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The present framework of modern cosmology consists of classical

General Relativity (GR) as a theory of gravitation and Quantum Field

Theory (QFT) as the theory of matter. A common working assumption is

that the quantum aspects of gravitation can be ignored for energies

below the Planck energy of 1019GeV and, therefore, gravity can be

treated classically. In contrast, the full quantum character of particle

interactions is considered within QFT. The quantum interactions of the

matter fields coupled to the classical gravitational field introduce

modifications to the standard GR action with cosmological implications.

Such are non-minimal couplings of the inflaton field or higher power

terms of the Ricci curvature in models of cosmological inflation. The

Metric-Affine formulation of gravity, where the metric and the

connection are independent variables, although equivalent to the

standard (metric) GR in the case of the Einstein-Hilbert action, leads to

different predictions when the above corrections are included.



To be discussed

1) a metric-affine model with quadratic scalar curvature terms and its

inflationary behaviour

2) a metric-affine model with quadratic scalar curvature terms with

derivative couplings and its inflationary behaviour



Metric Versus Metric-Affine Formulation of Gravity

The General Relativity Principle states that all laws of physics should be

invariant under general coordinate transformations. To implement such

a principle we need to introduce a metric gµν , which has to transform

as

g
′
αβ(x

′) =

(
∂xµ

∂x ′α

)(
∂xν

∂x ′β

)
gµν(x) , (1)

as well as a Connection Γρµν in order to define covariant derivatives of

tensors. In the standard metric formulation of gravity the connection is

not an independent quantity but it is given by the Levi-Civita relation as

Γ ρ
µν(g) =

1

2
g
ρσ (∂µgρν + ∂νgµσ − ∂σgµν) . (2)

In contrast, in the so-called Metric-Affine theories of gravity the

connection is an independent variable not related to the metric

through (2). Note that Dµgνρ|LC
= 0 (metricity), while Dµgνρ 6= 0 in

general for a metric-affine theory.



Torsion and Non-Metricity
The Curvature (Riemann tensor) of a metric-affine theory is defined as

R ρ
µν σ = ∂µΓ ρ

νσ − ∂νΓ ρ
µσ + Γ ρ

µλΓ λ
νσ − Γ ρ

νλΓ λ
µσ . (3)

A general Γρµν implies non-zero Torsion and Non-Metricity

Tαβγ ≡ Γ α
βγ − Γ α

γβ (Torsion)

Qµαβ = ∇µgαβ (Non-Metricity)

(4)

Curvature measures the change of a vector under rotation after

parallel transport in a closed loop. Torsion measures the non-closure of

parallelograms formed from parallel-transported vectors. Non-metricity

measures the change of the length of parallel-transported vectors.



Formulation of Gravity Rµνρσ Tµνρ Qµνρ

Metric-affine

Einstein-Cartan 0

Weyl 0

Metric 0 0

Generic Teleparallel 0

Metric Teleparallel 0 0

Symmetry Metric Einstein-Cartan Metric-affine

Rµν[ρσ] yes yes yes

R[µν]ρσ yes yes no

R(µν)(ρσ) yes no no



The Distortion Tensor

The difference between the independent connection of a metric-affine

theory and the corresponding Levi-Civita one is a tensor called the
Distrortion tensor

C
ρ
µ ν = Γ ρ

µ ν − Γ ρ
µ ν(g) . (5)

The distortion tensor vanishes for metric theories.

The curvature tensor can be written in terms of the distortion as

Rαβγδ = R
α
βγδ(g) +∇γC

α
δ β −∇δC α

γ β + C
α
γ λC

λ
δ β − C

α
δ λC

λ
γ β (6)

where Rαβγδ(g) is the standard metric Riemann tensor and∇ is the

standard metric covariant derivative in terms of the Levi-Civita

connection. Note that the only symmetry isRαβγδ = −Rαβδγ .



