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Important physical examples of gauge fields are realised  
in Nature (QCD and electroweak interactions)
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Non-perturbative QCD phenomena are far from being understood  
(e.g. quark confinement, mass gap, QCD phase transitions,  
hot/dense QCD phenomena etc)
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Non-abelian gauge (Yang-Mills) fields are present in most of UV completions of the 
Standard Model (e.g. GUTs, string/EDs compactifications etc)
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Confining dark Yang-Mills sectors are often considered as a possible  
source of Dark Matter in the Universe (e.g. dark glueballs)
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We focus on the case of pure gluons

What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)

Zhi-Wei Wang王志伟 (UESTC电子科技大学) PT and GW in Strongly Coupled DM 2024年6月1日 4 / 56
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Relic abundance of dark glueballs, ubiquitous in string theory, overcloses the 
Universe for confining sectors with critical temperature above the eV-scale (a big 
problem for phenomenology!)
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Vacuum in Quantum Physics vs in Cosmology
Vacuum energy

“Old” CC problem: Why such small and positive?

“New” CC problem: Why non-zeroth and exists at all?

Vacuum in Quantum Physics has incredibly wrong energy scale!

 “…the worst theoretical prediction 

in the history of physics“   
(Hobson 2006)

Topological QCD vacuum 
unique strongly-coupled subsystem!

Higgs condensate

in Quantum Physics in Cosmology

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.1)

1

• Let’s forget about the “bare” vacuum (DE: “phantom”, “quintessence”, “ghost”… etc) 
Zero vacuum density in the Minkowski limit, by (Casimir-like) definition, then (Zhitnitsky et al) 

• Let’s look closer at the vacuum state — why/how does it become “invisible” to gravity? 
     

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Λcosm ≡ εFLRW − εMink , (0.1)

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.2)

1

Quantum-topological (chromomagnetic) vacuum in QCD

Two possible approaches to this problem:

simply imposing a cancellation of the “bare” vacuum by hands!!
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it

is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].

✏vac⇠10�2GeV4
⇠108GeV4 (5)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the
corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-

otic cosmological objects can emerge.
In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-
ical evolution time leading to a universe where “coexist-
ing” bubbles of different broken phases expand simulta-
neously. In addition, even more exotic cosmological ob-
jects may emerge. Indeed, consider the second and third
steps in the pattern [0]!�!H2!H1, occurring at typ-
ical nucleation temperatures Tn(�!H2)&Tn(H2!H1).
Between Tn(�!H2) and Tn(H2!H1), the H2-bubbles
nucleate and expand in a universe filled with the �-phase.
Then at Tn(H2!H1), while they are still expanding, the
H1-bubbles emerge and nucleate inside the H2-bubbles.
As such, the �-phase becomes populated with the H2-
bubbles containing the H1-bubbles inside giving rise to
the “nested” bubbles. The new H1-bubbles would nucle-
ate in the parts of the universe that still remain in the �-
phase i.e. the direct �!H1 transition quickly eliminates
the �-phase outside of the H2-bubbles formed at an ear-
lier time. In the end of this process, one ends up with
the H1-bubbles inside the H2-bubbles which exist in a
universe filled with the H1-phase. Since the H2-bubbles
cannot expand in a universe filled with the stable H1-
phase, they are pushed inwards and collapse while the
H1-bubbles nucleate inside them representing the nucle-
ation of such “reoccurring” bubbles.

We would like to point out that a complete knowledge
of the bubble dynamics is needed in order to precisely de-
scribe the phase transitions, from nucleation to percola-
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An illustration: topological vs collective contributions

Quantum-wave (hadronic)
fluctuations

Quantum-topological (instanton)
fluctuations

non-perturbative QCD vacuum

exist at the same

space-time scales

have quantum numbers
of light hadrons

instantons/dyons carrying 
chromomagnetic and 

chromoelectric charges

Can they mutually cancel
each other? In principle, YES!

Taking into account ONLY

metastable hadrons 

!!!
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Effective YM action and gluon vacuum

gluon condensate - which CM or CE, or both?
trace anomaly:
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(A12) can be constructed keeping only the first two non-
vanishing harmonic Fourier-terms, namely,

g(t) ' A cos
⇣2⇡t
Tg

⌘
+ (1�A) cos

⇣6⇡t
Tg

⌘
, (A16)

A =
2

k

Z 1

0

g

(1� g2)3/4
cos

⇣
⇡

2k

Z 1

g

dx

(1� x2)3/4

⌘
dg ⇡ 1.14 .

In Fig. 11 we observe that the formula (A16) approxi-
mates the exact solution for the universal g(t) function
found from Eq. (A12) with a very good accuracy.
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Classical YM Lagrangian:

make basic concluding remarks.

II. SPATIALLY HOMOGENEOUS ISOTROPIC YM CONDENSATES

The gauge-invariant Lagrangian of the classical Yang-Mills (YM) field in the SU(N)
(N = 2, 3, . . . ) gauge theory reads

Lcl = −
1

4
F a
µνF

µν
a , (2.1)

where
F a
µν = ∂µA

a
ν − ∂νA

a
µ + gYM fabcAb

µA
c
ν

is the YM stress tensor with internal (adjoint rep) a, b, c = 1, . . . N2 − 1 and Lorentz µ, ν =
0, 1, 2, 3 indices. Here, gYM is the gauge coupling constant. The corresponding generating
functional of such a theory is given by the Euclidean functional integral

Z ∝
∫
[DA] e−Scl[A]+

∫
Ja
µA

a
µd

4x , Scl[A] =

∫
Lcld

4x , (2.2)

which is dominated by minima of the classical action Scl[A], the important particular case
being represented by instanton configurations [50] (for a detailed review, see e.g. Refs. [25–
27]).

Let us identify the spatially-homogeneous isotropic YM condensates in SU(N), N = 2, 3
gauge theory. For this purpose, it is most useful to work in the ghost-free temporal (Hamilton
or Weyl) gauge fixed by a condition

Aa
0 = 0 , (2.3)

which is the basis of the Hamiltonian formulation. In this gauge, the asymptotic states of
the S-matrix automatically contain transverse modes only which enables to formulate the
YM theory in the Heisenberg representation consistently beyond the PT (for more details,
see e.g. Ref. [53, 54]).

In the SU(2) gauge theory, due the local isomorphism of the isotopic SU(2) gauge group
and the SO(3) group of spatial 3-rotations, the unique (up to a rescaling) SU(2) YM con-
figuration in the temporal gauge can be parameterized in terms of a scalar time-dependent
spatially-homogeneous field U(t) and non-isotropic/non-homogeneous YM waves Ãak

(
t, #x

)

(see e.g. Refs. [5, 55–57]). In the QFT formulation, the inhomogeneous YM wave modes
Ãak are interpreted as YM quanta (e.g. gluons) while U(t) contributes to the ground state
of the theory. Below, we are focused only on the homogeneous YM mode

Aak

(
t, #x

)
= δakU(t) , a, k = 1, 2, 3 . (2.4)

In the absence of gravity, the spatially homogeneous isotropic part δikU(t) of Eq. (2.4)
satisfies the classical YM equations

(U̇)2 + g2YM U4 = const , (2.5)

which can be integrated analytically [34] in terms of Jacobi Elliptic functions,

U(t) = U0 cd(gYMU0t|− 1) , U(0) = U0 , U̇(0) = 0 . (2.6)
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Effective YM Lagrangian:

order to construct the realistic EYM equations describing YM condensate dynamics in a non-
stationary background of expanding Universe one must consistently incorporate, at least,
the lowest-order corrections from the vacuum polarisation in the effective YM Lagrangian.

The effective action and Lagrangian of the quantum gauge theory consistently accounting
for the trace anomaly relation [52] is given in terms of the gauge-invariant operator of the
least dimension J by [44]

Seff [A] =

∫
Leffd

4x , Leff =
J

4g2YM(J)
, J = −F2 , F2 ≡ Fa

µνFµν
a , (3.1)

respectively, where Aa
µ ≡ gYMAa

µ and Fa
µν ≡ gYMF a

µν . One considers the effective action
(3.1) as a classical model [44] which possesses well-known properties of the full quantum
theory such as (i) local gauge invariance, (ii) RG evolution and asymptotic freedom, (iii)
correct quantum vacuum configurations, and (iv) trace anomaly. These provide a sufficient
motivation and physics interest in cosmological aspects of the considering effective model.

In asymptotically free gauge theories like QCD the quantum vacuum configurations are
controlled by the strong coupling regime. Performing an analysis in Euclidean spacetime,
in Ref. [44] it was shown that the vacuum value of the gauge invariant 〈J〉 in a strongly-
coupled quantum gauge theory does not vanish as it does in the classical gauge theory and
the corresponding functional integral is not dominated by the minima of the classical action
(2.2). Moreover, it was shown that there are no instanton solutions to the effective action
(3.1) such that the ground state of the quantum YM theory does not contain the classical
instanton configurations. Instead, the quantum vacuum can be understood as a state with
ferromagnetic properties (Savvidy vacuum) which undergoes the spontaneous magnetisation
providing a consistent description of the nonperturbative QCD vacuum alternative to the
conventional instanton model [44].

The PT can be applied to the effective action in the limit of large mean fields, i.e.
J → ∞, away from the classical ground state. To the one-loop approximation widely used
in the literature [5, 34, 43, 44], the effective Lagrangian of the considered effective theory
properly generalised to the FLRW background reads (see also Ref. [11])

L1−loop
eff =

b J

128π2
ln
( J

(ξλ)4

)
, J = −

Fa
µνFµν

a√
−g

=
6

a4

[
a2U̇2 −

1

4
U4

]
, g ≡ det(gµν) ,

gµν = a(η)2diag(1, −1, −1, −1) ,
√
−g = a4(η) , t =

∫
a(η)dη . (3.2)

where b is the one-loop β-function coefficient (e.g. in pure SU(3) gauge theory b = 11) free
parameter ξ reflects an arbitrariness in multiplicative normalisation of the invariant J , and
λ is the scale parameter. In what follows, we are interested in the chromoelectric mirror
gluon condensate corresponding to J > 0. Both parameters ξ and λ are not fixed by the
theory but can be determined from phenomenology in realistic gauge theories such as QCD
where λ → ΛQCD ( 280 MeV.

Now we come to an analysis of the equations of motion for physical time evolution of
the homogeneous YM condensate in the effective YM action approach in the cosmological
environment. For this purpose, we first consider the perturbative effective toy-model (3.2)
and then extend it to the generic non-perturbative case (3.1). While an extrapolation of
the effective one-loop approximated Lagrangian of SU(3) gauge theory into deeply infrared
(strongly-coupled) regime for the QCD and MQCD vacua has very little physical sense, we
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significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows

�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

✓
1�

�(ḡ2)

2

◆�
= 0 , (2)

�!
D

ab
⌫ ⌘

⇣
�ab
�!
@ ⌫
p
�g

p
�g

� fabc
A

c
⌫

⌘
, (3)

d ln |ḡ2|

d ln |J |/µ4
0

=
�(ḡ2)

2
, (4)

where µ0 is a scale parameter. Thus, for the system of
equations (2), we find the exact (partial) ground-state
solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

which we refer to the CE condensate, in what follows.
Is this the only possible ground state solution in a YM
theory?

III. MIRROR SYMMETRY

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2 ⇥ Z0
2-symmetric w.r.t. si-

multaneous permutations

Z2 : J
⇤
 ! �J

⇤ , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

NOTE however, that the RG equation itself

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at

least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].

✏vac⇠10
�2GeV4

⇠108GeV4 (5)

Z2: J !�J , (6)

Le↵=
J

4ḡ2(J )
, J=�Fa

µ⌫F
µ⌫
a , (7)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the

corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-
otic cosmological objects can emerge.

In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-
ical evolution time leading to a universe where “coexist-
ing” bubbles of different broken phases expand simulta-
neously. In addition, even more exotic cosmological ob-
jects may emerge. Indeed, consider the second and third
steps in the pattern [0]!�!H2!H1, occurring at typ-
ical nucleation temperatures Tn(�!H2)&Tn(H2!H1).
Between Tn(�!H2) and Tn(H2!H1), the H2-bubbles
nucleate and expand in a universe filled with the �-phase.
Then at Tn(H2!H1), while they are still expanding, the
H1-bubbles emerge and nucleate inside the H2-bubbles.
As such, the �-phase becomes populated with the H2-
bubbles containing the H1-bubbles inside giving rise to
the “nested” bubbles. The new H1-bubbles would nucle-
ate in the parts of the universe that still remain in the �-
phase i.e. the direct �!H1 transition quickly eliminates
the �-phase outside of the H2-bubbles formed at an ear-
lier time. In the end of this process, one ends up with
the H1-bubbles inside the H2-bubbles which exist in a
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Between Tn(�!H2) and Tn(H2!H1), the H2-bubbles
nucleate and expand in a universe filled with the �-phase.
Then at Tn(H2!H1), while they are still expanding, the
H1-bubbles emerge and nucleate inside the H2-bubbles.
As such, the �-phase becomes populated with the H2-
bubbles containing the H1-bubbles inside giving rise to
the “nested” bubbles. The new H1-bubbles would nucle-
ate in the parts of the universe that still remain in the �-
phase i.e. the direct �!H1 transition quickly eliminates
the �-phase outside of the H2-bubbles formed at an ear-
lier time. In the end of this process, one ends up with
the H1-bubbles inside the H2-bubbles which exist in a
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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2(|J |) (8)

T
⌫
µ=

1

ḡ2
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�(ḡ2)

2

i⇣
F

a
µ�F

⌫�
a �

1

4
�
⌫
µJ

⌘
��

⌫
µ
�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in

the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the
corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-
otic cosmological objects can emerge.

