground state energy (Alvarez-Arvis)

———————————–

$$
E_0(\beta) = K_0 \overline{\lambda} \sqrt{\beta^2 - \frac{\pi(d-2)}{3K_0 \overline{\lambda}}}
$$

does not scale because $K_0 > K_* \sim \Lambda^2$ for $\bar{\lambda}$ to be real ($>\bar{\lambda}_*$). Choosing

$$
\beta^2 = \beta_{\min}^2 \approx \frac{\pi(d-2)}{3K_*\bar{\lambda}_*}, \qquad \bar{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right)
$$

only $E_0(\beta_{\text{min}})$ can scale to finite – particle-like continuum limit similar to lattice regularizations, where

only the lowest mass scales to finite, excitations scale to infinity Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

Particle-like scaling limit (Gulliver's)

The ground state energy (Alvarez-Arvis)

———————————–

$$
E_N(\beta) = K_0 \overline{\lambda} \sqrt{\beta^2 + \frac{1}{K_0 \overline{\lambda}} \left(-\frac{\pi(d-2)}{3} + 8N \right)}
$$

does not scale because $K_0 > K_* \sim \Lambda^2$ for $\bar{\lambda}$ to be real ($>\bar{\lambda}_*$). Choosing

$$
\beta^2 = \beta_{\min}^2 \approx \frac{\pi(d-2)}{3K_*\bar{\lambda}_*}, \qquad \bar{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right)
$$

only $E_0(\beta_{\text{min}})$ can scale to finite – particle-like continuum limit similar to lattice regularizations, where

only the lowest mass scales to finite, excitations scale to infinity Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

Lilliputian string-like scaling limit

Renormalized units of length \implies finite effective action $L_R =$ $\sqrt{K_R}$ K_* $L, \beta_R =$ $\sqrt{K_R}$ K_{*} β, $S_{\text{mf}} = K_R L_{R} \sqrt{\beta}$ $R^2 \pi(d-2)$ $3K_R$

Renormalized string tension K_R scales to finite if

$$
K_0 \to K_* + \frac{K_R^2}{K_*}, \qquad K_* = \left(d - 1 + \sqrt{d^2 - 2d}\right) \Lambda^2
$$

reproducing the Alvarez-Arvis spectrum of continuum string

The average area is also finite

———————————–

$$
\langle Area \rangle = L_R \frac{\left(\beta_R^2 - \frac{\pi(d-2)}{6K_R}\right)}{\sqrt{\beta_R^2 - \frac{\pi(d-2)}{3K_R}}}
$$

 \Rightarrow minimal area for large β_R and diverges if $\beta_R^2 \rightarrow \pi(d-2)/3K_R$

The Lilliputian world

———————————–

Like for the zeta-function regularization except for nonlinearities, but

$$
\mathsf{length} \propto \frac{\sqrt{K_R}}{\Lambda} \mathsf{length}_R
$$

in target space is of order of the cutoff $(\implies$ Lilliputian)

Nevertheless, the cutoff at the worldsheet is much smaller $\Delta\omega = 1/(\Lambda\sqrt[4]{g})$ and fixes maximal number of modes

 $n_{\sf max} \sim \mathsf{\Lambda}\sqrt[4]{g}$ length $\propto \mathsf{\Lambda}$ length $_{\sf R}$

is very large like in semiclassical expansion by Brink-Nielsen (1973)

- Continuum because infinitely smaller distances can be probed (classical music can be played on the Lilliputian strings)
- Gulliver's tools are too coarse to resolve the Lilliputian world (this is why lattice string regularizations of 1980's never reproduce canonical quantization)

4. Fluctuations about mean field

Generalized conformal anomaly

———————————–

Path-integrating over X^{μ} (and the usual ghosts) in units $K_0 = 1$ $S[g_{ab}, \lambda^{ab}] = \int \sqrt{g} -$ 1 2 Z $\lambda^{ab}g_{ab} + S_X[g_{ab}, \lambda^{ab}],$ d \int 12√g 1 1 $\overline{1}$

$$
S_X = \frac{d}{96\pi} \int \left[-\frac{12\sqrt{g}}{\tau \sqrt{\det \lambda^{ab}}} + \sqrt{g} R \frac{1}{\Delta} R - (\beta \lambda^{ab} g_{ab} R + 2\lambda^{ab} \nabla_a \partial_b \frac{1}{\Delta} R) \right]
$$

higher orders in Schwinger's proper-time ultraviolet cutoff τ dropped. $\beta = 1$ for the Nambu-Goto string but kept arbitrary for generality