It is possible to express the distortion C
ρ
µ ν (or Γ ρ

µ ν ) in terms of the torsion

and the non-metricity

C
ρ
µ ν =

1

2

(
Q
ρ
µν − Q

ρ
ν µ − Q

ρ
µ ν + T

ρ
µν + T

ρ
ν µ + T

ρ
µ ν

)
(7)

or

C
ρ
µ ν = δρµ

[
− 1

3
Tν + 1

36

(
2Q̂ν − 5Qν

)]
+ 1

36
δρν
[
2Q̂µ − 5Qµ

]
+gµν

[
1

3
Tρ + 1

36

(
7Qρ − 10Q̂ρ

)]
+ 1

12
ερµνσ T̂σ + τ ρ

µ ν

(8)

This expression gives the distortion in terms of the four vectors

Tµ = T
α
µα, T̂µ = ε αβγµ Tαβγ , Qµ = Q

α
µ α, Q̂µ = Q

α
αµ (9)

and a purely tensorial part

τµρν =
1

2
(tρµν + tµρν + tνρµ + qρµν − qµρν − qνρµ) (10)

(qαβγ = qαγβ, tαβγ = −tαγβ, q
αβ
β = q

βα
β = t

αβ
β = t

βα
β = 0)



"Equivalent" metric theory
The metric-affine version of the Einstein-Hilbert action can be written in
terms of the distortion as∫

d
4
x
√
−gR =

∫
d

4
x
√
−g

{
R(g) +∇ρC

ρν
ν −∇νC

ρν
ρ + C

ρ
ρ λC

λν
ν − C

ρ
ν λC

λν
ρ

}
(11)

Variation with respect to the distortion gives a linear algebraic

equation with a trivial solution that reduces the action into the standard

metric GR form. Therefore, The metric-affine Einstein-Hilbert action is

entirely equivalent to standard GR. Nevertheless, this is not so if the

action includes quadratic terms of the curvature∫
d

4
x
√
−g

{
R+ f

µµ′νν′σσ′

ρρ′ R ρ
µν σR

ρ′

µ′ν′ σ′

}
(12)

Introducing the distortion, we obtain∫
d

4
x
√
−g

{
R(g) + f

µµ′νν′σσ′

ρρ′ R
ρ

µν σ(g)R
ρ′

µ′ν′ σ′(g) + ∆(g, C)
}
(13)

where the ∆-term contains up to quartic distortion terms and upon

variation the resulting equation is dynamical corresponding to the extra

dynamical degrees of freedom of the connection.



Non-Minimal Coupling to Scalars
One can derive the metric-equivalent of any metric-affine theory

based on an action, where gravity couples to a scalar field,

S =

∫
d

4
x
√
−g

{
1

2
Ω2(φ)R + L(φ, gµν , ∂µφ)

}
. (14)

Note that any F(R) theory can also be set in this form. Indeed the action

S = 1

2

∫
d4x
√
−g F(R), corresponding to the metric-affine formulation of f(R) theories

studied in the standard metric formulation. The action can be set in the form

S =

∫
d

4
x
√
−g

{
1

2
F
′(χ)R − V(χ)

}
where V(χ) =

1

2

(
χF
′(χ)− F(χ)

)
, (15)

in terms of the auxiliary scalar χ.

Substituting the expression ofR in terms of the distortion, we obtain

S =

∫
d

4
x
√
−g

{
1

2
Ω2(φ)R(g) +

1

2
Ω2(φ)

(
DµC

µν
ν − DνC

µν
µ

+ C
µ
µ λC

λν
ν − C

µ
ν λC

λν
µ

)
+ L(φ, gµν , ∂µφ)

}
, (16)



Variation with respect to the distortion gives an algebraic equation with

a solution for it (up to terms Uµ gνρ of an arbitrary vector Uµ)

Cµνρ =
1

2

(
gµν∂ρ ln Ω2 − gµρ∂ν ln Ω2

)
(17)

Note that this corresponds to Q = Q̂ = 0 and τ = 0. Substituting C

back into the action we obtain

S =

∫
d

4
x
√
−g

{
1

2
Ω2(φ)R(g) +

3

4

(∇Ω2)2

Ω2
+ L(φ, gµν , ∂µφ)

}
.

(18)

This is a metric theory and the appearing connection is the Levi-Civita

one. Note that the extra term has the form of the extra kinetic term that

appears when we Weyl-rescale the metric theory to the Einstein frame,

albeit with an opposite sign. The inequivalence of the two formulations

rests on this term. Going to the Einstein frame we obtain standard GR

without any additional scalar dof apart from a modified matter

Lagrangian.