In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-

Equations of motion:

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2

✓
1�

�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
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Note, the RG equation (4) is symmetric w.r.t. separate
Z2 and Z0

2 transformations. These important symmetry
properties have relevant consequences on the stability of
the ground-state YM solutions in Minkowski spacetime.
Note, the Z0

2 symmetry e↵ectively “maps” the CE con-
densate solution with J

⇤ > 0 found in Eq. (5) to another,
CM condensate solution J

⇤ < 0, and vice versa. More-
over, due to the fact that the e↵ective Lagrangian Eq. (1)
is invariant under the Z2⇥Z0

2 symmetry, the CE (J ⇤ > 0)
and the CM (J ⇤ < 0) vacua should be associated with
two equal (mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form
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For the CM vacuum case, the energy-momentum tensor
appears more complicated:
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
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Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be
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Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) �-function reads
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Taking the position of the minimum of the e↵ective La-
grangian as the physical scale of the considering quantum
YM theory, i.e.
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we observe that indeed Z0
2 symmetry is a symmetry of

the ground state only.
Note, for one of the two possible branches related by
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Thus, the corresponding one-loop e↵ective action for the
pure SU(N) gauge theory takes the following form
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such that one recovers the well-known results obtained by
Savvidy in Ref. [10]. Note, due to the Z2⇥Z0

2 symmetry,
the CM and CE condensates correspond to the mirror
minima with the same value of the e↵ective Lagrangian.
In Fig. 1, we show the e↵ective SU(2) YM theory

Lagrangian dependence on J /�4 corresponding to one
particular branch of the RG equation (4) with J > 0.
As anticipated, there is a single minimum in the non-
perturbative domain 0 < J

⇤ < �4, hence, identified with
the CE condensate. The Mirror CM condensate solution
can then be obtained by means of Z2 ⇥ Z0

2 transforma-
tion (7), and it corresponds to the conventional one-loop
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FIG. 1. The e↵ective SU(2) YM theory Lagrangian depen-
dence on J /�4 corresponding to one particular branch of the
RG equation (4) with J > 0. The curves corresponding to
the one-loop and all-loop e↵ective Lagrangians are practically
indistinguishable.

result for the trace anomaly in SU(N) YM gluodynamics
(known e.g. from lattice QCD simulations).

How well the one-loop approximation reproduces the
all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. As is illustrated explicitly by two curves in Fig. 1,
the one-loop and the all-loops solutions approach the
zero of the e↵ective action at exactly the same values of
J = 0 and J = �4. The solutions also exhibit min-
ima that, although do not coincide, are very close to
each other: at one loop, |J

⇤
|/�4 = 1

e ' 0.3679 , and
L
⇤
e↵/�

4 = ±b/(192⇡2e) ' ±2.135 · 10�3; at all loops

|J
⇤
|/�4

' 0.3693 , and L
⇤
e↵/�

4 = ±2.163 · 10�3. Remark-
ably, the ground-state solutions for one-loop and all-loops
cases di↵er only at a per-mille level.
It is worth emphasizing that is not reductive to focus

on SU(2) YM theory. For any SU(N) gauge group, the
cosmological instantiation will be provided by the SU(2)
subgroups, for which an isomorphism between indices of
the adjoint representation and spatial indices may be re-
covered. On the other hand, the calculation of the super-
trace would be technically very di�cult to be achieved.
Because of the lack of any physical advantage, we can
skip this point without any loss of generality and physi-
cal insight.
As the bottomline of this consideration, for the two

mirror vacua found from Eq. (5), the net energy density
gets both CM (perturbative) and CE (nonperturbative)
vacua contributions with an equal modulus but an oppo-
site sign which therefore cancel out

✏CE
vac

��
J ⇤>0

+ ✏CM
vac

��
J ⇤<0

⌘ 0 , (20)

if and only if both vacua do co-exist in the ground state
of the Universe. We notice that this statement is valid
both in one-loop and all-loops cases. From such a simple
argument the vacuum energy-density cancellation may
be envisaged. In the case of strongly-coupled SU(3) glu-
odynamics, such a cancellation is expected to happen be-
yond the confinement length-scale which would automat-
ically yield vanishing mean-fields of gluons at large dis-
tances (when averaged over macroscopic volumes). The
co-existence of the vacua in the quantum ground state
thus implies their mutual screening, yielding a vanishing
CC term in consistency with cosmological observations.

FIG. 2. The total energy density T 0
0 (t) of the homogeneous gluon condensate (left), the trace of the total QCD energy-

momentum tensor Tµ
µ (t) (middle) and the logarithm of the scale factor a(t) (right), are illustrated as functions of the physical

time t =
R
ad⌘ and in units of the characteristic time scale ⇤�1

QCD. The total energy density and the trace values for Q0 ⌘
Q(t0) = 1 are indicated by horizontal lines in the left and middle panels, respectively. Here, the initial conditions are chosen
as U0 = 0, U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ⇠ ' 4, and the gravitational constant is set to { = 10�7MeV�2, for simplicity of the

numerical analysis. Both quantities T 0
0 (t) and Tµ

µ (t) are plotted in dimensionless units, and thus are rescaled by ⇤4
QCD. The

amplitude of the quasi-periodic oscillations of Q = Q(t) decreases at large t � ⇤�1
QCD, and asymptotically approaches unity,

corresponding to the partial (de-Sitter) solution of the equations of motion.

IV. HOMOGENEOUS YM CONDENSATES

A gauge-invariant description of spatially homogeneous
isotropic YM condensates, which depend only on time,

can be obtained, assuming the gauge condition Aa
0 = 0.

Due to the local isomorphism of the isotopic SU(2) gauge

4

At least, for SU(2) gauge symmetry,
the all-loop and one-loop effective Lagrangians

are practically indistinguishable (by FRG approach)

(B16) can be constructed keeping only the first two non-
vanishing harmonic Fourier-terms, namely,

g(t) ' A cos
⇣2⇡t
Tg

⌘
+ (1�A) cos

⇣6⇡t
Tg

⌘
, (B20)

A =
2

k

Z 1

0

g

(1� g2)3/4
cos

⇣ ⇡

2k

Z 1

g

dx

(1� x2)3/4

⌘
dg ⇡ 1.14 .

In Fig. 6 we observe that the formula (B20) approximates
the exact solution for the universal g(t) function found
from Eq. (B16) with a very good accuracy.
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Figure 10: The graph of W-function with its two real branches W0(x) and W≠1(x). The two branches
merge at the point (≠1/e, ≠1).

13 Appendix A

The Lambert-Euler W-function W (x) is the solution of the equation [68, 69, 70]:

We
W = x. (13.167)

There are two real branches of W (x) (see Fig.10). The solution for which ≠1 Æ W (x) is the principal

branch and denoted as W0(x). The solution satisfying W (x) Æ ≠1 is denoted by W≠1(x). On the

x-interval [0, Œ) there is one real solution, and it is nonnegative and increasing. On the x-interval

[≠1/e, 0) there are two real solutions, one increasing and the other one decreasing. Properties include:

W0(≠1/e) = W≠1(≠1/e) = ≠1, W0(0) = 0, W0(e) = 1, , W0(e1+e) = e, (13.168)

W0(x) =
Œÿ

n=1

(≠n)n≠1

n! x
n = x ≠ x

2 + 3
2x

3
..., |x| < 1/e,

W0(x) = log x ≠ log log x + O

1 log log x

log x

2
, x æ +Œ

W≠1(x) = ≠ log(≠ 1
x

) ≠ log log(≠ 1
x

) + O

1 log log(≠ 1
x)

log(≠ 1
x)

2
, x æ ≠0
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Figure 10: The graph of W-function with its two real branches W0(x) and W≠1(x). The two branches
merge at the point (≠1/e, ≠1).
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Is this RGE symmetry an 
accident, or smth deeper?

Version February 26, 2019 submitted to Journal Not Specified 3 of 19

In what follows, the running coupling constant gYM recasts conventionally as ḡ, so to encode the77

dependence on J in the effective Lagrangian Leff, namely,78

Leff =
J

4ḡ2 , ḡ2 = ḡ2(J ) , J = �
F a

µnF
µn
a

p
�g

, (1)

where g ⌘ det(gµn), gµn = a(h)2diag(1, �1, �1, �1) is the FLRW metric, Aa
µ are the SU(N)79

connections and F a
µn – their field-strength. Through the paper a, b, ... denote internal indices of80

SU(N) in the adjoint representation.81

For FLRW metrics J simplifies into

J =
2

p
�g Â

a
(Ea · Ea � Ba · Ba) ⌘

2
p
�g

(E2
� B2) ,

which is cast in terms of the electric field Ea and the magnetic field Ba components. We define the82

spatial average quantity hJ i, and distinguish the cases in which: i) hJ i is positive, meaning that the83

average chromo-electric (CE) components hE2i dominate over the averaged chromo-magnetic (CM)84

terms hB2i; ii) viceversa, the case of a chromo-magnetically dominated state hJi < 0 corresponds to a85

CM condensate.86

Through the rest of the paper we will work only with spatially averaged quantities, thus from87

now on we remove the h. . . i, for simplicity. Our approach must be thought as a chromo-dynamical88

mean field theory, in analogy to many condensed matter models1. In the minimum of the effective89

Lagrangian, the spatially-homogeneous CE and CM condensates correspond to positive- and90

negative-valued energy densities, respectively. In a non-stationary background of expanding Universe,91

these condensates yield stable de-Sitter (dS) and anti-de-Sitter (AdS) attractor solutions with positive92

and negative cosmological constants, respectively.93

The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2b ,

where b = b(ḡ2) and the running of the coupling constant ḡ2 is determined by the exact b-function —94

both the quantities can be either positive or negative, in general.95

By the standard variational procedure, starting from the effective action (1) we arrive at the all-loop
effective YM equations of motion, supplemented by the RG equation, which can be represented as
follows

�!
D

ab
n

"
F

µn
b

ḡ2p�g

✓
1 �

b(ḡ2)
2

◆#
= 0 , (2)

�!
D

ab
n ⌘

⇣
dab

�!
∂ n

p
�g

p
�g

� f abc
A

c
n

⌘
, (3)

d ln |ḡ2|

d ln |J |/µ4
0
=

b(ḡ2)
2

, (4)

where µ0 is a scale parameter. Thus, for the system of equations (2), we find the exact (partial)96

ground-state solution97

b(ḡ2
⇤) = 2 , ḡ2

⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

1 For example, the Ginzburg-Landau model describes the evolution of spatially averaged observables in superconductive
materials, which in turn are crystals with local impurities and anisotropies — see e.g. Ref. [33].

Version February 26, 2019 submitted to Journal Not Specified 6 of 19

Figure 1. The effective SU(2) YM theory Lagrangian dependence on J /l4 corresponding to one
particular (chromoelectric) branch of the RG equation (4) with J > 0. The curves corresponding to the
one-loop and all-loop effective Lagrangians are practically indistinguishable.

both RG solutions for ḡ2
1(J ) related by the mirror symmetry have exactly the same form as in Eq. (16)139

but having different physical scales l±140

l4
± = |J

⇤
| exp

h
⌥

96p2

bN|ḡ2
1(J

⇤)|

i
, (19)

such that the two-scale structure of the gluonic vacuum is manifest.141

In Fig. 1, we show the effective SU(2) YM theory Lagrangian dependence on J /l4 corresponding142

to one particular branch of the RG equation (4) with J > 0 (CE configuration). As anticipated,143

there is a single minimum in the non-perturbative domain 0 < J ⇤ < l4, hence, identified with144

the CE condensate. The Mirror CM condensate solution can then be obtained by means of Z2145

transformations (6), and it corresponds to the conventional one-loop result for the trace anomaly146

in SU(N) YM gluodynamics (known e.g. from lattice QCD simulations). Notably, applying the Z2147

transformations to the physical scale of the CE configuration (17) one gets a smaller physical scale of148

the CM configuration, such that the corresponding CM condensate J ⇤ < 0 appears in the perturbative149

|J ⇤| > l4 domain, with a positive ḡ2
1(J

⇤) > 0.150

How well the one-loop approximation reproduces the all-loops vacuum state, given by the151

non-perturbative ground-state solutions in Eq. (5)? We can answer this question focusing on the case152

of SU(2), which is also relevant for cosmology, in the framework of FRG [14–16]. As is illustrated153

explicitly by two curves in Fig. 1 for the CE branch, the one-loop and the all-loops CE solutions154

approach the zero of the effective action at exactly the same values of J = 0 and J = l4. The155

solutions also exhibit minima that, although do not coincide, are very close to each other: at one loop,156

|J ⇤|/l4 = 1
e ' 0.3679 , and L⇤

eff/l4 =±b/(192p2e)' ±2.135 · 10�3; at all loops |J ⇤|/l4 ' 0.3693 ,157

and L⇤

eff/l4 = ±2.163 · 10�3. Remarkably, the CE ground-state solutions for one-loop and all-loops158

cases differ only at a per-mille level. By means of the Mirror symmetry, the same applies for the CM159

configuration as well.160

It is worth emphasizing that is not reductive to focus on SU(2) YM theory. For any SU(N)161

gauge group, the cosmological instantiation will be provided by the SU(2) subgroups, for which an162

isomorphism between indices of the adjoint representation and spatial indices may be recovered. On163

the other hand, the calculation of the super-trace would be technically very difficult to be achieved.164