The action is derived from the DeWitt-Seeley expansion of

$$
\mathcal{O} = (\sqrt{g})^{-1} \partial_a \lambda^{ab} \partial_b = h^{ab} \partial_a \partial_b + A^a \partial_a
$$

$$
\langle |e^{\tau O}| \rangle = \frac{1}{4\pi\tau} + \frac{1}{4\pi} \left(\frac{1}{6}R + E\right) + \mathcal{O}(\tau)
$$

$$
E = -\frac{1}{2} \left(\partial_a A^a - \partial_a \partial_b h^{ab} + \frac{1}{2} g_{ab} \Delta h^{ab}\right) \quad \text{[inertial frame]}
$$

O becomes the Laplacian for $\lambda^{ab} = \overline{\lambda} \sqrt{g} g^{ab}$ with constant $\overline{\lambda}$. Alternatively, it was derived as Coleman-Weinberg's effective action for covariant Pauli-Villars' regularization

Coleman-Weinberg potential

———————————–

Integrating out X^{μ}_{q} we get (a part of) the effective action

$$
\frac{d}{2} \text{tr} \ln \left[-\frac{1}{\rho} \partial_a \lambda^{ab} \partial_b \right]_{\text{reg}} = \sum_n \frac{1}{n} \sum_i \left\{ \sum_i \right\}.
$$

wavy lines correspond to fluctuations $\delta \lambda^{ab}$ or $\delta \rho$ about ground state.

Covariant Pauli-Villars regulator Y (preserves conformal invariance)

$$
S[Y] = \frac{K_0}{2} \int \left(\lambda^{ab} \partial_a Y \cdot \partial_b Y + \boxed{M^2 \sqrt{g}} Y^2 \right)
$$

Actually two anticommuting Grassmann Y and \bar{Y} of mass squared M^2 and one Z of mass squared $2M^2$ with normal statistics:

$$
\mathrm{tr} \log O |_{\text{reg}} = - \int_0^\infty \frac{\mathrm{d} \tau}{\tau} \mathrm{tr} \, \mathrm{e}^{\tau O} \left(1 - \mathrm{e}^{-\tau M^2} \right)^2, \quad \left\langle |\, \mathrm{e}^{\tau O} | \right\rangle = \frac{1}{4\pi \tau} + \ldots
$$

Advantages over the proper-time regularization:

Feynman's diagrams apply for Pauli-Villars regularization Gel'fand-Yaglom technique to compare with DeWitt-Seeley expansion

Conformal gauge and flat background

———————————–

Emergent action becomes local in conformal gauge

$$
g_{ab} = \hat{g}_{ab} e^{\varphi}
$$

where \hat{g}_{ab} is background (or fiducial) metric tensor. Usual ghosts and their usual contribution to effective action

Euclidean CFT: conformal coordinates z and \bar{z} in flat background $g_{zz} = g_{\overline{z}\overline{z}} = 0, \ g_{z\overline{z}} = g_{\overline{z}z} = 1/2$ (units $K_0 = 1$) $\mathcal{S}[\varphi, \lambda^{ab}] = \int e^{\varphi}(1 - \lambda^{z\bar{z}}) + \frac{1}{24}$ 24π Z $[-]$ $3d e^{\varphi}$ $\tau \sqrt{\mathsf{det}\, \lambda^{ab}}$ $+$ $(d - 26)\varphi\partial\bar{\partial}\varphi$ $+ d\kappa (2(1+\beta)\lambda^{z\bar{z}}\partial\bar{\partial}\varphi + \lambda^{zz}\nabla\partial\varphi + \lambda^{\bar{z}\bar{z}}\bar{\nabla}\bar{\partial}\varphi)]$

 $\nabla = \partial - \partial \varphi$ is covariant derivative in conformal gauge so it describes a theory with interaction (no such interaction if only $\lambda^{z\bar{z}}=\lambda^{ab} \widehat{g}_{ab})$

Subtleties because of nonminimal interaction with background gravity

$$
\sqrt{g}R = \sqrt{\hat{g}}\left(\hat{R} - \hat{\Delta}\varphi\right)
$$

It vanishes only if the background curvature \hat{R} vanishes

Improved energy-momentum tensor

———————————– Callan-Coleman-Jackiw (1970) Symmetric minimal energy-momentum tensor (by applying $\delta/\delta\widehat{g}^{ab})$

$$
T_{zz}^{(\min)} = \frac{(d-26)}{24}(\partial\varphi)^2 + \frac{d\kappa}{24}[2(1+\beta)\partial\lambda^{z\bar{z}}\partial\varphi
$$

+ $\bar{\partial}\lambda^{\bar{z}\bar{z}}\partial\varphi - \partial\lambda^{\bar{z}\bar{z}}\bar{\partial}\varphi - 2\lambda^{\bar{z}\bar{z}}\partial\bar{\partial}\varphi + 2\lambda^{\bar{z}\bar{z}}\partial\varphi\bar{\partial}\varphi]$

$$
T_{z\bar{z}}^{(\min)} = e^{\varphi}(1-\lambda^{z\bar{z}}) - \frac{d e^{\varphi}}{2\tau\sqrt{\det\lambda^{**}}} + \frac{d\kappa}{24}[\bar{\partial}\lambda^{\bar{z}\bar{z}}\bar{\partial}\varphi
$$