Quadratic Scalar Curvature terms
There are only two scalars, linear in the Riemann tensor, defined as
R = Rµνµν = R(g) +∇ρC

ρν
ν −∇νC

ρν
ρ + C

ρ
ρ λC λν

ν − C
ρ
ν λC λν

ρ (Ricci scalar)

R̃ = (−g)−1/2εµνρσRµνρσ = 2(−g)−1/2εµνρσ
(
∇µCνρσ + CµρλC λ

ν σ

)
(Holst invariant)

(19)

Consider the following metric-affine generalization of the Starobinsky

model

S =

∫
d

4
x
√
−g

{
1

2
αR+

1

2
βR̃+

1

4
γR2 +

1

4
δR̃2

}
, (20)

whereR is the Ricci scalar curvature and R̃ is the Holst invariant. This is

a general quadratic action of these scalars. In what follows we shall use

Planck-mass units taking α = 1. An equivalent way to express the

action is in terms of the auxiliary scalars χ and ζ as

S =

∫
d

4
x
√
−g

{
1

2
(1 + γχ)R+

1

2
(β + δζ)R̃ − 1

4

(
γχ2 + δζ2

)}
.

(21)



Next, we may use the expressions ofR and R̃ in terms of the Distortion

C, given in (19), and obtain

S =
∫

d4x
√
−g
{

1

2
(1 + γχ)R

+ 1

2
(1 + γχ)

(
DµC

µν
ν − DνC

µν
µ + C

µ
µ λC λν

ν − C
µ
ν λC λν

µ

)
+(β + δζ)(−g)−1/2εµνρσ

(
DµCνρσ + CµρλC λ

ν σ

)
− 1

4

(
γχ2 + ζ2

)}
(22)

where R = R(g) and the covariant derivatives are with respect to

Γλµν
∣∣
LC

. Variation with respect to C
βγ
α gives an algebraic equation with

a solution

Cµνρ =
gµν

2∆

(
Ω2∂ρΩ2 + 4Ω

2
∂ρΩ

2
)
− gµρ

2∆

(
Ω2∂νΩ2 + 4Ω

2
∂νΩ

2
)

+
εµνρσ

∆
√
−g

(
Ω2∂σΩ

2 − Ω
2
∂σΩ2

)
, (23)

where

Ω2 ≡ 1 + γχ, Ω
2

= β + δζ (24)

and ∆ ≡ Ω4 + 4Ω
4
. Note that this corresponds to Q = Q̂ = τ = 0.



Substituting C back into the action, we obtain the corresponding metric

action

S =

∫
d

4
x
√
−g

{
1

2
Ω2

R(g) +
3

4

(∇Ω2)2

Ω2
− 3

Ω2∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2

− 1

4γ
(Ω2 − 1)2 − 1

4δ
(Ω

2 − β)2

}
(25)

The Weyl rescaling gµν = Ω−2ḡµν takes us to the Einstein frame. The

action is

S =

∫
d

4
x
√
−ḡ

{
1

2
R̄(ḡ)− 3

Ω4∆

(
Ω2∇̄Ω

2 − Ω
2∇̄Ω2

)2

− 1

Ω4

(
1

γ
(Ω2 − 1)2 +

1

δ
(Ω

2 − β)2

)}
(26)

Introducing the field σ ≡ Ω
2
/2Ω2 the scalar part of the Lagrangian

becomes

L = − 12(∇̄σ)2

(1 + 16σ2)
− 1

4

(
1

γ
(Ω−2 − 1)2 +

1

δ
(2σ − βΩ−2)2

)
. (27)



Variation with respect to the non-dynamical Ω2 gives

δL
δΩ2

= 0 =⇒ Ω−2 =
δ + 2βγσ

δ + β2γ
=⇒ L = − 12(∇̄σ)2

(1 + 16σ2)
−1

4

(2σ − β)2

(δ + β2γ)
.

(28)

The theory can be expressed in terms of a canonical scalar s defined by

σ =
1

4
sinh(

√
2/3 s) (29)

as

L = −1

2
(∇s)2 − 1

16

(
sinh(

√
2/3 s)− 2β

)2

(δ + β2γ)
. (30)

At least one of γ and δ has to be included in order to generate the
additional pseudoscalar degree of freedom represented by σ. The
inflationary behaviour of this model has been studied by G.Pardisi and
A.Salvio (2022). Note that the parameters γ and δ, associated withR2

and R̃2 , can only have a secondary role in a possible inflationary
behaviour, which would be controlled by β.