Because of the lack of any physical advantage, we can skip this point without any loss of generality165

and physical insight.166

As the bottomline of this consideration, for the two Mirror vacua found from Eq. (5), the net167

energy density gets both CM (perturbative) and CE (nonperturbative) vacua contributions with an168

equal modulus but an opposite sign which therefore cancel out169

eCE
vac

��
J ⇤>0 + eCM

vac
��
J ⇤<0 ⌘ 0 , (20)
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In what follows, the running coupling constant gYM recasts conventionally as ḡ, so to encode the77

dependence on J in the effective Lagrangian Leff, namely,78

Leff =
J

4ḡ2 , ḡ2 = ḡ2(J ) , J = �
F a

µnF
µn
a

p
�g

, (1)

where g ⌘ det(gµn), gµn = a(h)2diag(1, �1, �1, �1) is the FLRW metric, Aa
µ are the SU(N)79

connections and F a
µn – their field-strength. Through the paper a, b, ... denote internal indices of80

SU(N) in the adjoint representation.81

For FLRW metrics J simplifies into

J =
2

p
�g Â

a
(Ea · Ea � Ba · Ba) ⌘

2
p
�g

(E2
� B2) ,

which is cast in terms of the electric field Ea and the magnetic field Ba components. We define the82

spatial average quantity hJ i, and distinguish the cases in which: i) hJ i is positive, meaning that the83

average chromo-electric (CE) components hE2i dominate over the averaged chromo-magnetic (CM)84

terms hB2i; ii) viceversa, the case of a chromo-magnetically dominated state hJi < 0 corresponds to a85

CM condensate.86

Through the rest of the paper we will work only with spatially averaged quantities, thus from87

now on we remove the h. . . i, for simplicity. Our approach must be thought as a chromo-dynamical88

mean field theory, in analogy to many condensed matter models1. In the minimum of the effective89

Lagrangian, the spatially-homogeneous CE and CM condensates correspond to positive- and90

negative-valued energy densities, respectively. In a non-stationary background of expanding Universe,91

these condensates yield stable de-Sitter (dS) and anti-de-Sitter (AdS) attractor solutions with positive92

and negative cosmological constants, respectively.93

The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2b ,

where b = b(ḡ2) and the running of the coupling constant ḡ2 is determined by the exact b-function —94

both the quantities can be either positive or negative, in general.95

By the standard variational procedure, starting from the effective action (1) we arrive at the all-loop
effective YM equations of motion, supplemented by the RG equation, which can be represented as
follows
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⌘
, (3)

d ln |ḡ2|

d ln |J |/µ4
0
=

b(ḡ2)
2

, (4)

where µ0 is a scale parameter. Thus, for the system of equations (2), we find the exact (partial)96

ground-state solution97

b(ḡ2
⇤) = 2 , ḡ2

⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

1 For example, the Ginzburg-Landau model describes the evolution of spatially averaged observables in superconductive
materials, which in turn are crystals with local impurities and anisotropies — see e.g. Ref. [33].
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Heterogenous quantum ground state: two-scale vacuum
The running coupling at one-loop

with two energy scales

CE vacuum:
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p
|J | , µ2
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|J ⇤| (7)

↵s(µ
2
0)  ! �↵s(µ

2
0) (8)

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2⇥Z0
2-symmetric w.r.t. simul-

taneous permutations

Z2 : J
⇤
 ! �J

⇤ , (9)
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⇤) ,

|J
⇤
|

�4
CE

 !
�4
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|J ⇤|
, �4

CM < |J
⇤
| < �4

CE ,(10)

where the ground-state value of J -invariant satisfies

|J
⇤
| = �2

CE�
2
CM . (11)

Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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ḡ2
p
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

Tµ
µ = �

�(ḡ2⇤)

8ḡ2⇤
J

⇤ = �
1

4ḡ2⇤
J

⇤ . (14)

For the CM vacuum case, the energy-momentum tensor
appears more complicated:

T ⌫
µ =

2

ḡ2
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1

4ḡ2⇤
J

⇤ . (16)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (17)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (18)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
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bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (19)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (17) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (12))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit
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CM (J ⇤ < 0) vacua should be associated with two equal
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We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
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ḡ2(1) , ḡ2(1) =
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CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
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e.o.m. is automatically
satisfied!

Reduces to the standard YM e.o.m. 
discussed in e.g. in instanton theory 

Trace anomaly: Trace anomaly:

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
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are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
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that the observation of such a pattern would provide us
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EWPT. However, in the considered toy-model, such sig-
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not expected to be detectable in the currently planned
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the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2⇤
J

⇤
. (11)

�!
D

ab
⌫


F

µ⌫
b

ḡ2
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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2=ḡ
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter

is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter

is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2⇤
J

⇤
. (11)

�!
D

ab
⌫


F

µ⌫
b

ḡ2
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter

is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2

h
�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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while the RG equation (4) is symmetric w.r.t. separate
Z2 and Z0

2 transformations. These important properties
have relevant consequences on the stability of the ground-
state YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J | < �4 to a perturbative regime corresponding to
|J | > �4, and vice versa. Moreover, due to the fact
that the e↵ective Lagrangian Eq. (1) is invariant under
the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the CM
(J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian such that
the turning point among the two “mirror vacua” corre-
sponds to |J | = �4. Remarkably, the two mirror minima
of the e↵ective Lagrangian have an opposite energy den-
sity which is found as

✏ ⌘
1

4
hTµ

µ ivac = �
�(ḡ2⇤)

2
Le↵(J

⇤) . (8)

Indeed, the J⇤ $ �J⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
simultaneously flipping the sign of the �-function and ḡ2⇤
for a fixed minimal (negative) value of Le↵ .
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FIG. 1. The dimensionless ratio Le↵/�
4 (achieved in terms

of �, the dimensionfull scale of reference for the e↵ective YM
theory) is shown, within the e↵ective SU(2) theory (" = 0.01,
see Appendix A 1), as a function of J /�4 for the one-loop
and all-loops (FRG) cases corresponding to a single branch of
the RG equation. For this particular branch, the minimum is
reached for 0 < J⇤ < �4 in the non-perturbative domain and,
thus, corresponds to the CE condensate.

The Perturbation Theory can be applied to the e↵ec-
tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.

The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (9)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (10)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J | > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (8) coin-

cides with the sign of L(1)
e↵ (J ), and thus with the sign of

J . The well-known topological QCD vacuum density is
negative, i.e. J < 0, which implies that it is dominated
by the CM vacuum component.
In Fig. 1 we show the dimensionless ratio Le↵/�4, for

the e↵ective SU(2) theory with a single minimum in the
nonperturbative domain |J⇤|/�4 < 1 corresponding to
the CE condensate (J⇤ > 0). As noticed above, thanks
to the Z2⇥Z0

2 symmetry of the e↵ective Lagrangian and
the RG equation, there are in fact two stable vacuum
configurations. Thus, for the CE vacuum in Fig. 1 there
is a corresponding mirror CM vacuum (J⇤ < 0) which
would also be a stable solution in the perturbative regime
|J⇤|/�4 > 1 with the same value of Le↵(J ⇤) < 0. Note,
the latter CM solution is obtained here by a Z0

2 trans-
formation of the nonperturbative CE minimum shown in
Fig. 1. It is therefore neatly identified with the conven-
tional topological QCD vacuum density.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also rele-
vant for cosmology, in the framework of FRG [14–16]. As
is seen in Fig. 1, it appears that the one-loop and the all-
loops curves approach the zero of the e↵ective action at
exactly the same values of J = 0 and J = �4. The curves
also exhibit extrema that, although do not coincide, are
very close to each other: at one loop, |J ⇤

|/�4 = 1
e '

0.3679 , and L
⇤
e↵/�

4 =±b/(192⇡2e)' ±2.135 · 10�3; at
all loops |J ⇤

|/�4
' 0.3693 , and L

⇤
e↵/�

4 = ±2.163 · 10�3.
Remarkably, the ground-state solutions for one-loop and
all-loops cases di↵er only at a per-mille level.
It is worth emphasizing that is not reductive to focus

on SU(2) YM theory. For any SU(N) gauge group, the
cosmological instantiation will be provided by the SU(2)
subgroups, for which an isomorphism between indices of
the adjoint representation and spatial indices may be re-
covered. On the other hand, the calculation of the super-
trace would be technically very di�cult to be achieved.
Because of the lack of any physical advantage, we can
skip this point without any loss of generality and physi-
cal insight.
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significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows
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ḡ2
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�g

✓
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= 0 , (2)
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p
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� fabc
A

c
⌫

⌘
, (3)

d ln |ḡ2|

d ln |J |/�4
=

�(ḡ2)

2
. (4)

where � is the physical scale of the e↵ective YM theory.
Thus, for the system of equations (2), we find the exact
(partial) ground state solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , (5)

which we refer to as “non-perturbative vacuum” realised
at J ⇤ > 0, or the CE condensate, in what follows. Is this
the only possible ground state solution in a YM theory?

III. MIRROR SYMMETRY

It is worth noticing that the e↵ective YM Lagrangian (1)
is Z2 ⇥ Z0

2-symmetric w.r.t. simultaneous permutations

Z2 : J  ! �J , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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�(ḡ2)

2
�1

i⇣
F

a
µ�F

⌫�
a +

1

4
�
⌫
µJ

⌘
��

⌫
µ
�(ḡ2)
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ḡ2⇤
J

⇤
. (11)

�!
D

ab
⌫


F

µ⌫
b

ḡ2
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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�(ḡ2)

8ḡ2
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[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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2
⇤ , �(ḡ2⇤)  ! ��(ḡ

2
⇤) , (7)

Note, the RG equation (4) is symmetric w.r.t. separate
Z2 and Z0

2 transformations. These important symmetry
properties have relevant consequences on the stability of
the ground-state YM solutions in Minkowski spacetime.
Note, the Z0

2 symmetry e↵ectively “maps” the CE con-
densate solution with J

⇤ > 0 found in Eq. (5) to another,
CM condensate solution J

⇤ < 0, and vice versa. More-
over, due to the fact that the e↵ective Lagrangian Eq. (1)
is invariant under the Z2⇥Z0

2 symmetry, the CE (J ⇤ > 0)
and the CM (J ⇤ < 0) vacua should be associated with
two equal (mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form
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For the CM vacuum case, the energy-momentum tensor
appears more complicated:
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =
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ḡ2⇤
J

⇤ . (12)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be
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Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) �-function reads
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and the corresponding solution of the RG equation (4) is
given by
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Taking the position of the minimum of the e↵ective La-
grangian as the physical scale of the considering quantum
YM theory, i.e.

µ4
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we observe that indeed Z0
2 symmetry is a symmetry of

the ground state only.
Note, for one of the two possible branches related by

Z2 ⇥Z0
2 symmetry (7), the RG solution (15) can be con-

ventionally rewritten as
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Thus, the corresponding one-loop e↵ective action for the
pure SU(N) gauge theory takes the following form
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such that one recovers the well-known results obtained by
Savvidy in Ref. [10]. Note, due to the Z2⇥Z0

2 symmetry,
the CM and CE condensates correspond to the mirror
minima with the same value of the e↵ective Lagrangian.
In Fig. 1, we show the e↵ective SU(2) YM theory

Lagrangian dependence on J /�4 corresponding to one
particular branch of the RG equation (4) with J > 0.
As anticipated, there is a single minimum in the non-
perturbative domain 0 < J

⇤ < �4, hence, identified with
the CE condensate. The Mirror CM condensate solution
can then be obtained by means of Z2 ⇥ Z0

2 transforma-
tion (7), and it corresponds to the conventional one-loop
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
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the energy density per logarithmic frequency of the GW
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a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.
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rally lead to the multi-peaked signatures in the power
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is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2

�
=0, ḡ
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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2
⇤),

Le↵=
J
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Cosmological CM attractor

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2⇥Z0
2-symmetric w.r.t. simul-

taneous permutations
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where the ground-state value of J -invariant satisfies
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Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form
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For the CM vacuum case, the energy-momentum tensor
appears more complicated:
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =
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4ḡ2⇤
J

⇤ . (14)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
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4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (15)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads
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ḡ2(1) , ḡ2(1) =
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where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,
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one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (15) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (10))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit
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ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J | ! 1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
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significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows
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where � is the physical scale of the e↵ective YM theory.
Thus, for the system of equations (2), we find the exact
(partial) ground state solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , (5)

which we refer to as “non-perturbative vacuum” realized
at J ⇤ > 0, or the CE condensate, in what follows. Is this
the only possible ground state solution in a YM theory?

III. MIRROR SYMMETRY

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2 ⇥ Z0
2-symmetric w.r.t. si-

multaneous permutations

Z2 : J
⇤
 ! �J

⇤ , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

• Basic qualitative features on the non-perturbative YM action  
are noticed already at one loop

FLRW metric in conformal time:

significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F
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p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows
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d ln |ḡ2|

d ln |J |/µ4
0

=
�(ḡ2)

2
, (4)

where µ0 is a scale parameter. Thus, for the system of
equations (2), we find the exact (partial) ground-state
solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

which we refer to the CE condensate, in what follows.
Is this the only possible ground state solution in a YM
theory?