+ $\lambda^{\bar{z}\bar{z}}\bar{\partial}^2\varphi + \partial\lambda^{zz}\partial\varphi + \lambda^{zz}\partial^2\varphi]$
= (min) (min)

is conserved obeying $\bar{\partial} T^{(\text{min})}_{zz} + \partial T^{(\text{min})}_{\bar{z}z} = 0$ but not traceless

IEMT is given by the sum $T_{ab} = T_{ab}^{\text{(min)}} + T_{ab}^{\text{(add)}}$ ab

$$
T_{zz}^{\text{(add)}} = -\frac{(d-26)}{12} \partial^2 \varphi - \frac{d\kappa}{24} \left[2(1+\beta)\partial^2 \lambda^{z\bar{z}} + \partial \bar{\partial} \lambda^{\bar{z}\bar{z}} + \partial (\lambda^{\bar{z}\bar{z}} \bar{\partial} \varphi) \right] - \frac{d\kappa}{24} \left[\frac{1}{\bar{\partial}} \left(\partial^3 \lambda^{zz} + \partial^2 (\lambda^{zz} \partial \varphi) \right) \right] \qquad \text{nonlocal term!}
$$

as a price for $\overline{\partial} T_{zz} = 0$ and $T_{z\overline{z}} = 0$. Non-local term gives classically an addition to Virasoro algebra

$$
\delta_{\xi}T_{zz} = \xi''' \frac{1}{2b^2} + 2\xi'T_{zz} + \xi \partial T_{zz} - \xi'' \frac{1}{\overline{\partial}} \partial \nabla \lambda^{zz}
$$

Improved energy-momentum tensor (cont.)

———————————–

Conservation and tracelessness of classical IEMT follows from

$$
\frac{1}{\pi}\overline{\partial}T_{zz} = \partial\varphi \frac{\delta S}{\delta\varphi} - \partial\frac{\delta S}{\delta\varphi} - \lambda^{\overline{z}\overline{z}}\partial\frac{\delta S}{\delta\lambda^{\overline{z}\overline{z}}} + \partial\lambda^{z\overline{z}}\frac{\delta S}{\delta\lambda^{z\overline{z}}} \n+ \partial(\lambda^{zz}\frac{\delta S}{\delta\lambda^{zz}}) + \partial\lambda^{zz}\frac{\delta S}{\delta\lambda^{zz}}
$$

General property of improved energy-momentum tensor:

$$
T_a^a \equiv \hat{g}^{ab} \frac{\delta \mathcal{S}}{\delta \hat{g}^{ab}} = -\frac{\delta \mathcal{S}}{\delta \varphi}
$$

i.e. trace of IEMT = the classical equation of motion for φ . In quantum theory variations of S replaced by variational derivatives. For generator of conformal transformation $\delta z = \xi(z)$ this yields^{*}

$$
\hat{\delta}_{\xi} = \frac{1}{\pi} \int \xi \bar{\partial} T_{zz} = \int \left[(\xi' + \xi \partial \varphi) \frac{\delta}{\delta \varphi} + (\xi' \lambda^{\overline{z} \overline{z}} + \xi \partial \lambda^{\overline{z} \overline{z}}) \frac{\delta}{\delta \lambda^{\overline{z} \overline{z}}} + \xi \partial \lambda^{\overline{z} \overline{z}} + \xi \partial \lambda^{z} \frac{\delta}{\delta \lambda^{zz}} \right]
$$

Classically it produces the right transformation laws of φ and λ^{ab} with components $\lambda^{\bar z \bar z}$, $\lambda^{z \bar z}$, $\lambda^{z z}$ of conformal weights 1, 0, -1 , respectively *Note $\delta_{\xi}\lambda^{ab}=-(\partial_c\xi^a)\lambda^{bc}-(\partial_c\xi^b)\lambda^{ac}+(\partial_c\xi^c)\lambda^{ab}+\xi^c\partial_c\lambda^{ab}$ under diffeomorphisms

Improved energy-momentum tensor (cont. 2)

———————————–

Conservation and tracelessness of classical IEMT follows from

$$
\frac{1}{\pi}\overline{\partial}T_{zz} = \partial\varphi \frac{\delta S}{\delta\varphi} - \partial\frac{\delta S}{\delta\varphi} - \lambda^{\overline{z}\overline{z}}\partial \frac{\delta S}{\delta\lambda^{\overline{z}\overline{z}}} + \partial\lambda^{z\overline{z}}\frac{\delta S}{\delta\lambda^{z\overline{z}}} \n+ \partial(\lambda^{zz}\frac{\delta S}{\delta\lambda^{zz}}) + \partial\lambda^{zz}\frac{\delta S}{\delta\lambda^{zz}}
$$

