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Boyd et al, Nucl. Phys. B (1996)



Numerical Studies

JPC mass

0++ 1.7 GeV
2++ 2.4 GeV
0−+ 2.6 GeV
. . .

Lightest glueballs are the scalar 0++ and tensor 2++ glueball



Theoretical Studies
Known Lagrangian:

L =
1

4g2
F a
µνF

a
µν , F a

µν = ∂µA
a
ν − ∂νA

a
µ + f abcAb

µA
c
ν

Partition function (used in numerical studies)

Z =

∫
DAe−

∫
dxL

Problem: integrals have cubic and quartic terms in exponent
(non-Gaussian)

We only know how to do Gaussian integrals!
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A potentially related system
Non-relativistic fermions

Known Lagrangian:

L =
∑
s=↑,↓

ψ⃗†
s

(
∂τ −

∇⃗2

2m
− µ

)
ψ⃗s +

4πas
mN

(
ψ⃗↓ · ψ⃗↑

)† (
ψ⃗↓ · ψ⃗↑

)

ψ⃗ are N species of 2-component fermions of mass m

as is s-wave scattering length

µ is chemical potential

L has quartic term just like Yang-Mills theory
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A potentially related system
New partition function Z =

∫
Dζe−S with /pause

S = −N lndetG−1[ζ]− Nm

4πas

∫
dxζ∗ζ

Original particles (fermions) have disappeared

New description entirely in terms of auxiliary (bosonic!) field ζ

Mathematically exact rewriting of original system (no approximation)
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A potentially related system

Large N allows systematic approximation scheme

Integral is dominated by saddle point ζ0:

ζ(x) = ζ0 +
ξ(x)√
N

Large N exact partition function:

Z =

∫
dζ0e

vol×
[
Nmζ0ζ

∗
0

4πas
+N

∫
dωd3k
(2π)4

ln
[
ω2+( k2

2m
−µ)2+ζ0ζ

∗
0

]]
,

ζ0 ̸= 0 is non-perturbative saddle

ζ0 ̸= 0 acts as a mass gap for the auxiliary field

ζ0 is the zero-frequency mode of the auxiliary field
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A potentially related system
Translation into more well-known physics terms

ζ0 ̸= 0 is the Bose-Einstein condensate

ζ0ζ
∗
0 is the superconducting gap

ξ(x) are the (bosonic) Cooper-pairs

Above a critical temperature T > Tc , ζ0 = 0 and the gap closes
(ungapped fermions)

All of these emerge rigorously from a mathematical rewriting of the
large N fermion Lagrangian
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Can we do something like this for Yang-Mills?



Hubbard-Stratonovic for Yang-Mills
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For SU(2), f abc = ϵabc and

f abc f ade = δbdδce − δbeδcd
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Hubbard-Stratonovic for Yang-Mills
The path-integral version of this requires two auxiliary fields for both
S ,T , e.g.

1 =

∫
DσSδ

(
σS − Aa

µA
a
µ

)
=

∫
DσSDζSe i

∫
dxζS(σS−Aa

µA
a
µ)

The σ’s can be integrating out, leaving a theory with just Aµ and two
auxiliaries ζS , ζT

HS formulation of Yang-Mills (mathematically exact) gives

4g2L =
(
∂[µA

a
ν]

)2
+2∂[µA

a
ν]f

abcAb
µA

c
ν +2iζSA

a
µA

a
µ +

ζ2S
1− 1

d

+Tensor
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Dropping the cubic term gauge field Green’s function becomes exact:

G−1
µν (p) =

[
p2δµν − pµpν + iζSδµν +

iζT
d − 1

(
δµν −

pµpν
p2

× d

)]
δab

For fermions, we had ζ0 ̸= 0; here this implies gluon Gµν becomes
invertible

No extra gauge fixing necessary! No Faddeev-Popov ghosts!
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G ab
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PT ,µν +

δab
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L

PL,µν , m2 = iζS0 +
iζT0
d − 1

.

Transverse gluons get a mass gap!

Completely analogous to superconducting gap for non-relativistic
fermions!
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Can look at quantum numbers: one is a Lorentz-scalar, the other is a
Lorentz tensor

The two lightest particles in low-temperature SU(2) are the scalar and
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Well motivated from literature on non-relativistic fermions

HS rewriting leads to scalar and tensor auxiliary fields —
mathematically exact!

Auxiliary field condensates break gauge symmetry – gauge fields can
be integrated out without additional gauge fixing by hand

Leads to YM effective Lagrangian purely in terms of ζS , ζT , as
expected for scalar and tensor glueball results from LQCD

Theory is renormalizable
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approximation

β-function is wrong (also wrong sign!)

Semi-classical splitting ζ(x) = ζ0 + ξ(x) not systematic expansion (no
small parameter)
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