III. MIRROR SYMMETRY

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2 ⇥ Z0
2-symmetric w.r.t. si-

multaneous permutations

Z2 : J
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 ! �J

⇤ , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].
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A. EYM equations of motion

By the variational principle, one obtains the EYM system of operator equations of motion
in a non-trivial spacetime
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where e is the base of the natural logarithm, T ν
µ
,mat corresponds to the energy-momentum

tensor of all the matter fields (except the considering YM field), and the ground-state energy
density

Λ̄ = ΛQCD
inst + Λcosm (4.2)

accounting for the QCD instanton effect (1.1) and the observable Λ-term (1.2) only. Note,
from now on in all the derivations below we perform a rescaling of the gluon condensate as
gYMU(t) → U(t) following the procedure (2.3) for convenience.

In what follows, we work in the flat FLRW conformal metric

gµν = a(η)2diag(1, −1, −1, −1), ,
√
−g = a4(η) , t =

∫
a(η)dη .

Besides, we apply Eq. (3.12) in the Weyl gauge and neglect quantum-wave fluctuations S̃ak

assuming that the homogeneous gluon condensate U(t), introduced in the previous Section,
strongly dominates at considered spacetime scales. Under these conditions, the system of
equations of motion describing conformal time evolution of the gluon condensate U = U(η)
and the scale factor a = a(η) reads
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16π2a4
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4
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a4(ξλ)4
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where ε and p are the energy density and pressure of the cosmological plasma excluding Λ̄
and the homogeneous gluon condensate. An additional coefficient 1/2 appears in front of
the QCD coupling constant (which has been absorbed into the definition of the gluon field)
as compared to the SU(2) condensate case considered earlier in Ref. [33]. The first integral
of Eq. (4.3) is the Einstein (0, 0)-equation and reads

3

κ

(a′)2

a4
= ε+ Λ̄+ T 0,YM

0 ,

T 0,YM
0 =

3b

64π2a4
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(U ′)2 +

1

4
U4
]
ln

6e
∣∣(U ′)2 − 1

4U
4
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a4(ξλ)4
+ (U ′)2 −

1

4
U4
)
. (4.4)

The energy density ε and the pressure p of the ordinary matter are irrelevant for discussions
of the dynamical properties of the gluon condensate in early Universe and will thus be
omitted in practical calculations.
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where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory

Ak = Aak
�a

2
,

h�a

2
,
�b

2

i
= ifabc

�c

2
, (A10)

using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows

Aak =
�
�a,7�k,1 � �a,5�k,2 + �a,2�k,3

�
U(t) + eAak ,(A11)

for a = 1, . . . , 8 and eAak = eAak

�
t,x
�
. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
1

4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.

Appendix B: One-condensate model: Einstein-YM
equations of motion

By the variational principle, one obtains the EYM system
of operator equations of motion in a non-trivial spacetime
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We thank H.-P. Pavel for pointing out to us the ansatz (A11)

and the simple rescaling of the coupling constant.

where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
topological QCD e↵ect and the observable CC only.
The system of equations of motion describing confor-

mal time evolution of the gluon condensate U = U(⌘)
and the scale factor a = a(⌘) reads
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The first integral of Eq. (B2) is the Einstein (0, 0)-
equation and reads
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a. The general asymptotic solutions of the EYM system

Omitting ordinary matter components in the cosmo-
logical plasma, the system of EYM equations (B2), (B3)
in physical time reads
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where the energy desity of the gluon condensate and the
trace in the one-loop e↵ective YM theory read
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respectively. Since U(t) has quasi-periodic singularities,
it is more convenient to work in terms of a new continuous
universal function g = g(t) defined as
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such that the equations (B4) can be written explicitly in
terms of continuous functions

6

{

h ä
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where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows

Aak =
�
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for a = 1, . . . , 8 and eAak = eAak
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. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
1

4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.

Appendix B: One-condensate model: Einstein-YM
equations of motion

By the variational principle, one obtains the EYM system
of operator equations of motion in a non-trivial spacetime
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where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
topological QCD e↵ect and the observable CC only.
The system of equations of motion describing confor-

mal time evolution of the gluon condensate U = U(⌘)
and the scale factor a = a(⌘) reads
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The first integral of Eq. (B2) is the Einstein (0, 0)-
equation and reads
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a. The general asymptotic solutions of the EYM system

Omitting ordinary matter components in the cosmo-
logical plasma, the system of EYM equations (B2), (B3)
in physical time reads

6

{

h ä
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Einstein-YM equations of motion for the effective YM theory:

where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows
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. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
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4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.
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where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
topological QCD e↵ect and the observable CC only.
The system of equations of motion describing confor-

mal time evolution of the gluon condensate U = U(⌘)
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The first integral of Eq. (B2) is the Einstein (0, 0)-
equation and reads
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a. The general asymptotic solutions of the EYM system

Omitting ordinary matter components in the cosmo-
logical plasma, the system of EYM equations (B2), (B3)
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respectively. Since U(t) has quasi-periodic singularities,
it is more convenient to work in terms of a new continuous
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such that the equations (B4) can be written explicitly in
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where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows

Aak =
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U(t) + eAak ,(A11)

for a = 1, . . . , 8 and eAak = eAak

�
t,x
�
. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
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4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.

Appendix B: One-condensate model: Einstein-YM
equations of motion

By the variational principle, one obtains the EYM system
of operator equations of motion in a non-trivial spacetime
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a
+

ȧ2
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Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
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su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
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to the SU(3) case as follows
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densate is the same as the SU(2) result (A7), up to rescal-
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ȧ2

a2

i
= 4✏CC + (g(t) + 1)

h
T 0,U
0 �

C

4

i
,

10

The resulting equations:
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Classical YM condensate Quantum YM vacuum

Quantum
corrections

“Radiation” medium

Unstable solution!

Asymptotic (attractor) solution

Stable solution!

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Λcosm ≡ εFLRW − εMink , (0.1)

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.2)

Aa
0 = 0 (0.3)

eaiA
a
k ≡ Aik eai e

a
k = δik eai e

b
i = δab (0.4)

Aik(t, &x) = δikU(t) + Ãik(t, &x) 〈Ãik(t, &x)〉 =

∫
d4xÃik(t, &x) = 0 , (0.5)

εYM ∝ 1/a4

εYM → ±Λ4

YM t → ∞

1

QCD vacuum: 
a ferromagnetic undergoing 
spontaneous magnetisation

(Pagels&Tomboulis)

Gluon condensate on non-stationary (FLRW) background

• In fact, both chromoelectric and chromomagnetic condensates  
are stable on non-stationary (FLRW) background of expanding Universe

group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,

Aak

�
t,x

�
= �akU(t) + eAak

�
t,x

�
,

with h eAik

�
t,x

�
i =

R
d3x eAik

�
t,x

�
= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
with

Q ⌘
32

11
⇡2e(⇠⇤QCD)

�4Tµ
µ [U ]

= 6e
h
(U 0)2 �

1

4
U4

i
a�4(⇠⇤QCD)

�4 ,

which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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!!
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FIG. 3. An illustration of the homogeneous QCD condensate amplitude oscillations U = U(t), with quasi-periodic singularities
in the physical time t =

R
ad⌘, is shown for the Q(U) = 1 and the Q(U) = �1 solutions, respectively in the left and right

panels, in units of the characteristic time scale ⇤�1
QCD. These spikes are localized in time-lapse, along the space-like directions,

and must be interpreted as new solitonic solutions, dubbed chronons or �-solutions.

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven analytically, while

5

”Time” instantons

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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4ḡ2(J )
, J=�Fa

µ⌫F
µ⌫
a , (6)

µ
4
0⌘|J

⇤
|,ḡ
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ḡ2

✓
1�

�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,
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= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
with
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which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2⇥Z0
2-symmetric w.r.t. simul-

taneous permutations

Z2 : J
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 ! �J

⇤ , (9)
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⇤
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CE ,(10)

where the ground-state value of J -invariant satisfies

|J
⇤
| = �2

CE�
2
CM . (11)

Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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ḡ2
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�
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form
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For the CM vacuum case, the energy-momentum tensor
appears more complicated:
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1

4ḡ2⇤
J

⇤ . (16)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (17)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J | ! 1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (18)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
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bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (19)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (17) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (12))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit

3

extrema that, although do not coincide, are very close
to each other: at one loop, |J

⇤
|/�4 = 1

e ' 0.3679 ,
and L

⇤
e↵/�

4 =±b/(192⇡2e)' ±2.135 · 10�3; at all loops
|J

⇤
|/�4

' 0.3693 , and L
⇤
e↵/�

4 = ±2.163 · 10�3. Remark-
ably, the ground-state solutions for one-loop and all-loops
cases di↵er only at a per-mille level.

It is worth emphasizing that is not reductive to focus
on SU(2) YM theory. For any SU(N) gauge group, the
cosmological instantiation will be provided by the SU(2)
subgroups, for which an isomorphism between indices of
the adjoint representation and spatial indices may be re-
covered. On the other hand, the calculation of the super-
trace would be technically very di�cult to be achieved.
Because of the lack of any physical advantage, we can
skip this point without any loss of generality and physi-
cal insight.

As the bottomline of this consideration, for the two

mirror vacua found from Eq. (5), the net energy density
gets both CM (perturbative) and CE (nonperturbative)
vacua contributions with an equal modulus but an oppo-
site sign which therefore cancel out

✏CE
vac

��
J ⇤>0

+ ✏CM
vac

��
J ⇤<0

⌘ 0 , (20)

if and only if both vacua do co-exist in the ground state
of the Universe. We notice that this statement is valid
both in one-loop and all-loops cases. From such a simple
argument the vacuum energy-density cancellation may
be envisaged. In the case of strongly-coupled SU(3) glu-
odynamics, such a cancellation is expected to happen be-
yond the confinement length-scale which would automat-
ically yield vanishing mean-fields of gluons at large dis-
tances (when averaged over macroscopic volumes). The
co-existence of the vacua in the quantum ground state
thus implies their mutual screening, yielding a vanishing
CC term in consistency with cosmological observations.

FIG. 1. The total energy density T 0
0 (t) of the homogeneous gluon condensate (left), the trace of the total QCD energy-

momentum tensor Tµ
µ (t) (middle) and the logarithm of the scale factor a(t) (right), are illustrated as functions of the physical

time t =
R
ad⌘ and in units of the characteristic time scale ⇤�1

QCD. The total energy density and the trace values for Q0 ⌘
Q(t0) = 1 are indicated by horizontal lines in the left and middle panels, respectively. Here, the initial conditions are chosen
as U0 = 0, U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ⇠ ' 4, and the gravitational constant is set to { = 10�7MeV�2, for simplicity of the

numerical analysis. Both quantities T 0
0 (t) and Tµ

µ (t) are plotted in dimensionless units, and thus are rescaled by ⇤4
QCD. The

amplitude of the quasi-periodic oscillations of Q = Q(t) decreases at large t � ⇤�1
QCD, and asymptotically approaches unity,

corresponding to the partial (de-Sitter) solution of the equations of motion.

IV. HOMOGENEOUS YM CONDENSATES

A gauge-invariant description of spatially homogeneous
isotropic YM condensates, which depend only on time,
can be obtained, assuming the gauge condition Aa

0 = 0.
Due to the local isomorphism of the isotopic SU(2) gauge
group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,
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i =
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�
= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
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which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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FIG. 3. An illustration of the homogeneous QCD condensate amplitude oscillations U = U(t), with quasi-periodic singularities
in the physical time t =

R
ad⌘, is shown for the Q(U) = 1 and the Q(U) = �1 solutions, respectively in the left and right

panels, in units of the characteristic time scale ⇤�1
QCD. These spikes are localized in time-lapse, along the space-like directions,

and must be interpreted as new solitonic solutions, dubbed chronons or �-solutions.

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven analytically, while

5

FIG. 5. The classical background solutions for the gauge fields
have two (time) attractors for Q = ±1, corresponding to a
positive and negative vacuum energy respectively.

� �
⌫
µ
1

4
F

a
��F

��
a

i
, (60)

One notices that for the analytic solutions satisfying
|Q| = 1, the traceless parts of the quantum and clas-
sical contributions to the energy-momentum tensor ex-
actly compensate each other leaving the total energy-
momentum tensor diagonal, i.e. T ⌫

µ / �
⌫
µ.

The compensation discussed above grossly reduces or
eliminates the topological QCD vacuum e↵ect on the
macroscopic late-time universe expansion. Indeed, un-
der condition (58) the macroscopic evolution of the uni-
verse reduces to the standard Friedmann one driven only
by matter fields and a small uncompensated observable
term ✏CC n T

0,U⇤
0 (which may or may not be related

to the QCD vacuum) while the evolution of the gluon
condensate happens at characteristic microscopic scales

corresponding to the QCD confinement scale ⇤QCD, i.e.