General property of improved energy-momentum tensor:

$$
T_a^a \equiv \hat{g}^{ab} \frac{\delta \mathcal{S}}{\delta \hat{g}^{ab}} = -\frac{\delta \mathcal{S}}{\delta \varphi} \stackrel{\text{W.S.}}{=} \frac{\delta}{\delta \varphi}
$$

i.e. trace of IEMT = the classical equation of motion for φ . In quantum theory variations of S replaced by variational derivatives. For generator of conformal transformation $\delta z = \xi(z)$ this yields^{*}

$$
\hat{\delta}_{\xi} = \frac{1}{\pi} \int \xi \bar{\partial} T_{zz} = \int \left[(\xi' + \xi \partial \varphi) \frac{\delta}{\delta \varphi} + (\xi' \lambda^{\overline{z} \overline{z}} + \xi \partial \lambda^{\overline{z} \overline{z}}) \frac{\delta}{\delta \lambda^{\overline{z} \overline{z}}} + \xi \partial \lambda^{\overline{z} \overline{z}} + \xi \partial \lambda^{z} \frac{\delta}{\delta \lambda^{zz}} \right]
$$

Classically it produces the right transformation laws of φ and λ^{ab} with components $\lambda^{\bar z \bar z}$, $\lambda^{z \bar z}$, $\lambda^{z z}$ of conformal weights 1, 0, -1 , respectively *Note $\delta_{\xi}\lambda^{ab}=-(\partial_c\xi^a)\lambda^{bc}-(\partial_c\xi^b)\lambda^{ac}+(\partial_c\xi^c)\lambda^{ab}+\xi^c\partial_c\lambda^{ab}$ under diffeomorphisms

Equivalence with four-derivative Liouville action

Path integral over $\delta \lambda^{ab}$ has a saddle point justified by small τ at

$$
\delta \lambda^{ab} = \sqrt{g} \tau \left(g^{ac} g^{bd} \nabla_c \partial_d \varphi + \frac{(\beta - 1)}{4} g^{ab} \Delta \varphi \right) \frac{\kappa}{3} + \mathcal{O}(\tau^2)
$$

Thus we arrive at four-derivative Liouville action

$$
S[\varphi] = \frac{1}{16\pi b_0^2} \int \sqrt{\hat{g}} [\hat{g}^{ab} \partial_a \varphi \partial_b \varphi + \varepsilon e^{-\varphi} \hat{\Delta} \varphi \left(\hat{\Delta} \varphi - G \hat{g}^{ab} \partial_a \varphi \partial_b \varphi \right)]
$$

with $G = -1/3$ for the Nambu-Goto string

———————————–

$$
b_0^2 = \frac{6}{26 - d}, \quad G = -\frac{1}{1 + (1 + \beta)^2/2}, \quad \varepsilon = -\frac{2d\kappa^2\bar{\lambda}^3}{3G(26 - d)}\tau
$$

which was exactly solved previously Y.M. (2023)

Classically higher-derivative terms vanish for smooth $\epsilon R \ll 1$. Quantumly quartic derivative provides UV cutoff but also interaction with coupling $\varepsilon \Rightarrow$ uncertainties $\varepsilon \times \varepsilon^{-1}$ which revive \Longrightarrow anomalies. Yet higher terms which are primary scalars like R^n do not change – universality. $g^{ab} \, \partial_a \varphi \partial_b \varphi$ is not primary

Smallness of ε is compensated by change of the metric (shift of φ)

5. CFT á la KPZ-DDK

Review of KPZ-DDK

Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) Liouville action in fiducial (or background) metric \hat{g}_{ab}

$$
S_L = \frac{1}{8\pi b^2} \int \sqrt{\hat{g}} \left(\frac{1}{2} \hat{g}^{ab} \partial_a \varphi \partial_b \varphi + q \hat{R} \varphi \right) + \mu^2 \int \sqrt{\hat{g}} \,\mathrm{e}^{\varphi}
$$

with "renormalized" parameters of effective action

$$
b2 = b02 + \mathcal{O}(b04), \quad q = 1 + \mathcal{O}(b02), \quad b02 = \frac{6}{26 - d}
$$

Energy-momentum pseudotensor

$$
T_{zz}^{(\varphi)} = -\frac{1}{4b^2} \left(\partial_z \varphi \partial_z \varphi - 2q \partial_z^2 \varphi \right) \qquad \sqrt{g}R = \sqrt{\hat{g}} \left(q\hat{R} - \hat{\Delta}\varphi \right)
$$