R GR

R+ R̃ GR

R+R2 GR

R+ R̃2 σ, No Inflation

R+ R̃+R2 σ, Inflation possible

R+ R̃+ R̃2 σ, Inflation possible

R+ R̃2 +R2 σ, No Inflation

R+ R̃+R2 + R̃2 σ, Inflation possible

I.Antoniadis, A.Karam, A.Lykkas, KT (2018)

I.Gialamas, KT (2023)

G.Pradisi, A.Salvio (2022)



Coupling to a Fundamental Scalar
We consider a scalar φ coupled to quadratic metric-affine gravity

non-minimally. The action is

S =

∫
d

4
x
√
−g

{
1

2
f(φ)R+

1

2
h(φ)R̃ +

γ

4
R2 +

δ

4
R̃2 + Lφ

}
,

(31)

with

Lφ = −1

2
g
µν∂µφ∂νφ − V(φ) . (32)

Introducing the auxiliaries χ and ζ , we arrive at

S =

∫
d

4
x
√
−g

{
1

2
(γχ+ f(φ))R+

1

2
(δζ + h(φ))R̃ −

1

4

(
γχ2 + δζ2

)
+ Lφ

}
(33)

or, introducing

Ω2 = γχ+ f(φ), Ω
2

= δζ + h(φ) , (34)

S =

∫
d

4
x
√
−g

{
1

2
Ω2R+

1

2
Ω

2R̃ −
1

4

(
1

γ
(Ω2 − f(φ))2 +

1

δ
(Ω

2 − h(φ))2

)
+ Lφ

}
(35)



The Corresponding Metric Theory

Rewriting the action in terms of the Distortion and solving for it we arrive

at the action of the corresponding metric theory in the Jordan frame

S =

∫
d

4
x
√
−g

{
1

2
Ω2

R(g) +
3

4

(∇Ω2)2

Ω2
− 3

Ω2∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2

−1

4

(
1

γ
(Ω2 − f(φ))2 +

1

δ
(Ω

2 − h(φ))2

)
+ Lφ

}
(36)

The Weyl rescaling gµν → Ω−2gµν takes the action into the Einstein

frame

S =

∫
d

4
x
√
−g

{
1

2
R(g)− 3

Ω4∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2

− 1

4Ω4

(
1

γ
(Ω2 − f(φ))2 +

1

δ
(Ω

2 − h(φ))2

)
− 1

2

(∇φ)2

Ω2
− V(φ)

Ω4

}
(37)



Introducing the field σ = Ω
2

2Ω2 , we get the action in the form

S =

∫
d

4
x
√
−g

{
1

2
R − 12(∇σ)2

(1 + 16σ2)
− 1

2

(∇φ)2

Ω2
− σ2

δ

− 1

4γΩ4

(
f(φ)− Ω2

)2 − h(φ)

4δΩ4

(
h(φ)− 4σΩ2

)
− V(φ)

Ω4

}
(38)

Note that no kinetic term for Ω2 appears. Solving for it we obtain

δS
δΩ2

= 0 =⇒ Ω2 =
f(φ)2 + 4γV(φ) + γh2(φ)/δ

f(φ) + 2γσh(φ)/δ − γ(∇φ)2
(39)



Substituting Ω2 into the action we get it in the form

S =

∫
d

4
x
√
−g

{
1

2
R −

1

2
Kφ(φ, σ)(∇φ)2 +

1

4
Lφ(φ)(∇φ)4 −

1

2
Kσ(σ)(∇σ)2 − U(φ, σ)

}
(40)

where

Kφ(φ, σ) = f(φ)+2γσh(φ)/δ
γh2(φ)/δ+f 2(φ)+4γV(φ)

Lφ = γ
γh2(φ)/δ+f 2(φ)+4γV(φ)

Kσ(σ) = 24

1+16σ2

U(φ, σ) = V(φ)
f 2(φ)+4γV(φ) + 1

δ

(
f 2(φ)+4γV(φ)

γh2(φ)/δ+f 2(φ)+4γV(φ)

)
(σ − σ0(φ))2

(41)

where

σ0(φ) =
h(φ)f(φ)/2

f 2(φ) + 4γV(φ)
. (42)

Note that the potential is positive-definite with a minimum line along

σ = σ0(φ).



