On calculating the mass-gap in 4d

ang-Mills Theory
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Yang-Mills Theory

Modeled after electrodynamics, but more charges than +
High energy: massless particles (gluons), colored plasma
Low energy: massive particles (glueballs), color neutral
At some critical scale: phase transition

Theory of the strong nuclear force
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Numerical Studies

THE GLUEBALL MASS SPECTRUM IN QCD:
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JPe mass

0+ 1.7 GeV
2T+ 2.4 GeV
0~ 2.6 GeV

Lightest glueballs are the scalar 07" and tensor 271 glueball
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Theoretical Studies

@ Known Lagrangian:

1 bc oAb
= S F3,F3,, F2,=0,A —0,A% + fPAbAC

£ 4g2 722 V) 2]

e Partition function (used in numerical studies)

7= /DAe—fdxﬁ

@ Problem: integrals have cubic and quartic terms in exponent
(non-Gaussian)

We only know how to do Gaussian integrals!
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Theoretical Studies

Known Lagrangian:

1 bc pb
L= g, Flu = 0ull = 0+ 1 ALAS

This Lagrangian contains the correct high temperature particles:
massless gluons

But the low-temperature massive particles (glueballs) are not explicit
in £
How do the massive particles emerge from L7

YM Mass Gap: Open Millennium Prize Problem
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A potentially related system

Non-relativistic fermions

Known Lagrangian:

£ 50 (o) e () (25
s=T

QZ are N species of 2-component fermions of mass m
as is s-wave scattering length

1 is chemical potential

L has quartic term just like Yang-Mills theory
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A potentially related system
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A potentially related system

@ Known Lagrangian:

L= 4l (87— 52 —u) G+ 212 =2 (- wT) (4 r)

s=T,1

@ Hubbard-Stratonovic transformation: introduce unity

= [ocemrenis

@ Shift the auxiliary field

4dmiag

mN

¢—¢— by - Uy



A potentially related system

@ HS-transformed Lagrangian:

£=Y 4l (aT S u) G T i (1) —ic (9, )
s=1.l °




A potentially related system

@ HS-transformed Lagrangian:

£=Y 4l (aT S u) G T i (1) —ic (9, )
s=1.l °

@ Quartic term has disappeared! Integrals are now Gaussian



A potentially related system

@ HS-transformed Lagrangian:

£=Y 4l (aT S u) G T i (1) —ic (9, )
s=1.l °

@ Quartic term has disappeared! Integrals are now Gaussian

@ Integrating out fermions can be done exactly
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A potentially related system
New partition function Z = [ D(e™> with /pause

S=—NindetG1[¢] - Nim /dxC*C

4rmag

Original particles (fermions) have disappeared
New description entirely in terms of auxiliary (bosonic!) field ¢

Mathematically exact rewriting of original system (no approximation)
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A potentially related system
o Large N allows systematic approximation scheme

@ Integral is dominated by saddle point (p:

o X
((x)=C+ /N

@ Large N exact partition function:

)

Nm¢oCa 3 2
z / vob [ V7905 1. e infut (855 ]|
= Oe

@ (p # 0 is non-perturbative saddle
@ (o # 0 acts as a mass gap for the auxiliary field

@ (o is the zero-frequency mode of the auxiliary field



A potentially related system

Translation into more well-known physics terms



A potentially related system

Translation into more well-known physics terms

@ (p # 0 is the Bose-Einstein condensate



A potentially related system

Translation into more well-known physics terms
@ (o # 0 is the Bose-Einstein condensate

@ (o(g is the superconducting gap



A potentially related system

Translation into more well-known physics terms
@ (o # 0 is the Bose-Einstein condensate
@ (o(g is the superconducting gap

@ {(x) are the (bosonic) Cooper-pairs



A potentially related system

Translation into more well-known physics terms
@ (o # 0 is the Bose-Einstein condensate
@ (o(g is the superconducting gap
@ £(x) are the (bosonic) Cooper-pairs

@ Above a critical temperature T > T, (, = 0 and the gap closes
(ungapped fermions)



A potentially related system

Translation into more well-known physics terms
@ (o # 0 is the Bose-Einstein condensate
@ (o(g is the superconducting gap
@ £(x) are the (bosonic) Cooper-pairs

@ Above a critical temperature T > T, (, = 0 and the gap closes
(ungapped fermions)

@ All of these emerge rigorously from a mathematical rewriting of the
large N fermion Lagrangian
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Hubbard-Stratonovic for Yang-Mills

@ Known Lagrangian:

1 a ra a a a abc pAb pc
L= rngWFW, F/w = 0, A;, — (‘),,AM + f A“AV

1 A ij A AI/

o For SU(2), fabc = ¢3bc and

fabCfade — 6bd66e . 5be6cd
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Hubbard-Stratonovic for Yang-Mills

Known Lagrangian:

1 bc pob
L=z P Fiu=0uA =0, + P IA;

Quadratic term for SU(2):

bc pb de pd _ aAbpb b pb
fabeAbAcradepad A = AbAB ACAC — AP ABAC AC .