Background independence:

Xrannano

$$
\mathbf{x}_{\text{max}}^{\text{max}}
$$

total central charge

conformal weight

$$
c = d - 26 + 6\frac{q^2}{b^2} + 1 = 0
$$

$$
\Delta(e^{\varphi}) = q - b^2 = 1
$$

+

$$
\implies \qquad b = \sqrt{\frac{25 - d}{24}} - \sqrt{\frac{1 - d}{24}}, \qquad q = 1 + b^2
$$

KPZ-DDK for the four-derivative Liouville action

One-loop operator products $T_{zz}(z) e^{\varphi(0)}$ and $T_{zz}(z)T_{zz}(0)$

———————————–

Conformal weight of $e^{\varphi(0)}$: $1 = q - b^2$. In central charge of φ nonlocal term revives: $c^{(\varphi)} = \frac{6q^2}{b^2}$ $\frac{6q^2}{b^2} + 1 + 6G$

6. Algebraic check of DDK

Salieri:

"I checked the harmony with algebra. Then finally proficient in the science, I risked the rare delights of creativity."

A. Pushkin, Mozart and Salieri

One-loop propagator

One-loop renormalization of b^2 where $A(\varepsilon M^2) \sim \varepsilon M^2 =$ tadpole d) 1 $\overline{b^2}$ = 1 b_0^2 $\overline{0}$ − $\sqrt{1}$ 6 $-4 + A + 2G$ Z $dk^2 \frac{\varepsilon}{\sqrt{1-\varepsilon}}$ $(1 + \varepsilon k^2)$ − 1 2 $G A$ \setminus $+ O(b_0^2)$ $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

One-loop renormalization of T_{zz}

or multiplying by b^{2}

$$
\frac{q^2}{b^2} = \left(\frac{q}{b^2}\right)^2 \times b^2 = \frac{1}{b_0^2} - \frac{1}{6} - G + \mathcal{O}(b_0^2)
$$

This precisely confirms the above shift of the central charge by $6G$ obtained by conformal field theory technique of DDK.

Tremendous cancellation due to diffeomorphism invariance proving (intelligent) one loop to be exact: (like Duistermaat-Heckman?)

$$
-\frac{6}{b_0^2} + \frac{6q^2}{b^2} + 1 + 6Gq = 0, \qquad 1 = q - b^2
$$

7. Method of singular products as pragmatic mixture of CFT and QFT

Conformal transformation revisited

———————————–

Generator of conformal transformation for nonquadratic e-m tensor

$$
\hat{\delta}_{\xi} \equiv \int_{D_1} \left(\xi' \frac{\delta}{\delta \varphi} + \xi \partial \varphi \frac{\delta}{\delta \varphi} \right) \stackrel{\text{W.S.}}{=} \int_{C_1} \frac{dz}{2\pi i} \xi(z) T_{zz}(z)
$$

where D_1 includes singularities of $\xi(z)$ and C_1 bounds D_1 .

Equivalence of two forms is proved by integrating the total derivative

$$
\bar{\partial}T_{zz} = -\pi \partial \frac{\delta S}{\delta \varphi} + \pi \partial \varphi \frac{\delta S}{\delta \varphi}
$$

and using the (quantum) equation of motion

$$
\frac{\delta S}{\delta \varphi} \stackrel{\text{W.S.}}{=} \frac{\delta}{\delta \varphi}
$$

Actually, the form of $\widehat{\delta}_{\xi}$ in the middle is primary.

It takes into account a tremendous cancellation of the diagrams, while there are subtleties associated with singular products

Conformal transformation revisited (cont.)

After averaging over Pauli-Villars' regulators

———————————–

$$
\left\langle \delta_{\xi} X(\omega_i) \right\rangle = \left\langle \int_{D_1} d^2 z \left(q \xi'(z) \frac{\delta}{\delta \varphi(z)} + \xi(z) \partial \varphi(z) \frac{\delta}{\delta \varphi(z)} \right) X(\omega_i) \right\rangle
$$

It is easy to reproduce $\delta_\xi\, {\rm e}^{\alpha\varphi(\omega)}$ via the singular products

$$
\begin{array}{rcl}\n\delta_{\xi} e^{\alpha \varphi(\omega)} & = & q\alpha \xi'(\omega) e^{\alpha \varphi(\omega)} + \int_{D_1} d^2 z \, \alpha \xi(z) \partial \varphi(z) e^{\alpha \varphi(\omega)} \delta^{(2)}(z - \omega) \\
& \stackrel{\text{W.S.}}{=} & q\alpha \xi'(\omega) e^{\alpha \varphi(\omega)} + \int_{D_1} d^2 z \, \alpha \xi(z) \langle \partial \varphi(z) e^{\alpha \varphi(\omega)} \rangle \delta^{(2)}(z - \omega) \\
& & + \alpha \xi(\omega) \partial \varphi(\omega) e^{\alpha \varphi(\omega)} \\
& = & (q\alpha - b^2 \alpha^2) \xi'(\omega) e^{\alpha \varphi(\omega)} + \xi(\omega) \partial e^{\alpha \varphi(\omega)}\n\end{array}
$$