3

{
(a0)2

a4
= ✏+ ✏CC ,

(U 0)2 �
1

4
U

4 = a
4 (⇠⇤QCD)4

6e
, ⇠ ' 4 . (61)

So such a relatively slow macroscopic evolution of the
universe a = a(⌘) and rapid fluctuations of the gluon
condensate U = U(⌘) at the characteristic QCD time
scale get practically separated and are independent from
each other.
In the present universe with a ⌘ a0 = 1, the exact

(implicit) partial solutions for the homogeneous gluon
condensate read

Q = ±1 ,

Z eU

eU0

duq
1
4u

4 ± 1
= e⌘ ,

eU = U
(6e)1/4

4⇤QCD
, e⌘ = ⌘

4⇤QCD

(6e)1/4
, (62)

corresponding to (57) and (59) solutions illustrated in
Fig. 4, in left and right panels, respectively. Thus, the
cosmological evolution of the gluon field in its ground
state can be interpreted as a regular sequence of quan-
tum tunneling transitions through the “time barriers”
represented by the regular singularities in the quantum
vacuum solution of the e↵ective YM theory. In this sense,
the homogeneous gluon condensate in Minkowski space-
time is analogous to the topological condensate in the
instanton theory of the QCD vacuum in Euclidean space-
time interpreted in terms of spatially-inhomogeneous
gluon field fluctuations induced by quantum tunneling of
the field through topological (spatial) barriers between
di↵erent classical vacua.

FIG. 6. The total energy density T 0
0 (t) of the homogeneous gluon condensate given by Eq. (63) (left), the trace of the total

QCD energy-momentum tensor Tµ
µ (t) given by Eq. (64) (middle) and the logarithm of the scale factor a(t) (right) as functions

of physical time t =
R
ad⌘ in units of the characteristic time scale ⇤�1

QCD. The total energy density and trace values for Q0 = 1
are indicated by horizontal lines in left and middle panels, respectively. Here, the initial conditions are chosen as U0 = 0,
U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ✏̄ 6= 0, ⇠ ' 4, and the gravitational constant is taken { = 10�7MeV�2, for simplicity of

the numerical analysis. Both quantities T 0
0 (t) and Tµ

µ (t) are plotted in dimensionless units and thus are rescaled by ⇤4
QCD.

The amplitude of quasiperiodic oscillations of Q = Q(t) decrease at large t � ⇤�1
QCD and asymptotically approaches unity

corresponding to the partial (de-Sitter) solution of the EYM equations.

It is worth noticing that the well-known ’t Hooft- Polyakov monopole [59, 60] is analogous to the classi-

12
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Confined
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9

Universe , , 1–78 46 of 78

0

5

10

15

20

25

0 2 4 6 8 10

U
(t
)/

L
Q

C
D

LQCDt

0

5

10

15

20

25

0 1 2 3 4 5 6

U
(t
)/

L
Q

C
D

LQCDt

Figure 14. The homogeneous QCD condensate amplitude oscillations. The homogeneous component
U(t) displays quasi-periodic singularities in the physical time t =

R
a dh, plotted here in units of the

characteristic time L�1
QCD. To the left, the chromoelectric vacuum solution of Eq. (110) with Q = 1 is

shown and to the right, the chromomagnetic dito with Q = �1 is displayed. x = 4.0 has been used
along with initial conditions U = 0 and U0 = 0. These results are compatible with [65] up to the scaling
of the figure on the right hand side.

the large negative contribution must be compensated for, in any first-order approximation, to a
remarkable precision, resulting in the observed cosmological constant value to an accuracy of a few
tens of decimal digits.

The conformal dynamics of the ground state (the condensate) U = U(h) and of the scale factor
a = a(h) are described by the following equations of motion as derived from Eqs. (106) and (107):

6
k

a00

a3 = 4ē + Tµ,U
µ , Tµ,U

µ =
3b

16p2a4


(U0)2

�
1
4

U4
�

, (108)

∂

∂h

✓
U0 ln

6e|(U0)2 � 1
4 U4|

a4l4

◆
+

1
2

U3 ln
6e|(U0)2 � 1

4 U4|

a4l4 = 0. (109)

It should be noted that a particular exact solution to Eq. (109) can be obtained if the logarithm
evaluates to zero at all times: that is if |Q| = 1 for

Q ⌘ 6e

(U0)2

�
1
4

U4
�

a�4(xLQCD)
�4. (110)

This may be solved for the two cases Q = ±1 and the solutions are shown in Fig. 14. The
homogeneous background U = U(t) is shown to display quasi-periodic singularities in the physical
time in both cases. It should be stressed that the exact compensation of the CE and CM gluon
condensate contributions to the QCD ground state energy density, as discussed earlier, is realised
in particular if the two components Q = ±1 co-exist in the Universe. The cancellation happens over
macroscopic distances as the average of the background vanishes in this limit and importantly this
occurs without any fine tuning. Crucially, such situation will arise due to the time-attractor nature of
the contributions from the two minima; a property that is demonstrated in the following.

The conformal integral of Eq. (108) is

3
k

(a0)2

a4 = ē + T0,U
0 , (111)

T0,U
0 =

3b
64p2a4

(
(U0)2 +

1
4

U4
�

ln
6e|(U0)2 � 1

4 U4|

a4l4 + (U0)2
�

1
4

U4

)
,
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Figure 15. Solutions for the total energy density T0
0(t) (left), the trace of the total QCD EMT Tµ

µ(t)
(middle) and the scale factor a(t) (right). The asymptotic values for which Q ! 1 are indicated by
horizontal lines in the left and middle panels, respectively. The initial conditions has been chosen as
U0 = 0, U̇0 = (xLQCD)

2/
p

3e, Q0 > 1, x = 4.0 LQCD = 332 MeV and k = 10�7 MeV�2. The energy
density and the trace are plotted in dimensionless units, rescaled by L4

QCD and for illustrative
purposes eCC was set to ⇠ 0.5 % of ē. These results compatible with the qualitative picture in [65].

The total energy density, T0
0(t), and the trace of the EMT, Tµ

µ(t), both explicitly defined in
Eq. (112), can be found by insertion of the solution above into Eq. (117) together with a manipulation
of Eq. (115). The result is

T0
0(t)

eCC
=

2

64
1 +

q
eCC
e0

+
⇣

1 �
q

eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘o

1 +
q

eCC
e0

�

⇣
1 �

q
eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘o

3

75

2

, (120)

Tµ
µ(t)

eCC
= 4 +

4
�

g(t) + 1
� ⇣

1 � eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘o

h
1 +

q
eCC
e0

�

⇣
1 �

q
eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘oi2 . (121)

It shall be pointed out here that the above solutions for the scale factor, the energy density, and
the trace of the EMT do not rely on any approximations but are the general solutions to Eq. (112).
These cosmological observables may therefore be studied on the full range from t0 to t, provided that
g(t) is known.

For practical analyses, the auxiliary function g may be studied in the vicinity of the exact,
large-time cancellation point where Q(t) ⇠ 1. This is done by expanding the YM energy density
around the asymptotic value of the exact solution where T0,U⇤

0 = C/4 such that

T0,U
0 (t) ' C/4 + de(t), de ⌧ C. (122)

with h̃(t) = 1
2
�

g(t)� 3
�

and A = keCC
3 . The introduction of m(t) ⌘ ḟ , results in a first order equation that may be solved. It

is explicitly
ṁ � h̃(t)m2(t) + Ah̃(t) = 0.

The scale factor is therefore found in terms of the integral of the solution for m(t) as

a(t) = a⇤ exp
Z t

t0
dt m(t)

�
.
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and its relaxation time is the same as for T 0,U
0 (t) given

in Eq. (C5). Consequently, these basic features of the
general solution of the EYM equations for the YM con-
densate (as the periods of oscillations and the relaxation
times of the condensate), its energy density and the pres-
sure can be described qualitatively, without a reference
either to the numerical calculations or to a particular
choice of model parameters.
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• The emergence of spikes localised in time at a characteristic QCD time lapse 
and extended in 3-space dimensions reveals the presence of an order state 
of space-like soliton/domain wall solutions (chronons) 

• A time-ordered classical solution spontaneously breaking time translational invariance 
down to a discrete time shift symmetry 
is known as the “time crystal” first discovered by Wilczek in the context of superconductors 
and superfluids in 

• The kink (anti-kink) profile localised in time corresponds to a space-like domain wall 
 
 

• As the T-invariance is broken, a massless moduli field                        localised on the  
domain wall world sheet                arises and corresponds to a Nambu-Goldstone boson
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Figure 14. The homogeneous QCD condensate amplitude oscillations. The homogeneous component
U(t) displays quasi-periodic singularities in the physical time t =

R
a dh, plotted here in units of the

characteristic time L�1
QCD. To the left, the chromoelectric vacuum solution of Eq. (110) with Q = 1 is

shown and to the right, the chromomagnetic dito with Q = �1 is displayed. x = 4.0 has been used
along with initial conditions U = 0 and U0 = 0. These results are compatible with [65] up to the scaling
of the figure on the right hand side.

the large negative contribution must be compensated for, in any first-order approximation, to a
remarkable precision, resulting in the observed cosmological constant value to an accuracy of a few
tens of decimal digits.

The conformal dynamics of the ground state (the condensate) U = U(h) and of the scale factor
a = a(h) are described by the following equations of motion as derived from Eqs. (106) and (107):

6
k

a00

a3 = 4ē + Tµ,U
µ , Tµ,U

µ =
3b

16p2a4
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(U0)2
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, (108)
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It should be noted that a particular exact solution to Eq. (109) can be obtained if the logarithm
evaluates to zero at all times: that is if |Q| = 1 for
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This may be solved for the two cases Q = ±1 and the solutions are shown in Fig. 14. The
homogeneous background U = U(t) is shown to display quasi-periodic singularities in the physical
time in both cases. It should be stressed that the exact compensation of the CE and CM gluon
condensate contributions to the QCD ground state energy density, as discussed earlier, is realised
in particular if the two components Q = ±1 co-exist in the Universe. The cancellation happens over
macroscopic distances as the average of the background vanishes in this limit and importantly this
occurs without any fine tuning. Crucially, such situation will arise due to the time-attractor nature of
the contributions from the two minima; a property that is demonstrated in the following.

The conformal integral of Eq. (108) is

3
k

(a0)2
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a discrete time shift symmetry Tn : t ! t + n⇤�1
QCD, n

denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
h
�vp
2
(z�z0)

i
, with z0

the kink center.

1 The original implementation of this idea was criticized in
Refs. [18, 19].

As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
tion, it is localized in time. A new domain wall ex-
tended in three spatial dimension but localized in a time
lapse, which we dub chronons, may correspond to this
solution. By just replacing the z-coordinate with the
time variable, one can consider a kink solution, such

as �(t) = v tanh
h
�vp
2
(t � t0)

i
, centered in a time in-

stant t = t0 and interpolating the two vacuum states
in the asymptotic time limits �(t = �1) = �v and
�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation
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4
U4 = const , (1)

where U 0 is the field derivative with respect to the Carte-
sian coordinate time, which we denote here with x0 ⌘ ⌘.
A branch of solutions of these equations, obtained by
U2 ! U2 �U2

0 energy density vacuum shift, corresponds
to kink (antikink) profiles

U(⌘) ' vp
2
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2
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where v ' ⇤QCD. A space-like domain wall corresponds
to a kink profile of this type. Time-translation is spon-
taneously broken, and a ⌘0(x, y, z) moduli field arises,
with U acquiring the dependence U(⌘� ⌘0(x, y, z)). The
coordinate x, y, z are the domain-walls worldsheet coor-
dinates. The e↵ective corresponding action reads as

S =

Z
d4x

1

2

h⇣ @�

@⌘0

@⌘0
@xa

⌘2
� V (U)

i

= const +
TW

2

Z
d3x

⇣@⌘0(xa)

@xa

⌘2
. (3)

This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the
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We propose a novel mechanism for the production of gravitational waves in the early Universe that
originates from the relaxation processes induced by the QCD phase transition. While the energy
density of the quark-gluon mean-field is monotonously decaying in real time, its pressure undergoes
a series of violent oscillations at the characteristic QCD time scales that generates a primordial
multi-peaked gravitational waves signal in the radio frequencies’ domain. The signal as an echo of
the QCD phase transition, and is accessible by the FAST and SKA telescopes.

I. INTRODUCTION

The intriguing possibility that prompt phase transitions
in the early Universe might have imprinted signatures in
the background of gravitational radiation will be testable
through the next generation of gravitational interfer-
ometers. The idea was firstly suggested in Refs. [1–5].
New developments on the primordial gravitational waves
(GW) production in the early Universe we achieved in
Refs. [6, 7]. At the same time, recent studies on nuclear
strong interaction provided several evidences for asymp-
totic freedom phenomena, including quarks confinement
in baryons and mesons. E↵ects of confinement are re-
lated to the dimensional scale transmutation as much as
first order phase transition (FOPT) phenomena, which
are characterized by the dynamically generated energy
scale ⇤QCD ' 200MeV [8]. This suggested the possibility
that the Quantum Chromodynamics (QCD) phase tran-
sition may generate a GW signal in the hot Early Uni-
verse, at a temperature of T ' ⇤QCD ' 200MeV. That
a FOPT related to strong interactions may emit GWs
was initially, although qualitatively, proposed by Witten
[1], and then quantitatively re-elaborated in Ref.[9, 10].
The GW signal associated to the QCD phase transition
(QCDPT) cannot be detected in GW terrestrial interfer-
ometers, such as LIGO/VIRGO [11] and KAGRA [12],
cannot be either measured in future space experiments,
such as LISA [13], U-DECIGO [14], BBO [15], TAIJI [16]
and TianQin [17] projects. The GWs frequency range of
a QCDPT is around 10�8 ÷ 10�9 Hz, which is 5-6th dig-
its lower than the one provided by space experiments,
and 9-10th digit far from LIGO/VIRGO/KAGRA [10].
Furthermore, QCDPT does not leave any smoking-gun
imprinting in the Cosmic Microwave Background, which
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is sensitive to very low frequency modes (5th-6th digits
less [10]).