Rewrite in terms of Lorentz scalar and (traceless) tensor:

)
os =AA . oT = ALA - %A;A;

Get

1
FAPCAD ACFI%e AT AS = (1 - d) 05— 0,0,
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Hubbard-Stratonovic for Yang-Mills

@ The path-integral version of this requires two auxiliary fields for both
S5, T, eg.

1= /'D0'55 (05 — AZAZ) = /’DO-S'DCSeifdxCS(Us—AZAZ)

@ The o's can be integrating out, leaving a theory with just A, and two
auxiliaries (s, (T

@ HS formulation of Yang-Mills (mathematically exact) gives

(2

1
1-3

+ Tensor

425—(8 Aa)2 20, A FPC AP AC L 0 A2 A2
gL = \0uAy) T20, +2iCs ALAL +

V] v
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+ Tensor
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V]
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(3
1
-3

+ Tensor

V]
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@ Without cubic term, all integrals would be Gaussian, and YM could
be solved exactly in the HS formulation
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(3
1
-3

+ Tensor

V]

4g°L = (9 A"”)Q 200, A% FPC AL AS + 25 ALAL
8L =AYy ) 20 pAy +2iCsALAL +

@ Without cubic term, all integrals would be Gaussian, and YM could
be solved exactly in the HS formulation

@ Let’s see what happens if we just drop it!
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Hubbard-Stratonovic for Yang-Mills
Dropping cubic term in A

2 2
4g°L = (G[MAIQ,]) + 2iCs AL AT + 1 C_Sl + Tensor

d

Dropping the cubic term gauge field Green’s function becomes exact:

_ . i y
G (P) = [p25w — PuPy + i(s6u + % <<5W - p‘;’; X d)] §52b

For fermions, we had (o # 0; here this implies gluon G,,, becomes
invertible

No extra gauge fixing necessary! No Faddeev-Popov ghosts!
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@ Dropping the cubic term gauge field term:
iCr

- , PuPy
G () = | PO — pupy + iCs0u + > (% T d>] "
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@ Dropping the cubic term gauge field term:

- ic PupPy
lel(p) = |P?8u — Puby + (50 + d 7-1 (51“/ - lp2 % d)] o

@ In Fourier space, with the transverse and longitudinal projectors
Pr,PL

5ab 5ab 'CT

) i
PTw + —Pruw, m2:’C5g+dol'
m? _

Gab
L(p) = P

@ Transverse gluons get a mass gap!
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Hubbard-Stratonovic for Yang-Mills
Dropping the cubic term gauge field term:

- ic PupPy
lel(p) = |P?8u — Puby + (50 + d 7-1 (51“/ - lp2 % d)] o

In Fourier space, with the transverse and longitudinal projectors
Pr,PL
5ab 5ab 'CT

Gab P 5 P 5 2:'5 IS .
() p+m2 TH+ LL7N7 m IC0+d_1

Transverse gluons get a mass gap!

Completely analogous to superconducting gap for non-relativistic
fermions!
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What are the Yang-Mills auxiliary fields?
@ For non-relativistic fermions, the auxiliary field { was the Cooper-pair
o What are the two auxiliary fields ¢*, ¢, for SU(2)?
@ Can look at quantum numbers: one is a Lorentz-scalar, the other is a
Lorentz tensor
@ The two lightest particles in low-temperature SU(2) are the scalar and
tensor glueball, respectively
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Hubbard-Stratonovic for YM — Advantages
Well motivated from literature on non-relativistic fermions

HS rewriting leads to scalar and tensor auxiliary fields —
mathematically exact!

Auxiliary field condensates break gauge symmetry — gauge fields can
be integrated out without additional gauge fixing by hand

Leads to YM effective Lagrangian purely in terms of (s, (T, as
expected for scalar and tensor glueball results from LQCD

Theory is renormalizable



Hubbard-Stratonovic for YM — Disadvantages



Hubbard-Stratonovic for YM — Disadvantages

@ Throwing away 3-point gauge coupling is not a systematic
approximation



Hubbard-Stratonovic for YM — Disadvantages

@ Throwing away 3-point gauge coupling is not a systematic
approximation

e [-function is wrong (also wrong sign!)



Hubbard-Stratonovic for YM — Disadvantages

@ Throwing away 3-point gauge coupling is not a systematic
approximation

e [-function is wrong (also wrong sign!)

e Semi-classical splitting {(x) = (o + £(x) not systematic expansion (no
small parameter)
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Yang-Mills mass gap — Discussion
@ It looks like this could work the same way as for superconductivity
@ Is there a way to consistently include the 3-point function?
@ What are the minimal checks this approach has to fulfill?

@ How to convince the broader community that this is viable?