 $-b²a²$ comes from the singular product

$$
\int_{D_1} d^2 z \, \xi(z) \langle \partial \varphi(z) \varphi(\omega) \rangle \delta^{(2)}(z - \omega) = -b^2 \xi'(\omega)
$$

The formula for $\delta_\xi\, {\rm e}^{\alpha\varphi(\omega)}$ is EXACT for normal-ordered $\, {\rm e}^{\alpha\varphi(\omega)} \Longrightarrow$ the first DDK equation does not change

$$
1 = q\alpha - b^2\alpha^2
$$

List of singular products

———————————–

The simplest singular product

$$
\frac{1}{b^2} \int d^2 z \, \xi(z) \, \langle \partial^n \varphi(z) \varphi(0) \rangle \, \delta^{(2)}(z) = (-1)^n \frac{2}{n(n+1)} \partial^n \xi(0)
$$

arises already in a free CFT by the formulas

$$
\delta^{(2)}(z) = \overline{\partial} \frac{1}{\pi z}, \qquad \frac{1}{z^n} \overline{\partial} \frac{1}{z} = (-1)^n \frac{1}{(n+1)!} \partial^n \overline{\partial} \frac{1}{z}
$$

It can be alternatively derived introducing the regularization by ε

$$
G_{\varepsilon}(k) = \frac{1}{k^2(1 + \varepsilon k^2)}, \qquad \delta_{\varepsilon}^{(2)}(k) = \frac{1}{(1 + \varepsilon k^2)}
$$

We then have

$$
8\pi \int d^2z \, \xi(z) \partial^n G_{\varepsilon}(z) \delta_{\varepsilon}^{(2)}(z) = (-1)^n \frac{2}{n(n+1)} \partial^n \xi(0)
$$

$$
8\pi \int d^2z \, \xi(z) \left[-4\varepsilon \partial^{n+1} \bar{\partial} G_{\varepsilon}(z) \right] \delta_{\varepsilon}^{(2)}(z) = (-1)^n \frac{2}{(n+1)} \partial^n \xi(0)
$$

Computation of the central charge

———————————– Y.M. (2023)

Central charge $c^{(\varphi)}$ of φ can be computed for normal-ordered T_{zz} as

$$
\left\langle \widehat{\delta}_{\xi} T_{zz}(\omega) \right\rangle = \frac{c^{(\varphi)}}{12} \xi'''(\omega)
$$

For quadratic part of T_{zz}

$$
\langle \hat{\delta}_{\xi} T_{zz}^{(2)}(\omega) \rangle = \frac{1}{2b^2} \int d^2 z \langle q^2 \xi'''(z) + \xi'(z) \partial^2 \varphi(z) \varphi(\omega) + \xi(z) \partial^3 \varphi(z) \varphi(\omega) \rangle
$$

$$
\times \delta^{(2)}(z - \omega) = \frac{\xi'''(\omega)}{2} \left(\frac{q^2}{b^2} + \frac{1}{3} - \frac{1}{6} \right) = \xi'''(\omega) \left(\frac{q^2}{2b^2} + \frac{1}{12} \right)
$$

Here $1/12$ gives the usual quantum addition 1 to the central charge. DDK formula for the central charge is reproduced for quadratic action. Propagator is exact \implies this is why b^2 cancels

Computation of the central charge (cont.)

———————————–

Computation for quartic part is lengthy but doable with Mathematica $\sqrt{\widehat{\delta}_\xi T_{zz}^{(\mathbf{4})}(\omega)}$ \setminus $G=0$ = 1 b^2 Z ${\rm d}^2z \left\langle [2q\alpha \varepsilon \xi^{\prime\prime\prime}(z) \partial \bar\partial \varphi(z) + (4q\alpha-2) \varepsilon \xi^{\prime\prime}(z) \partial^2 \bar\partial \varphi(z) \right\rangle$ $-6\varepsilon \xi'(z)\partial^3\bar\partial\varphi(z)-4\varepsilon \xi(z)\partial^4\bar\partial\varphi(z)]\varphi(\omega)\big\rangle\,\delta$ $\epsilon^{(2)}(z-\omega)$ = $\xi'''(\omega)$ 4 $\sqrt{ }$ $-2 \cdot 2q\alpha + (4q\alpha - 2) \cdot 1 + 6$ 2 3 -4 1 2 \setminus $= 0$