3D plot of U(φ, σ) for f(φ) = 1 + ξφ2, h(φ) = ξ̄φ+ ξ̄′φ3 and V(φ) = λ
4
φ4



Inflation in theR2, R̃2, φ model
Addopting the following leading terms of f(φ) and h(φ), namely

f(φ) = 1 + ξφ2, h(φ) = ξ̄φ+ ξ̄′φ3 . (43)

Note that h(φ) is chosen this way to counteract the parity-odd

coupling h(φ)R̃. We also replace σ with the canonical field

σc = 2
√

6

∫
dσ√

1 + 16σ2
=⇒ σ =

1

4
sinh

(√
2

3
σc

)
. (44)

In an FRW background the equations of motion read

(Kφ + 3Lφφ̇
2)φ̈+ 3H(Kφ + Lφφ̇

2)φ̇+ φ̇σ̇c

∂Kφ

∂σc
+
(

1

2

∂Kφ

∂φ
+ 3

4

∂Lφ

∂φ
φ̇2

)
φ̇2 + ∂U

∂φ
= 0

σ̈c + 3Hσ̇c − 1

2

∂Kφ

∂σc
φ̇2 + ∂U

∂σc
= 0

H2 = 1

3
ρ , ρ = 1

2
Kφφ̇

2 + 3

4
Lφφ̇

4 + 1

2
σ̇2

c + U

Ḣ = − 1

2
(ρ + p) , p = 1

2
Kφφ̇

2 + 1

4
Lφφ̇

4 + 1

2
σ̇2

c − U

(45)



Solving numerically the equations of motion (with V = λφ4/4) we

obtain the plots
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10

showing that very soon the system falls along the minimum line σ0(φ).



Therefore, for the inflationary period it would be sufficient to study the

single-field problem described by φ, σ0(φ)

S =

∫
d

4
x
√
−g

{
1

2
R − 1

2
K̄ (φ)(∇φ)2 +

1

4
L(φ)(∇φ)4 − U(φ)

}
,

(46)

where

K̄ (φ) = f(φ)
f 2(φ)+4γV(φ) +

(
12

1+ 4g(φ)2 f2(φ)

[f2(φ)+4γV(φ)]2

)
{

g′(φ)f(φ)+g(φ)f ′(φ)
f 2(φ)+4γV(φ) − g(φ)f(φ)

[f 2(φ)+4γV(φ)]2 (2f ′(φ)f(φ) + 4γV ′(φ))
}2

,

L(φ) = γ
γg2(φ)/δ+f 2(φ)+4γV(φ) ,

U(φ) = V(φ)
f 2(φ)+4γV(φ) .

(47)

Note that both kinetic functions K̄ (φ) and L(φ) are positive definite.



Considering an FRW background, we obtain the set of equations

H
2 =

ρ

3
and Ḣ = −1

2
(ρ+ p) , (48)

where the energy density and pressure are given by

ρ =
1

2
K̄ (φ)φ̇2+

3

4
L(φ)φ̇4+U(φ) and p =

1

2
K̄ (φ)φ̇2+

1

4
L(φ)φ̇4−U(φ) .

(49)

In the analysis of inflationary observables we have focused on

f(φ) = 1 + ξφ2, g(φ) = ξ̄φ+ ξ̄′φ3 and V(φ) = λφ4/4.

Due to the φ̇4 terms the speed of sound deviates from unity

c
2
s =

1 + L(φ)φ̇2/K̄ (φ)

1 + 3L(φ)φ̇2/K̄ (φ)
. (50)

Nevertheless, the deviation from unity turns out to be quite small.



