TIMECRYSTALLINE VORTICES, STAGNATION POINTS
AND THE POINCARE INDEX FORMULA
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C.N. Yang (1954):

Pauli asked, "What 1s the mass of this field B, 7" I said we did not know.




SU(2) YM motivation: _ :
: i = density Madelung 5 fluids
A = A].’l =T del + on A dn ¢ = p + 10 0‘) Hasimoto strings

v =Vtan! (——
“on-shell” decomposition P

Gross-Pitaevskii free energy:

Gross-Pitaevskii equation
with harmonic trap (NLSE):

For g € [5,500] 2D Gross-Pitaevskii equation

: describes N ~10%- 108 ultracold Bose-Einstein

- Relevant point: : ) : .
condensed alkali atoms in a typical experiment

with axially symmetric oblate harmonic trap

Rigorous results (Lieb et.al.)




Plan:

v'Vortices and Gross-Pitaevskii — textbook results
v’ Vortices and time crystals

v’ Vortices are anyons

v’ Topological (phase) transition

v Order parameter and the Poincaré index formula




Properties of Gross-PitaevsKkii:

Poisson brackets Y

\.

=1 (normalization) number of atoms

Conserved quantities: =<

z-component of macroscopic
angular momentum

Topological quantity: vorticity




Known results:

e Fundamental excitations are vortices

* There is no stable vortex solution of the static GP equation

* There are stable vortex solutions that are stationary in a uniformly rotating frame

chemical potential for N
* These vortices solve the time independent GP (nonlinear Schrédinger) equation




Vortices in rotating condensates:

Numerical simulations:

Vortices in a rotating condensate form highly symmetric lattices.

Q) increases

v

NOTE: Unlike Euler

vortices the vortex

energy is finite! No
delta-functions!

Experimental observations:

“Highly symmetric”

Vortex (Abrikosov) lattices are modeled
as minimum energy critical points of F,

-640

-650

-660

-670

= -680

-690

-700

-710

-720

I

)
0o VoTtex
1 vortex ===-=---
2 vortices ====re=~
3 vortices e =
6 vortices ===

10 12 14 16 18 20 22



Vortices and time crystals
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a8 PARADIGM:

5 %ﬁ A ; “A time crystal never reaches thermal equilibrium, as it is a type of nonequilibrium matter, a form of matter proposed in 2012, and first
N "‘:‘_,;J P/ observed in 2017. This state of matter cannot be isolated from its environment—it is an open system in nonequilibrium.”
WIKIPEDIA
The Free Encyclopedia . . OH .
D = da. 0 . . . . .
23 — Energy minimum is critical point
T = There are no hamiltonian time crystals
) o == pem— O
u Opi

Hamilton’s equation has no time independent solution

Lagrange multiplier theorem:

Let f: R™ — R be the objective function, g: R" — IR be the constraints function, both belonging to o (that is, having continuous first derivatives). Let ™ be an optimal
solution to the following optimization problem such that rank(Dg(z*)) = ¢ < n (here Dg(z" ) denotes the matrix of partial derivatives, [0g; /0z+]):

maximize f(x)
subject to: g(x) =0

Then there exists a unique Lagrange multiplier \* € R such that D f(z*) = A\* Dg(z*).




Critical Constrained optimization:

u ﬁm'rngl'y: 21 - Energy' H and set of
conditions G2 = 0_ vy
e Minimize energy  Minimizeenergy H subject to conditio:l

= e A —

Hamilton’s equation|:

I B i

No “time crystal”




Question: Are there non-symmetric minimal energy vortex solutions of the Gross-Pitaevskii equation
that are NOT critical points of the free energy?