Central charge of φ equals 1 at $G = 0$ as for quadratic action. Computations is similar to one loop but higher loops are taken into account by b^2 , q and $\alpha \implies$ why I call it "intelligent" one (ione) loop

Contribution from the G-term comes solely from the nonlocal part

$$
\left\langle \hat{\delta}_{\xi} T_{zz}^{(4)}(\omega) \right\rangle_G = -\frac{2}{b^2} G q \varepsilon \int d^2 z \left\langle \left[\xi'''(z) \partial \overline{\partial} \varphi(z) + \xi''(z) \partial^2 \overline{\partial} \varphi(z) \right] \varphi(\omega) \right\rangle
$$

$$
\times \delta_{\varepsilon}^{(2)}(z - \omega) = \frac{1}{2} G q \xi'''(\omega)
$$

The vanishing of total central charge results in the modified second DDK equation

$$
\frac{6q^2}{b^2} + 1 + 6Gq = \frac{6}{b_0^2}
$$

8. Relation to minimal models

Exact solution for four-derivative action

Solution to two modified DDK equations

$$
b2 = \frac{13 - d - 6G - \sqrt{(d - d_{+})(d - d_{-})}}{12(1 + G)}
$$

\n
$$
q = 1 + b2
$$

\n
$$
d_{\pm} = 13 - 6G \pm 12\sqrt{1 + G}
$$

where $d=26-6/b_0^2$ to comply with the Liouville action. The KPZ barriers of the Liouville theory are shifted to d_{\pm}

The string susceptibility equals

———————————–

$$
\gamma_{\text{str}} = (h-1)\frac{q}{b^2} + 2 = (h-1)\frac{25 - d - 6G + \sqrt{(d-d_+)(d-d_-)}}{12} + 2
$$

it is real for $d < d$ with $d > 1$ increasing from 1 at $C = 0$ to

It is real for $d < d_-\omega$ with $d_-\omega$ 1 increasing from 1 at $G = 0$ to 19 at $G = -1$ for $-1 \le G \le 0$ required for stability as it follows from the identity (modulo boundary terms)

$$
\int e^{-\varphi} \left[(\partial \bar{\partial} \varphi)^2 - G \partial \varphi \bar{\partial} \varphi \partial \bar{\partial} \varphi \right] = \int e^{-\varphi} \left[(1+G)(\partial \bar{\partial} \varphi)^2 - G \nabla \partial \varphi \bar{\nabla} \bar{\partial} \varphi \right]
$$

BPZ null-vectors and Kac's spectrum

———————————–

Representations of Virasoro algebra are unitary for central charge

$$
c = 1 - 6\frac{(p-q)^2}{pq}
$$

with $q = p + 1$, $p \ge 2$. Like in usual Liouville theory the operators

$$
V_{\alpha} = e^{\alpha \varphi}, \qquad \alpha = \frac{1 - n}{2} + \frac{1 - m}{2b^2}
$$

are the BPZ null-vectors for integer n and m obeying

$$
(L_{-1}^{2} + b^{2}L_{-2}) e^{-\varphi/2} = 0, \quad (L_{-1}^{2} + b^{-2}L_{-2}) e^{-b^{-2}\varphi/2} = 0, \quad \dots
$$

Their conformal weights

$$
\Delta_{\alpha} = \alpha + (\alpha - \alpha^2)b^2
$$

coincide with Kac's spectrum of the minimal models

$$
\Delta_{m,n}(c) = \frac{c-1}{24} + \frac{1}{4} \left((m+n) \sqrt{\frac{1-c}{24}} + (m-n) \sqrt{\frac{25-c}{24}} \right)^2
$$

$$
c = 26 - d + G \frac{\left[25 - d - 6G + \sqrt{(d - d_+)(d - d_-)}\right]}{2(1 + G)} = 1 + 6(b + b^{-1})^2
$$

Minimal models from four-derivative action

To describe minimal models we choose like in usual Liouville theory

$$
c = 25 + 6 \frac{(p-q)^2}{pq} \implies G = \frac{(1-d - 6\frac{(p-q)^2}{pq})q}{6(q+p)}
$$

with coprime $q > p$

If $G = 0$ this would imply

———————————–

$$
d=1-6\frac{(p-q)^2}{pq}
$$

for central charge of matter but now d is a free parameter obeying

$$
1-6\frac{(p-q)^2}{pq}\leq d\leq 19-6\frac{p}{q}\quad \Longleftarrow\quad 0\geq G\geq -1
$$

Contrary to the Liouville theory now Kac's $c \neq c^{(\varphi)} = 26 - d$

The KPZ barriers shifted to d_{\pm} which depend on $G \in [-1,0].$ For $G = -1/3$ (the Nambu-Goto string) $\Longrightarrow d_- = 15-4\sqrt{6} \approx 5.2 > 4$ √

Minimal models from four-derivative action (cont.)