Inflationary Observables
Assuming the slow-roll approximation we have the scalar and tensor

power spectrum

Pζ(k) ≈ U(φ∗)

24π2εU(φ∗)

(
k

k∗

)ns−1

, PT ≈
2U(φ∗)

3π2

(
k

k∗

)nt

(51)

The scalar and tensor spectral indices are

ns = 1 +
d lnPζ
d ln k

≈ −6εU + 2ηŪ end nt =
d lnPT

d ln k
(52)

where the (potential) slow-roll parameters are defined

εU =
1

2K̄

(
U′

U

)2

, ηU =

(
K̄−1/2U′

)′
K̄ 1/2U

(53)

The tensor-to-scalar ratio is r = PT/Pζ ≈ 16εU . Recent observations

yield the constraints (k∗ = 0.05 Mpc−1)

As = (2.10±0.03)×10
−9, ns = 0.9649±0.0042 (1σ region), r < 0.03

(54)
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Figure: Predictions of the model using pivot scales 0.05 Mpc−1 for ns and

0.002 Mpc−1 for r . Shaded regions are the allowed parameter regions at 68%
and 95% confidence coming from the latest combination of Planck,

BICEP/Keck and BAO data. The values of the parameters are ξ̄′ = 0 and

γ = 106, while ξ = 0.1 (green dashed-dotted line), ξ = 1 (red dashed line)

and ξ = 10 (black dotted line). The parameter ξ̄ varies from 10−3 to 103 in

each curve in a clockwise direction indicated by the arrow. The small numbers

at the edges of the curves indicate the number of e−folds N0.05, for the

extreme values of the parameter ξ̄.



Derivative Couplings
In the general metric-affine framework there are three non-zero

contractions of the Riemann tensor given by

Rµν = Rρµρν , R̂µν = g
αβRµαβν , R

′
µν = Rααµν (55)

called the Ricci, co-Ricci, and homothetic curvature tensor,

respectively. There is a single Ricci scalar determined through an

additional contraction of either the Ricci tensor or the co-Ricci tensor,

expressed asR = gµνRµν = −R̂µµ. In what follows we shall consider

the following metric-affine action of a scalar field φ coupled

non-minimally to the Ricci scalar as well as the Ricci tensors through

derivative couplings:

S =

∫
d

4
x
√
−g

{
1

2
(f(φ) + α1X)R−

1

2
K(φ)X + α2RµνXµν + α3R̂µνXµν +

1

4
βR2 − V(φ)

}
(56)

where Xµν = ∂µφ∂νφ and X = gµνXµν . There is noR′µν coupling due

to the antisymmetry of its indices. In the metric case there is no a3

coupling since R̂µν = −Rµν .



The functions F(φ), K (φ), and V(φ) represent nonminimal couplings,

non-canonical kinetic terms, and the potential term of the scalar field,

respectively. General quadratic terms of the Riemann and Ricci tensors

are known to be associated with unphysical degrees of freedom in

contrast to quadratic terms of the Ricci scalar with its reliable

inflationary predictions. Introducing the auxiliary scalar field χ, the

action takes the form

S =
∫

d4x
√
−g
{

1

2
(F(φ, χ) + α1X)R− 1

2
K (φ)X + α2RµνXµν

+α3R̂µνXµν − U(φ, χ)
}

(57)

with

F(φ, χ) = f(φ) + βχ and U(φ, χ) = V(φ) +
1

4
βχ2 . (58)

In order to discuss inflationary dynamics it is necessary to go to the

Einstein frame.



Disformal Transformations
While actions constructed solely from the Ricci scalar can be

transformed via a Weyl rescaling, since our action (57) involves

derivative couplings of the scalar field to the Ricci tensors, we need to

employ a broader set of transformations, namely the disformal

transformations. These transformations are defined as

gµν = γ1(φ, X̃)g̃µν + γ2(φ, X̃)Xµν , (59)

where X̃ = g̃µνXµν . The inverse transformation is

g̃µν = γ̃1(φ, X)gµν + γ̃2(φ, X)Xµν , (60)

with γ̃1 = 1/γ1 and γ̃2 = −γ2/γ1, while the determinants are related

by the equation g = g̃γ3
1(φ, X̃)(γ1(φ, X̃) + γ2(φ, X̃)X̃). Using the

relations for the inverse metrics gµν and g̃µν we obtain also that

X =
X̃

γ1(φ, X̃) + γ2(φ, X̃)X̃
and X̃ =

X

γ̃1(φ, X) + γ̃2(φ, X)X
.