Nonetheless, a nHz phase transition such as a QCDPT
can be detected, with high precision, from radio astro-
nomical observation of pulsar timing: the GW back-
grounds propagating through pulsar systems alter the
radio signal, leaving an imprinting that is principle ob-
servable. This opens a pathway towards the exciting
possibility of testing fundamental particle physics with
current and future radio astronomy experiments, includ-
ing FAST [24], and SKA [25]. Within previous QCDPT
analyses, the role of possible relaxation phenomena and
gravitational back-reactions were completely neglected.
But after the QCDPT, prompt and violent relaxation ef-
fects around the QCD vacuum energy state are expected,
which retains a broad analogy with the reheating mech-
anism in inflationary models.

In this letter, we study in detail the possible e↵ects
of the gluon condensate relaxation phenomena. We ana-
lyze the non-linear field equations for the gluonic conden-
sate, coupled to the Einstein equation, in a Friedmann-
Lemâıtre-Robertson-Walker (FLRW) cosmological back-
ground. During the relaxation phase, a surprising non-
equilibrium phenomenon arises: the gluonic condensate
field violently oscillates during the relaxation phase, in-
ducing fast oscillations of the energy-momentum tensor
trace for a transient time of ⌧ ' 10 ÷ 20⇤�1

QCD. The os-
cillating solution is a classical non-perturbative solution
of the Yang-Mills field equations coupled to the Einstein
field equations. The emergence of spikes, localized in a
characteristic QCD time lapse �t ' ⇤�1

QCD, and extended
in the space dimensions, reveals the presence of a ordered
pattern of space-like soliton/domain-walls solutions. We
dub these new solutions chronons. After a cosmologi-
cal time t > 20⇤�1

QCD, the spikes’ periodicity disappears,
and the energy density approaches the QCD vacuum en-
ergy minimum. The time-ordered classical solution that
we found is a time crystal, i.e. a periodic classical so-
lution spontaneously breaking time invariance down to
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a discrete time shift symmetry Tn : t ! t + n⇤�1
QCD, n

denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
h
�vp
2
(z�z0)

i
, with z0

the kink center.

1 The original implementation of this idea was criticized in
Refs. [18, 19].

As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
tion, it is localized in time. A new domain wall ex-
tended in three spatial dimension but localized in a time
lapse, which we dub chronons, may correspond to this
solution. By just replacing the z-coordinate with the
time variable, one can consider a kink solution, such

as �(t) = v tanh
h
�vp
2
(t � t0)

i
, centered in a time in-

stant t = t0 and interpolating the two vacuum states
in the asymptotic time limits �(t = �1) = �v and
�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation

U 02 � 1

4
U4 = const , (1)

where U 0 is the field derivative with respect to the Carte-
sian coordinate time, which we denote here with x0 ⌘ ⌘.
A branch of solutions of these equations, obtained by
U2 ! U2 �U2

0 energy density vacuum shift, corresponds
to kink (antikink) profiles

U(⌘) ' vp
2
tanh[

vp
2
(⌘ � ⌘0)] . (2)

where v ' ⇤QCD. A space-like domain wall corresponds
to a kink profile of this type. Time-translation is spon-
taneously broken, and a ⌘0(x, y, z) moduli field arises,
with U acquiring the dependence U(⌘� ⌘0(x, y, z)). The
coordinate x, y, z are the domain-walls worldsheet coor-
dinates. The e↵ective corresponding action reads as

S =
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d4x
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the
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denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
h
�vp
2
(z�z0)
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, with z0

the kink center.

1 The original implementation of this idea was criticized in
Refs. [18, 19].

As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
tion, it is localized in time. A new domain wall ex-
tended in three spatial dimension but localized in a time
lapse, which we dub chronons, may correspond to this
solution. By just replacing the z-coordinate with the
time variable, one can consider a kink solution, such

as �(t) = v tanh
h
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2
(t � t0)
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, centered in a time in-

stant t = t0 and interpolating the two vacuum states
in the asymptotic time limits �(t = �1) = �v and
�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation

U 02 � 1

4
U4 = const , (1)

where U 0 is the field derivative with respect to the Carte-
sian coordinate time, which we denote here with x0 ⌘ ⌘.
A branch of solutions of these equations, obtained by
U2 ! U2 �U2

0 energy density vacuum shift, corresponds
to kink (antikink) profiles
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2
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where v ' ⇤QCD. A space-like domain wall corresponds
to a kink profile of this type. Time-translation is spon-
taneously broken, and a ⌘0(x, y, z) moduli field arises,
with U acquiring the dependence U(⌘� ⌘0(x, y, z)). The
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
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not only broken down to a Z2 symmetry involving the
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in Refs. [23]. The spontaneous symmetry breaking of T -
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to the appearance of Nambu-Goldstone bosons, as time-
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ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
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A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
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(z�z0)

i
, with z0

the kink center.

1 The original implementation of this idea was criticized in
Refs. [18, 19].

As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
tion, it is localized in time. A new domain wall ex-
tended in three spatial dimension but localized in a time
lapse, which we dub chronons, may correspond to this
solution. By just replacing the z-coordinate with the
time variable, one can consider a kink solution, such
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, centered in a time in-

stant t = t0 and interpolating the two vacuum states
in the asymptotic time limits �(t = �1) = �v and
�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation
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where U 0 is the field derivative with respect to the Carte-
sian coordinate time, which we denote here with x0 ⌘ ⌘.
A branch of solutions of these equations, obtained by
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the

2

a discrete time shift symmetry Tn : t ! t + n⇤�1
QCD, n

denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
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, with z0

the kink center.

1 The original implementation of this idea was criticized in
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the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
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�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
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density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
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pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
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trum that is predicted not only lies within the SKA sen-
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the appearance of a Nambu-Goldstone modulus boson
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neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
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In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation
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where U 0 is the field derivative with respect to the Carte-
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the
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3

FIG. 1. The gravitational waves spectrum is displayed for dif-
ferent e�ciency factors, in comparison with FAST sensitivity
curve [24]. The e�ciency factor considered are  = 0.03÷0.1.
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FIG. 2. The gravitational waves spectrum is displayed for
di↵erent e�ciency factors, in comparison with FAST sensi-
tivity curve [25]. The e�ciency factor considered range in
 = 10�3 ÷ 3⇥ 10�3.

T+ and T� branches, but more interestingly is sponta-
neously broken down to a discrete time-translation sym-
metry Tn : ⌘ ! ⌘ + n⇤�1

QCD. In other words, the system
behaves as a time crystal.

III. GRAVITATIONAL WAVE EMISSION

The general coupled field equations of gluon field with
gravity reads
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where � ⌘ ⇠⇤QCD is related to the QCD scale param-
eter ⇤QCD by an arbitrary scaling constant ⇠ and e is
the base of the natural logarithm. In the FLRW back-

ground, here cast in conformal coordinates defined by
ds2 = a2(⌘)(d⌘2 + d~x2), the dynamical system is simpli-
fied to
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In order to account for thermal bath e↵ects, we have to
consider the thermal loop correction to the classical equa-
tions. The leading order corrections are proportional to
T 2U2, where T is the temperature of the early Universe
plasma.
Solving the dynamical system of equations specified

above, at T = 0, we find a U(⌘) profile characterized by
a time-ordered pattern of spikes — see the Appendix for
more technical details. Turning on thermal corrections,
the only relevant O(1) corrections arise in correspondence
of the first spike, close to the QCD phase transition scale
⇤QCD. After 10⇤

�1
QCD, thermal correction will reduce to a

1% order. The trace of energy-momentum tensor follows
the spike series solution, with violent oscillations while
having relaxation. Relaxation is induced by the linear
dissipative terms of the gluonic condensate in the Field
Equations, while spikes can be understood as a back-
reaction e↵ect of the gluonic condensate with the gravita-
tional background. The energy-density part ⇢U has only
a suppressed modulation over the relaxation decay profile
in time. Since the gravitational waves emission is related
to the time variation of the energy-density, it turns out
that the GW spectrum that can be derived is actually
suppressed. Most of the trace tensor variation are pro-
vided by the pressure component pU . The pressure kinks
can be e�ciently transmitted to the primordial plasma,
since the gluonic condensate is strongly interacting with
it. Consequently, the pressure kinks pattern chaotized
the early Universe plasma, inducing turbulence and shock
sound waves in it. As it happens in the standard picture
of first order phase transitions, turbulence wiggles and
sound waves e�ciently produce gravitational radiation.
The pressure distribution of one kink in the plasma ther-
malizes very e�ciently, within a standard deviation of
the order of the QCD scale. Numerical results are shown
in Fig. 1 and Fig. 2, and put in comparison with current
FAST experiment sensitivity curves and future SKA pre-
dicted bounds. The model e�ciency factors enter cru-
cially the pressure transfer mechanism from the classical
condensate to the Universe plasma. Although clearly af-
fected by several uncertainties, one can show several GW
profiles in the reasonable e�ciency range of 10�2÷10�3.
We remark that an e�ciency lower than 10�3 seems to
be nearly impossible, since the gluonic condensate can-
not be so weakly coupled to the plasma. This observa-
tion carries important phenomenological consequences.
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FIG. 3. We illustrate, as functions of the physical time
t =

R
ad⌘, and using units of the characteristic time scale

⇤�1
QCD, respectively the total energy density T 0

0 (t) of the ho-
mogeneous gluon condensate (upper panel), the trace of the
total QCD energy-momentum tensor Tµ

µ (t) (middle panel)
and the logarithm of the scale factor a(t) (lower panel). We
indicate the total energy density and the trace values for
Q0 ⌘ Q(t0) = 1, respectively, with horizontal lines in the
up and middle panels, where the initial conditions are cho-
sen as U0 = 0, U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ⇠ ' 4, and

the gravitational constant is set to be { = 10�7MeV�2, for
simplicity of the numerical analysis. We plot both T 0

0 (t) and
Tµ
µ (t) in dimensionless units, and rescale them by ⇤4

QCD. It is
evident that the amplitude of the quasi-periodic oscillations
of Q = Q(t) happens to decrease at large t � ⇤�1

QCD, and to
approach asymptotically unity.
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FIG. 4. We show the homogeneous QCD condensate ampli-
tude oscillations U = U(t), manifesting quasi-periodic sin-
gularities in the physical time t =

R
ad⌘, for the solutions

labelled by Q(U) = 1 and the Q(U) = �1. These are shown
respectively in the upper and lower panels, using units of the
characteristic time scale ⇤�1

QCD. The spikes that are displayed
are localized in time-lapse, along the space-like directions, and
must be interpreted as new solitonic solutions. In a previous
work, we dubbed these solutions chronons, or �-solutions.

the results (without accounting for a ✏̄ term) are illus-
trated in the lower panel of Fig. 4. In this case the general
solution asymptotically approaches the de-Sitter regime
as well, in full analogy with the Q0 > 1 case. A quali-
tatively similar situation is realized for Q0 < 0 as well.
The de-Sitter solution, therefore, appears as an attrac-
tor (or tracker) solution of the EYM system. This pro-
vides a dynamical mechanism for the elimination of the
gluon vacuum component of the ground state energy of
the Universe, asymptotically at macroscopic space-time
scales and for arbitrary initial conditions and parame-
ters of the model. This fact provides a generalization of
the basic result of Ref. [44] to the case of arbitrary ini-
tial conditions and to a gauge group possessing a SU(2)
subgroup.
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FIG. 1. The gravitational waves spectrum is displayed for dif-
ferent e�ciency factors, in comparison with FAST sensitivity
curve [24]. The e�ciency factor considered are  = 0.03÷0.1.

FIG. 2. The gravitational waves spectrum is displayed for
di↵erent e�ciency factors, in comparison with FAST sensi-
tivity curve [25]. The e�ciency factor considered range in
 = 10�3 ÷ 3⇥ 10�3.