From the above formula for b^2

———————————–

 $b^{-2} =$ \int \int $\overline{\mathcal{L}}$ \overline{q} \overline{p} perturbative branch $-1 +$ $(25 - d)p$ $6(q + p)$ the other branch for $d > 25 - 6$ $(p+q)^2$ p^2

Perturbative branch is as in the usual Liouville theory, but the second branch is no longer $p \leftrightarrow q$ with it. It is $b^{-2} = p/q$ for $d = 1 - 6 \frac{(p-q)^2}{nq}$ \overline{pq}

There are no obstacles against $d = 4$ for $q = p + 1$ (unitary case)!

$$
d_{+} = d_{-} = 19
$$
 for $d = d_{c} = 13 - \frac{6}{p}$

For $1 \leq d \leq d_{\mathsf{C}}$ (d_{C} is always >10) we have $d \leq d_{\mathsf{C}}$ and γ_{str} is REAL. Remarkably, $G = -1/3$ is associated in $d = 4$ with $p = 3$, $q = p + 1 = 4$ unitary minimal model like critical Ising model on a random lattice

The perturbative branch is as in the usual Liouville theory but the domain of applicability is now broader which may have applications of the four-derivative Liouville action in Statistical Mechanics a la Kogan-Mudry-Tsvelik (1996)

8. Why ione loop?

Operatorial central charge otherwise

 $Y.M. (2022)$

Generator of conformal transformation

$$
\hat{\delta}_{\xi} \equiv \int_{C_1} \frac{\mathrm{d}z}{2\pi \mathrm{i}} \xi(z) T_{zz}(z) = \frac{1}{\pi} \int_{D_1} \xi \overline{\partial} T_{zz} \stackrel{\text{W.S.}}{=} \int_{D_1} \left(q \xi' \frac{\delta}{\delta \varphi} + \xi \partial \varphi \frac{\delta}{\delta \varphi} \right)
$$

with the commutator (where $\zeta = \xi \eta' - \xi' \eta$ as it should)

$$
\langle (\delta_{\eta}\delta_{\xi} - \delta_{\xi}\delta_{\eta})X \rangle = \langle \delta_{\zeta}X \rangle + \int_{D_1} d^2z \int_{D_z} d^2\omega
$$

$$
\times \langle [q\xi'(z) + \xi(z)\partial\varphi(z)][q\eta'(\omega) + \eta(\omega)\partial\varphi(\omega)] \frac{\delta^2S}{\delta\varphi(z)\delta\varphi(\omega)}X \rangle
$$

$$
= \langle \delta_{\zeta}X \rangle + \frac{1}{24} \oint_{C_1} \frac{dz}{2\pi i} [\xi'''(z)\eta(z) - \xi(z)\eta'''(z)] \langle cX \rangle
$$

DDK is reproduced for quadratic action S

Still usual central charge c for higher-derivative action with $G = 0$ but field-dependent for $G \neq 0$. Usual Virasoro algebra at one loop with

$$
c^{(\varphi)} = \frac{6q^2}{b^2} + 1 + 6G + \mathcal{O}(b_0^2)
$$

Where is $SL(2, R)$ Kac-Moody algebra at higher loops?

Conclusion

———————————–

- Classical (perturbative) ground state is stable only for $d < 2$. For $2 < d < 26$ the mean-field ground state is stable instead
- Lilliputian strings for $d > 2$ versus Gulliver's strings for $d \leq 2$
- Higher-derivative terms in the beyond Liouville action for φ revive, telling the Nambu-Goto and Polyakov strings apart
- 2D conformal invariance is maintained by fluctuations in spite of ε but the central charge of φ gets additional 6 Gq
- The Nambu-Goto string is described by (4,3) minimal model like the critical Ising model on a random lattice
- All that is specific to the theory with diffeomorphism invariance

Conclusion

———————————–

- Classical (perturbative) ground state is stable only for $d < 2$. For $2 < d < 26$ the mean-field ground state is stable instead
- Lilliputian strings for $d > 2$ versus Gulliver's strings for $d \leq 2$
- Higher-derivative terms in the beyond Liouville action for φ revive, telling the Nambu-Goto and Polyakov strings apart
- 2D conformal invariance is maintained by fluctuations in spite of ε but the central charge of φ gets additional 6Gq
- The Nambu-Goto string is described by (4,3) minimal model like the critical Ising model on a random lattice
- All that is specific to the theory with diffeomorphism invariance

Final remark:

Large-d strings $=$ bubble diagrams like $O(N)$ sigma model but Large-d gravity $=$ planar diagrams like Yang-Mills Strominger (1981)