(61)



We may replace the co-Ricci tensor with the average Ricci tensor,

defined asRµν = (Rµν + R̂µν)/2, which vanishes in the metric case.

Omitting the tildes for brevity, we obtain

S =
∫

d4x
√
−g

[
F1(φ, X , χ)R

2
+ F2(φ, X)RµνXµν + F3(φ, X , χ)RµνXµν

−F4(φ, X)X − F5(φ, X , χ)U(φ, χ)]

F1(φ, X , χ) = (1 + γX)1/2

(
γ1F(φ, χ) + α1X

1+γX

)
,

F2(φ, X) = α3(1 + γX)−1/2

F3(φ, X , χ) = 1

2
(1 + γX)−1/2

(
−γ2F(φ, χ) + α2−α3−(α1+α3)γX

(1+γX)

)
F4(φ, X) = 1

2
γ1(1 + γX)−1/2K(φ), F5(φ, X , χ) = γ2

1
(1 + γX)1/2 ,

(62)

General metric-affine theories have non-zero torsion Tµλν = 2C[µ|λ|ν]

and non-metricity Qρµν = ∇ρgµν = −2C(µν)ρ. We intend to focus on

the Einstein-Cartan gravity case, where Qρµν = 0, considering α3 → 0.



Focusing on the α3 = 0 case (Einstein-Cartan), we need to solve the

system of equations F1(φ, X , χ) = 1 and F3(φ, X , χ) = 0. We

approximate the solutions by assuming that in the slow-roll

approximation, the higher-order kinetic terms are negligible (i.e.

X � 1), particularly during inflation as well as during reheating. An

approximate solution under this assumption is

γ ' α2 −
α2

2

2
X +

5α3
2

8
X

2 , γ1 '
1

F(φ, χ)

(
1− (α1 + α2/2)X + (α1α2 + 5α2

2/8)X
2
)
,

(63)

where we kept terms up to O(X 2). Substituting the solution back to the
action we obtain

S =
∫

d4x
√
−g

[
1

2
R(g)− K(φ)X

2F(φ,χ)
(1− (α1 + α2)X)

− U(φ,χ)
F2(φ,χ)

(
1− (2α1 + α2/2)X + (α2

1
+ 2α1α2 + 5α2

2
/8)X2

)] (64)

Varying the action with respect to the auxiliary field χ, we obtain a

solution χ(φ, X), which is re-expanded in powers of X and then

substituted back into the action. The resulting effective action will

represent the final metric action of the scalar field φ, featuring modified

potential and kinetic terms.



The χ-variation gives

δS
δχ

= 0 ⇒ χ =
4V(φ) + A(φ)X + B(φ)X 2

f(φ) + C(φ)X + D(φ)X 2
, (65)

with

A(φ) =K (φ)f(φ)− 4V(φ)(2α1 + α2/2) , (66a)

B(φ) =4V(φ)(α2
1 + 2α1α2 + 5α2

2/8)− (α1 + α2)K (φ)f(φ) , (66b)

C(φ) =− βK (φ)− f(φ)(2α1 + α2/2) , (66c)

D(φ) =β(α1 + α2)K (φ) + (α2
1 + 2α1α2 + 5α2

2/8)f(φ) . (66d)

Expanding in powers of X we obtain1

χ '
4V(φ)

f(φ)
+XK(φ)

(
1 + 4β

V(φ)

f 2(φ)

)
+X

2
K(φ)

2f(φ)

(
1 + 4β

V(φ)

f 2(φ)

)
( (2α1 − α2)f(φ) + 2βK(φ)) .

(68)

1
In the minimal case f(φ) = K(φ) = 1 the auxiliary field reads

χ ' 4V(φ) + (1 + 4βV(φ))X + (1 + 4βV(φ))(β + α1 − α2/2)X 2 +O(X 3) . (67)



Substituting back into the action and re-expanding in powers of X , we

obtain

S =

∫
d4

x
√
−g

(
1

2
R(g)− 1

2
K̄ (φ)X − Ū(φ) +O(X

2)

)
, (69)

with

K̄ (φ) =
−α̃V(φ) + f(φ)K (φ)

(f 2(φ) + 4βV(φ))
and Ū(φ) =

V(φ)

f 2(φ) + 4βV(φ)
,

(70)

where we have defined 4α1 + α2 = α̃.