— o . Tt .
=1 (normalization) N,\;)acrosco 'Cm oM er
: . m in
* Subject to conditions — angul®’ = ed to P°
poes N
The minimum of F subject to conditions can be found as a critical point of “Lagrange multiplier theorem”
p in rotating G

t
“Time independen

I
~— -




* Spontaneous symmetry breakdown: U(1)xU(1)-> U(1)
* Timecrystalline evolution is a symmetry transformation

Ff FREEFEM =
FREEFEM DAYS x
Search for a solution numerically: A high level multiphysics finite element software

FreeFEM offers a fast interpolation algorithm and a language for the manipulation of data on multiple meshes
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Number of vortices:

N B P 4
e asymm. config.

e symm. config.
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Vortices are timecrystalline — a vortex always moves



Vortices are anyons

“In two dimensions, exchanging identical particles twice is not equivalent to leaving them alone. The particles’

n oS
e . : ) ] .. . .
P Q \\A § wavefunction after swapping places twice may differ from the original one; particles with such unusual exchange
} . . . . . . . . .
G ‘ statistics are known as anyons. By contrast, in three dimensions, exchanging particles twice cannot change their
WiIKIPEDIA wavefunction, leaving us with only two possibilities: bosons, whose wavefunction remains the same even after a

e Free Encyclopedia . M o . s
Sl e single exchange, and fermions, whose exchange only changes the sign of their wavefunction.”



Time evolution:

t=0.00
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Vortices are timecrystalline anyons:

”Kinetic angular momentum”

"Statistical gauge field”

EE—
at (

Z,

—

Y Position
[
T

Accrued phase of wavefunction depends on _ as statistical parameter

- —77‘/2 6 /2 ™
0



Saddle points, topological (phase) transitions
And the Poincaré index formula




conventional (super)fluid vortices:

Order parameter 1(x,t) solves a (variant of) NLSE

W e P W e o e . N

At (anti)vortex core |[¢¥(x)| =0 vortex

Opposite circulations

v(x,t) = Varg|y|(x, 1)

antivortex

Circulation:

Circulation = +1 for a single vortex, and -1 for a single antivortex

Normally, no other topological invariant -- but is this the full story??



Vortices and saddles (stagnation points) as topological structures
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(anti)vortex=center
stagnation point = saddle

(y, z)

saddle: (vg,vy)

(y7 —I)

center: (vg,vy)

Two different integral invariants:

Circulation:

Winding number:




Vector fields, critical points and the winding number:

, 1 [ vpdv, — vydu, z(t)\ [ cost sint)\ [z
iv(p; ') = %ji vg+v§ S/ (y(t) ~ \—sint cost Y

(v, vy) ~ (—y, z) initially (vz,vy) ~ (y,z) initially

S ~~ 77
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counterclockwise center, source, sink, clockwise center

All have winding number +1 Only saddle has winding number -1



Vort

ices and stagnation points (saddles) for small angular momentum
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Vortices form lattices but Saddles aggregate =~
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Vortices and saddles at large angular momentum:

Change in local topology:
l, =41 l, =47

Topological phase transition

small [, ~ small

Saddle aggregation

l,increases

Vortex-saddle pairing

Kosterlitz-Thouless XY Model

uxy = (cos[arg],sinfarg])
Energy of vortices and saddles
(logarithmically) divergent

large [, ~ large [

IMPORTANT DIFFERENCE: Energy of vortices diverges but energy of saddles finite in London limit of GP!



How to resolve centers and - 1 1 o-dv. — v.dv
i i ion: i Al v(p;T) = — TV VT ey, Winding number
saddles in a given region: : f iv(p;T) 27T]€ 2 102 € ( g )
: A 1 N
: ' ny(p;T) = P ]{dl v €7 (Circulation)
R -
» z.v‘—/‘—r-l‘::-‘\\ \\ '\\\\: E;/h‘;z/‘//// Tangencies:
€2
external
11
Order parameter: Poincare index formula (for winding number)
i 1
5 Ty p]) ) — Index(F) = AT + 5 (II‘ — EI‘) (fOl" disk XF — 1)
J=1




Lessons:
" (Free) energy minima do not need to be critical points

This can take place when there are symmetries with conditions

= Energy minima that are not critical points are often time dependent

Timecrystalline dynamics, in Hamiltonian or Schrodinger context

* Time dependent minimum energy trajectories are symmetries

Spontaneous symmetry breaking seems to be prerequisite for time crystals

= New physical phenomena

Anyonic and timecrystalline vortices, topological phase transition in cold atoms, ...

= Examples of Poincaré Index formula and other index theorems

Centers, saddles and topology of 2D vector fields

What about D=3 (and higher) dimensions?