T+ and T� branches, but more interestingly is sponta-
neously broken down to a discrete time-translation sym-
metry Tn : ⌘ ! ⌘ + n⇤�1

QCD. In other words, the system
behaves as a time crystal.
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eter ⇤QCD by an arbitrary scaling constant ⇠ and e is
the base of the natural logarithm. In the FLRW back-
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In order to account for thermal bath e↵ects, we have to
consider the thermal loop correction to the classical equa-
tions. The leading order corrections are proportional to
T 2U2, where T is the temperature of the early Universe
plasma.
Solving the dynamical system of equations specified

above, at T = 0, we find a U(⌘) profile characterized by
a time-ordered pattern of spikes — see the Appendix for
more technical details. Turning on thermal corrections,
the only relevant O(1) corrections arise in correspondence
of the first spike, close to the QCD phase transition scale
⇤QCD. After 10⇤�1

QCD, thermal correction will reduce to a
1% order. The trace of energy-momentum tensor follows
the spike series solution, with violent oscillations while
having relaxation. Relaxation is induced by the linear
dissipative terms of the gluonic condensate in the Field
Equations, while spikes can be understood as a back-
reaction e↵ect of the gluonic condensate with the gravita-
tional background. The energy-density part ⇢U has only
a suppressed modulation over the relaxation decay profile
in time. Since the gravitational waves emission is related
to the time variation of the energy-density, it turns out
that the GW spectrum that can be derived is actually
suppressed. Most of the trace tensor variation are pro-
vided by the pressure component pU . The pressure kinks
can be e�ciently transmitted to the primordial plasma,
since the gluonic condensate is strongly interacting with
it. Consequently, the pressure kinks pattern chaotized
the early Universe plasma, inducing turbulence and shock
sound waves in it. As it happens in the standard picture
of first order phase transitions, turbulence wiggles and
sound waves e�ciently produce gravitational radiation.
The pressure distribution of one kink in the plasma ther-
malizes very e�ciently, within a standard deviation of
the order of the QCD scale. Numerical results are shown
in Fig. 1 and Fig. 2, and put in comparison with current
FAST experiment sensitivity curves and future SKA pre-
dicted bounds. The model e�ciency factors enter cru-
cially the pressure transfer mechanism from the classical
condensate to the Universe plasma. Although clearly af-
fected by several uncertainties, one can show several GW
profiles in the reasonable e�ciency range of 10�2÷10�3.
We remark that an e�ciency lower than 10�3 seems to
be nearly impossible, since the gluonic condensate can-
not be so weakly coupled to the plasma. This observa-
tion carries important phenomenological consequences.

GW signal lies at the 

radio-astronomy pulsar 

timing scale 

PTAs should be able to probe QCD relaxation through detection  
of primordial GW radio waves 

4

Indeed, we can show that, for an e�ciency higher than
the 3%, FAST will definitely probe this model. On the
other hand, future FAST data, one can reach the 0.1%
e�ciency scale.

We provide below simple semi-analytic estimates,
which are nonetheless in agreement with our numerical
analysis.

The red-shift due to the expansion of the gravitational
background must be taken into account while comparing
the GW signals ab origine with measurements at present
time. At this purpose, we recall that the ratio between
the scale factor of the Universe today R0 and the scale
factor of the Universe during the GW production is ex-
pressed by

R⇤
R0

= 8.0⇥ 10�14

✓
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◆ 1
3
✓
1GeV

T⇤

◆
, (6)

g⇤ denoting the e↵ective number of degrees of freedom.
Assuming that the Universe expanded adiabatically im-
plies that the entropy S ⇠ R3 T 3 remained constant. The
characteristic frequency of the GW signal today, denoted
as f0, is related to the one on the GW emission time f⇤
by

f0 = f⇤

✓
R⇤
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◆
= 1.65⇥10�7Hz

✓
f⇤
H⇤

◆✓
T⇤

1GeV

◆⇣ g⇤
100

⌘ 1
6
.

(7)
The order of magnitude of the GW energy density today,
denoted as ⌦GW, is related to the one during the emission
time, namely ⌦GW⇤, through

⌦GW= ⌦GW⇤
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◆4 ✓H⇤
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= 1.67⇥ 10�5h�2
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3

⌦GW⇤ , (8)

where h is the current value of the Hubble parameter in
units of 100 km /(secMpc), and

H⇤ =
8⇡G⇢rad

3
=

8⇡3g⇤T 4
⇤

90M2
Pl

, (9)

which is the Hubble contribution in the radiation domi-
nated epoch.

The sound and turbulence spectrum induced by the
spiky pressure kinks is in general very complicated. How-
ever, it will display a characteristic series of peaks, related
to the pressure peaks. The magnitude of these GW peaks
can be estimated very easily thanks to semi-analytical es-
timates. The turbulence GW peaks are described by

h2⌦turb = 3.35⇥ 10�4
NeffX
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where the sum is over the number of peaks that con-
tribute significantly to the GW spectrum, and

↵ =
⇢U
⇢rad

(12)

is the ratio between the energy density U and the radia-
tion energy density.
The sound waves spectrum is characterized by the ex-

pressions

h2⌦sound = 2.65⇥ 10�6
NeffX

i=1

✓
H⇤,i
�i

◆✓
v↵

1 + ↵

◆2✓100

g⇤,i

◆ 1
3

vi,

(13)

fsw = 1.9⇥10�2mHz
NeffX

i=1

1

vi

✓
�i

H⇤,i

◆✓
T⇤,i

100GeV

◆⇣g⇤,i
100

⌘ 1
6
.

(14)
We estimated the U peak rapidity as vi = �(Tµ

µ )�i,
which is close to 1 (fast), and the inverse time scale of the
peaks as �i ' ⇤ (⇤ being the confinement scale), while
v,turb are the e�ciency factors of the energy transfer
from the condensate peaks to the early Universe plasma.
We find that: i) the energy-scale of the first peaks is
around 200MeV; ii) �i ' H⇤,i, since H⇤ is related to
the energy density and pressure of the Universe and fol-
lows the oscillations of the condensate; iii) ↵ ' 1, if the
condensate dominates in the radiation epoch.
Assuming the e�ciency factors turb,v ' 0.1% ÷ 1%

— in analogy to typical response factors in the plasma
during FOPTs — from the estimates specified above, we
obtain an energy frequency within the frequency range
10�9 ÷ 10�8 Hz for both turbulence and sound waves.
This implies that the GW signal here predicted lies in the
radio-astronomy pulsar timing scale, while the energy-
density of the GW signal for both the contributions is
around 10�8÷10�12. Thus, SKA must be definitely able
probe to this GW signal.

IV. CONCLUSIONS

We have shown that the relaxation dynamics of the gluon
condensate close to the QCD phase transition behaves as
a time-crystal within a time range of 1÷20⇤QCD�1 . This
is an e↵ect obtained as a non-equilibrium solution from
the classical gluon equations of the gauge fields coupled
with gravity. Time translation is spontaneously broken
in a time translation discrete symmetry. We have shown
that this proposal to model gluonic condensates in the
early Universe cosmology is already testable. The model
we developed predicts a gravitational radiation back-
ground that can alter the pulsar timing system, and thus
can be tested in radio-astronomy experiments. Specifi-
cally, predictions of the model lay in sensitivity curves
of FAST and SKA. A clear understanding of confine-
ment remains the most challenging problem of the Stan-
dard Model of particles physics. Possible informations

In the domain of NANOGrav
sensitivity!
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Figure 2. The total energy density T0
0 (t) of the homogeneous gluon condensate (left), the trace of the

total QCD energy-momentum tensor Tµ
µ (t) (middle) and the logarithm of the scale factor a(t) (right),

are illustrated as functions of the physical time t =
R

adh and in units of the characteristic time scale
L�1

QCD. The total energy density and the trace values for Q0 ⌘ Q(t0) = 1 are indicated by horizontal
lines in the left and middle panels, respectively. Here, the initial conditions are chosen as U0 = 0,
U̇0 = (xLQCD)

2/
p

3e, Q0 > 1, x ' 4, and the gravitational constant is set to { = 10�7MeV�2, for
simplicity of the numerical analysis. Both quantities T0

0 (t) and Tµ
µ (t) are plotted in dimensionless units,

and thus are rescaled by L4
QCD. The amplitude of the quasi-periodic oscillations of Q = Q(t) decreases

at large t � L�1
QCD, and asymptotically approaches unity, corresponding to the partial dS solution of

the equations of motion.

for the trace of the total gluon EMT Tµ
µ (t) ⌘ 4ē+ Tµ,U

µ (t) in dimensionless units, and the corresponding204

solution for the logarithm of the scale factor is given in Fig. 2 (right).205

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven206

analytically, while a small residual time-dependence appears due to a possibly large deviation from207

Q = 1. Here we used x ' 4 (following Ref. [17]) while a change of x would only affect the asymptotic208

values of T0
0 (t) and Tµ

µ (t) at large t. Although the amplitude of the condensate U(t) possesses209

quasi-periodic singularities, as is seen in Fig. 3, the evolution of its energy density T0,U
0 (t) (see Fig. 2,210

left), as well as of the pressure (or Tµ,U
µ (t), see Fig. 2, middle), remain continuous in time. One211

immediately notices that the general solution asymptotically reaches a fix branch. This happens after a212

number of oscillations of the function Q(t), whose amplitude approaches unity at large physical times213

t, i.e. Q(t ! •) ) 1, for any initial conditions satisfying Q0 > 0. During such a relaxation regime, the214

total energy density of the QCD vacuum (composed of the conventional QCD trace anomaly term –215

the CM condensate – and the considered CE homogeneous condensate) continuously decreases and216

eventually vanishes in the asymptotic limit t � t0. Note, this regime is accompanied by a decelerating217

expansion of the Universe.218

The same quantities can be also studied for initial conditions of opposite sign, i.e. for 0 < Q0 < 1.219

Numerical results for the latter regime are reported in Appendix B. In this case the general solution220

asymptotically approaches the dS regime as well, in full analogy with the Q0 > 1 case. A qualitatively221

similar situation is realized for Q0 < 0. The dS (for Q0 > 0) and AdS (for Q0 < 0) solutions, therefore,222

appear as two attractor (or tracker) solutions of the Einstein-YM system, providing a dynamical223

mechanism for the elimination of the gluon vacuum component of the ground state energy of the224

Universe. This happens asymptotically, at macroscopic space-time scales and for arbitrary initial225

conditions and parameters of the model.226

5. Conclusions and remarks227

We found an argument for the cancellation of the vacuum energy of QCD in the infrared limit that is228

related to the existence of an emergent Z2 Mirror symmetry of the RG flow — derived from the bare229

Lagrangian. We showed that the cancellation of the vacuum energy is motivated both from the RG230

flow solutions and the effective action. We then commented on the relevance of vacuum fluctuations231
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Exact conformal invariance
at macroscopic scales

Exact mirror symmetry
of the YM ground state

Breaking of Mirror symmetry and Cosmological Constant

Mirror symmetry and conformal invariance 
breakdown at cosmological scales

Quantum Gravity in the quasi classical
approximation

Ya. Zeldovich (1967): A. Sakharov (1967): 

extra terms describing an effect of graviton exchanges between identical 

particles (bosons occupying the same quantum state) should appear in the 

right hand side of Einstein equations (averaged over quantum ensemble)

Graviton

Gravity
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Quasiclassical gravity

Zeldovich-Sakharov scenario can be realized in the following consistent way:

Metric operator

Macroscopic geometry 
(c-number part) Quantum graviton field

Action

Heisenberg state vector containing 

info about initial states of 


all fields exists!

Independent variations over classical and quantum fields:

Averaging over initial states

e.o.m. for macroscopic geometry

e.o.m. for graviton field

same operator eqns:



We start from the Einstein equations for macroscopic geometry:

Trace:

Stress tensor in Riemann space 
is found from YM eqs:

induce interactions of YM field with metric fluctuations
Equation for gravitons turns into:

After exact cancellation of unperturbed part of EMT tensor we get:

linear in graviton field!

Λ-term calculation



Fock gauge:

Exact solution of graviton equation:

Metric fluctuations are induced
by QCD vacuum fluctuations!

Green function:
After explicit calculation of averages, we get

where

must be established in a dynamical 
theory of NPT QCD vacuum!

It is expected to be generated by 
chiral symmetry breaking

In terms of known NPT QCD parameters

!!!

Λ-term calculation



“zeroth” order in QG

“first” order in QG

QCD vacuum

Must cancel exactly due to 

QCD confinement


(only a new symmetry 

of the ground state


can do that!)

cancel NOT exactly!

(due the chiral SB in QCD)

Observable Λ-term! 

virtual (strong) NPT fluctuations of quark
and gluon fields dynamically induce 

metric fluctuations (gravitons)!

Observable Λ-term from QCD? 

Only NPT QCD vacuum 
fluctuations coupled to 

Gravity at lowest (hadron) 
scales of Particle Physics 

gives rise to Λ-term if

UV terms are canceled 
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Introduction

Introduction

Stochastic Gravitational Wave (GW) background

Superposition of unresolved astrophysical sources

Cosmological events

(i) Inflation
(ii) Cosmic strings
(iii) Strong cosmological phase transitions (PTs) !

by expanding and colliding vacuum bubbles of new phase

GW background as a gravitational probe for New Physics

Focus on the EW phase transition (EWPT) relevant for EW baryogenesis

Study a simple model with multiple-step strongly 1st-order EWPTs

Study the impact of multiple-step strong PTs on GW spectra
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Polyakov loop operator charged under the center of SU(N):

2

tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
charged under ZN . The Polyakov loop is a remarkable
example, defined as

` (x) =
1

N
Tr[L] ⌘ 1

N
Tr

"
P exp

"
i g

Z 1/T

0
A0(⌧,x)d⌧

##
,

(1)
where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]

V [H, `] =
H
2
ln


H
⇤4

�
+ T

4V [`] +HP[`] + VT [H] , (2)

where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators

a0 a1 a2 a3 a4 b3 b4

3.72 �5.73 8.49 �9.29 0.27 2.40 4.53

TABLE I. Parameters of the e↵ective potential in Eq. (5).

with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.