Note that for large values of the potential V(φ) >>, the effective

potential tends to a constant 1/4β. This the well known Palatini-R2

plateau, inducive of inflationary behaviour.



INFLATION IN THE DERIVATIVE-COUPLED MODEL
We shall simplify the analysis by considering the minimal case where

f(φ) = K (φ) = 1. Then,

K =
1− α̃V

1 + 4βV
, U =

V

1 + 4βV
. (71)

A canonically normalized inflaton φc can be expressed as a function of

φ through dφc = dφ
√

K̄ (φ).

We consider the simple case of the minimally coupled (f(φ) = 1)

quadratic model with a potential V(φ) = m2φ2/2, which can be

treated analytically. For small O(X 2) terms the first slow-roll parameters

are

εŪ =
4

φ2(2− α̃m2φ2)(1 + 2βm2φ2)
, ηŪ =

8
(
1 + βm2φ2(3α̃m2φ2 − 4)

)
φ2(2− α̃m2φ2)2(1 + 2βm2φ2)

.

(72)



The number of e−folds, left to the end of on inflation are

N? =
1

16
(φ2

end − φ2
?)
(
α̃m

2(φ2
end + φ2

?)− 4
)
' 1

16
φ2
?(4− α̃m

2φ2
?) ,

(73)

where the second equality holds for φ2
end � φ2

?. The above equation

has a solution

φ2
? =

2−
√
α̃2m4φ4

end − 4α̃m2φ2
end + 4− 16α̃m2N?

α̃m2

α̃→0−−−→ φ2
end+4N? .

(74)

The field value at the end of inflation is defined by εŪ(φend) = 1⇒

2α̃βm
4φ6

end + (α̃m
2 − 4βm

2)φ4
end − 2φ2

end + 4 = 0 . (75)

We have seen numerically that the approximation φ2
end � φ2

? holds

true and we safely omit the term φend . Under this approximation the

field value at the horizon crossing is given by

φ2
? '

2− 2
√

1− 4α̃m2N?

α̃m2
. (76)



Using φ?, given above, As is written in terms of N? as

As '
√

1− 4α̃m2N?

(
1−
√

1− 4α̃m2N?

)2

24π2α̃2m2
, (77)

which under this approximation does not depend on the parameter β.

The above equation can be used to see the impact of α̃ on m2. For

N? ∼ 50− 60 this becomes drastic for |α̃| & 108. Given that the

parameter m represents the mass of the scalar field φ it is essential for it

to remain sub-Planckian. Thus, we may derive an upper limit for the

parameter |α̃| given by

|α̃| . 4.3× 10
19

(
N?

55

)3

. (78)

The spectral index is

ns ' 1−
1 +
√

1− 4α̃m2N? − 6α̃m2N?

N?(1− 4α̃m2N?)
'


1−

2

N?
, if |̊A|/N? � 1

1−
3

2N?
, if |̊A|/N? � 1 .

(79)

being β-independent to leading order. Therefore, for small |Å|, this

prediction aligns with that of the simple quadratic model of inflation.



Finally, the tensor-to-scalar ratio is given by

r ' 16α̃m2

√
1− 4α̃m2N?(

√
1− 4α̃m2N? − 1)

[
4β(
√

1− 4α̃m2N? − 1)− α̃
] ,

(80)

while its limiting cases are

r '


8

N? + 48π2Asβ
, if |Å|/N? � 1

4

N? + 24π2Asβ
, if |Å|/N? � 1 .

(81)

Here the introduction of a substantial β parameter (β & 108) becomes

necessary in order to bring r within the observational limit (β > 108).
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Figure: Left: The mass parameter m2 as function of the parameter α̃. Right:The

tensor-to-scalar ratio as function of the parameter α̃ for β = 109.

(I.Gialamas, T.Katsoulas and KT, JCAP 2024)



CONCLUSIONS

Metric-Affine Ricci and Holst-squared models coupled to scalars yield

an extra dynamical pseudoscalar and exhibit one-field inflation for a

large class of potentials.

Metric-Affine Ricci-squared models with derivative couplings of scalars

to the Ricci tensors exhibit one-field inflation for a large class of

potentials.