In the opposite limit, T � Tc, in the deconfined phase,
the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]

L =
c

2

@µH@
µH

H3/2
� V [H, `] , (3)

where

c =
1

2
p
e

✓
⇤

mgb

◆2

(4)

is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8

c
�2

�
4, and from this

point on we refer to � as the glueball field. It evolves
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for thermal e↵ects in the glueball potential for a future
investigation.
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the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
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is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8
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the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
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where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]
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where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators
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Polyakov loop VEV is an order parameter of confinement phase transition:

4

For H we have now:

〈H〉 =
Λ4

e
exp

[

−2b1
α

2a2

]

=
Λ4

e
exp [−2b1] . (24)

In the last step we normalized 〈"〉 to unity at high tem-
perature. In order for the previous solutions to be valid
we need to operate in the following temperature regime:

T $
4

√

b1
α
〈H〉 ≈ Tc. (25)

We find that at sufficiently high temperature 〈H〉 is ex-
ponentially suppressed and the suppression rate is de-
termined solely by the glueball – "2 mixing term en-
coded in P ["]. The coefficient b1 should be large (or
increase with the temperature) since we expect a van-
ishing gluon-condensate at asymptotically high tempera-
tures. Clearly it is crucial to determine all of these coeffi-
cients via first principle lattice simulations. The qualita-
tive picture which emerges in our analysis is summarized
in Fig. 1.

FIG. 1: The thin line is the gluon condensate 〈H〉 normal-
ized to Λ4/e as function of the temperature. The thick line
represents the normalized to unity 〈!〉 as function of the tem-
perature. We have chosen for illustration α = 1, b1 = 1.45
and Tc # 1.16Λ.

IV. THE THREE COLOR THEORY

Z3 is the global symmetry group for the three color
case while " is a complex field. The functions V ["] and
P ["] are:

V ["] = a1|"|
2 + a2|"|

4 − a3("
3 + "∗3) +O("5),

P ["] = b1|"|
2 +O("3), (26)

with a1, a2, a3 and b1 unknown temperature dependent
coefficients which can be determined using lattice data.
In this paper we want to investigate the general relation
between glueballs and " so we will not try to find the best
parameterization to fit the lattice data. In the spirit of

the mean field theory we take a2, a3 and b1 to be positive
constants while a1 = α(T∗ − T )/T . With " = |"|eiϕ the
extrema are now obtained by differentiating the potential
with respect to H , |"| and ϕ:
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= 6|"|3 sin(3ϕ) = 0. (27)

At small temperature the H/T 4 term in the second equa-
tion dominates and the solution is 〈|"|〉 = 0, 〈H〉 = Λ4/e
and the last equation is verified for any 〈ϕ〉, so we choose
〈ϕ〉 = 0. The second equation can have two more solu-
tions:

3
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16
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+
α(T − T∗)

2Ta2
−

b1H

2a2T 4
, (28)

whenever the square root is well defined (i.e. at suf-
ficiently high temperatures). The negative sign corre-
sponds to a relative maximum while the positive one to
a relative minimum. We have then to evaluate the free
energy value (i.e. the effective thermal potential) at the
relative minimum and compare it with the one at " = 0.
The temperature value for which the two minima have
the same free energy is defined as the critical tempera-
ture and is:

Tc =

[

T∗ +
b1
eα

Λ4

T 3
c

]

αa2
αa2 + a23

. (29)

When a3 vanishes we recover the second order type criti-
cal temperature Tc. To derive the previous expression we
held fix the value of H to Λ4/e at the transition point.
In a more refined treatment one should not make such
an assumption. Below this temperature the minimum is
still for 〈"〉 = 0 and 〈H〉 = Λ4/e.
Just above the critical temperature the fields jump to

the new values:

〈|"|〉 =
a3
a2

, 〈H〉 =
Λ4

e
exp

[

−2b1〈|"|〉
2
]

. (30)

Close but above Tc (i.e. T = Tc +∆T ) we have:

〈|"|〉 &
a3
a2

+ ρ
∆T

Tc
, (31)

with

ρ &
αa2
a3

4κTc − 3T∗

a2Tc − 4b1α(κTc − T∗)
,

κ =
αa2 + a23

αa2
. (32)

a positive function of the coefficients of the effective po-
tential. In this regime

〈H〉 =
Λ4

e
exp

[

−2b1(
a3
a2

+ ρ
∆T

Tc
)2
]

. (33)
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tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
charged under ZN . The Polyakov loop is a remarkable
example, defined as
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where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]

V [H, `] =
H
2
ln


H
⇤4

�
+ T

4V [`] +HP[`] + VT [H] , (2)

where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators
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3.72 �5.73 8.49 �9.29 0.27 2.40 4.53

TABLE I. Parameters of the e↵ective potential in Eq. (5).
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describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.
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by lattice simulations. In this paper, we consider Tc ⇠
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PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators
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with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.
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the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
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We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]
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is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8

c
�2

�
4, and from this

point on we refer to � as the glueball field. It evolves

2

tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
charged under ZN . The Polyakov loop is a remarkable
example, defined as
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where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
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anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators
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where P denotes path ordering, A0 is the time component
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group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
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an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].
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and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
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describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
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Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
high temperatures and vanishes for temperatures below
the critical one. The stationary points of ` are ` = 0 and
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3b3
4b4
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BBBBB@
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1 +

512 b2(T )b4 � 4
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T
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1152 b23

1

CCCCCA
,

(6)
representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
Cosmological evolution of the glueball field—Thanks to

the previous discussion, we are left with a relatively sim-
ple recipe to describe the glueball field dynamics across
the phase transition. Note that the evolution can be
treated as completely classical, since the e↵ective La-
grangian in Eq. (5) fully accounts for quantum e↵ects
at tree level.
In a first approximation, the glueball field is homoge-

neous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

�̈+ 3H�̇+ @�V [�, T ] = 0 , (7)

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the Uni-
verse, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no in-
teractions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ⇠T . The photon temperature T�

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using

t =
1

2

s
45

4⇡3g⇤,⇢(T�)

mP

T 2
�

, (8)
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Expanding the exponential we have:

V [!] = T 4V [!] +
Λ4

e
P [!]−

Λ4

2e
+ · · · . (11)

Since V [!] and P [!] are real polynomials in ! invariant
under ZN we immediately recover a general potential in
!.

III. THE TWO COLOR THEORY

To illustrate how our formalism works we first consider
in detail the case N = 2 and neglect for simplicity the
term VT [H ]. This theory has been extensively studied via
lattice simulations [25, 26] and it constitutes the natural
playground to test our model. Here ! is a real field and
the Z2 invariant V [!] and P [!] are taken to be:

V [!] = a1!
2 + a2!

4 +O(!6),

P [!] = b1!
2 +O(!4), (12)

with a1, a2 and b1 unknown temperature dependent
functions which should be derived directly from the un-
derlying theory. Lattice simulations can, in principle,
fix all of the coefficients. In order for us to investi-
gate in some more detail the features of our potential
and inspired by the PLM model mean-field type of ap-
proximation we first assume a2 and b1 to be positive
and temperature independent constants while we model
a1 = α(T∗ − T )/T , with T∗ a constant and α another
positive constant. We will soon see that due to the inter-
play between the hadronic states and !, T∗ need not to
be the critical Yang-Mills temperature while a1 displays
the typical behavior of the mass square term related to
a second order type of phase transition.
The extrema are obtained by differentiating the poten-

tial with respect to H and !:

∂V

∂H
=

ln

2

[

eH

Λ4

]

+ P [!] =
ln

2

[

eH

Λ4

]

+ b1!
2 = 0,(13)

∂V

∂!
= 2!T 4

(

a1 +
H

T 4
b1 + 2a2!

2

)

= 0, (14)

A. Small and Intermediate Temperatures

At small temperatures the second term in Eq. (14)
dominates and the only solution is ! = 0. A vanish-
ing ! leads to a null P [!] yielding the expected minimum
for H :

〈H〉 =
Λ4

e
. (15)

Here ! and H decouple.
We now study the solution near the critical tempera-

ture for the deconfinement transition. For all the tem-
peratures for which

T 4a1 +Hb1 = T 3α(T∗ − T ) +Hb1 > 0, (16)

the solution for ! is still ! = 0 yielding Eq. (15). The
critical temperature is reached for

Tc = T∗ +
b1
eα

Λ4

T 3
c

. (17)

The critical temperature can be determined via lattice
simulations. We see that within our framework the latter
is related to the glueball (gluon-condensate) coupling to
two Polyakov loops and it would be relevant to measure
it on the lattice. At T = Tc, ! = 0 and H = Λ4/e.
Let us now consider the case T = Tc +∆T with

∆T

Tc
$ 1. (18)

Expanding 〈!〉2 at the leading order in ∆T/Tc yields:

〈!〉2 =
α

2a2

1 + 3 b1
eα

Λ
4

T 4
c

1− b2
1

ea2

Λ4

T 4
c

∆T

Tc
. (19)

We used Eq. (17) and Eq. (13) which relates the tem-
perature dependence of H to the one of !. At high tem-
peratures (see next subsection) 〈!〉 can be normalized to
one by imposing α/2a2 = 1 and the previous expression
reads:

〈!〉2 =
1 + 3 b1

eα
Λ

4

T 4
c

1− 2b2
1

eα
Λ4

T 4
c

∆T

Tc
≡

4Tc − 3T∗

(1− 2b1)Tc + 2b1T∗

∆T

Tc
.(20)

For a given critical temperature consistency requires b1
and T∗ to be such that:

4Tc − 3T∗

(1− 2b1)Tc + 2b1T∗

≥ 0. (21)

The temperature dependence, in this regime, of the gluon
condensate is:

〈H〉 =
Λ4

e
exp

[

−2b1〈!〉
2
]

. (22)

We find the mean field exponent for !, i.e. !2 increases
linearly with the temperature near the phase transition
[27]. Interestingly the gluon-condensates drops exponen-
tially. The drop in the gluon-condensate is triggered by
the rise of ! and it happens in our simple model exactly at
the deconfining critical temperature. Although the drop
might be sharp it is continuous in temperature and this
is related to the fact that the phase transition is second
order. Our findings strongly support the common picture
according to which the drop of the gluon condensate sig-
nals, in absence of quarks, deconfinement.

B. High Temperature

At very high temperatures the second term in Eq. (14)
can be neglected and the minimum for ! is:

〈!〉 =

√

α

2a2
. (23)

second-order

phase transition
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For H we have now:

〈H〉 =
Λ4

e
exp

[

−2b1
α

2a2

]

=
Λ4

e
exp [−2b1] . (24)

In the last step we normalized 〈"〉 to unity at high tem-
perature. In order for the previous solutions to be valid
we need to operate in the following temperature regime:

T $
4

√

b1
α
〈H〉 ≈ Tc. (25)

We find that at sufficiently high temperature 〈H〉 is ex-
ponentially suppressed and the suppression rate is de-
termined solely by the glueball – "2 mixing term en-
coded in P ["]. The coefficient b1 should be large (or
increase with the temperature) since we expect a van-
ishing gluon-condensate at asymptotically high tempera-
tures. Clearly it is crucial to determine all of these coeffi-
cients via first principle lattice simulations. The qualita-
tive picture which emerges in our analysis is summarized
in Fig. 1.

FIG. 1: The thin line is the gluon condensate 〈H〉 normal-
ized to Λ4/e as function of the temperature. The thick line
represents the normalized to unity 〈!〉 as function of the tem-
perature. We have chosen for illustration α = 1, b1 = 1.45
and Tc # 1.16Λ.

IV. THE THREE COLOR THEORY

Z3 is the global symmetry group for the three color
case while " is a complex field. The functions V ["] and
P ["] are:

V ["] = a1|"|
2 + a2|"|

4 − a3("
3 + "∗3) +O("5),

P ["] = b1|"|
2 +O("3), (26)

with a1, a2, a3 and b1 unknown temperature dependent
coefficients which can be determined using lattice data.
In this paper we want to investigate the general relation
between glueballs and " so we will not try to find the best
parameterization to fit the lattice data. In the spirit of

the mean field theory we take a2, a3 and b1 to be positive
constants while a1 = α(T∗ − T )/T . With " = |"|eiϕ the
extrema are now obtained by differentiating the potential
with respect to H , |"| and ϕ:
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2

)

= 0,

∂V

∂ϕ
= 6|"|3 sin(3ϕ) = 0. (27)

At small temperature the H/T 4 term in the second equa-
tion dominates and the solution is 〈|"|〉 = 0, 〈H〉 = Λ4/e
and the last equation is verified for any 〈ϕ〉, so we choose
〈ϕ〉 = 0. The second equation can have two more solu-
tions:

3
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16
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2Ta2
−

b1H

2a2T 4
, (28)

whenever the square root is well defined (i.e. at suf-
ficiently high temperatures). The negative sign corre-
sponds to a relative maximum while the positive one to
a relative minimum. We have then to evaluate the free
energy value (i.e. the effective thermal potential) at the
relative minimum and compare it with the one at " = 0.
The temperature value for which the two minima have
the same free energy is defined as the critical tempera-
ture and is:

Tc =

[

T∗ +
b1
eα

Λ4

T 3
c

]

αa2
αa2 + a23

. (29)

When a3 vanishes we recover the second order type criti-
cal temperature Tc. To derive the previous expression we
held fix the value of H to Λ4/e at the transition point.
In a more refined treatment one should not make such
an assumption. Below this temperature the minimum is
still for 〈"〉 = 0 and 〈H〉 = Λ4/e.
Just above the critical temperature the fields jump to

the new values:

〈|"|〉 =
a3
a2

, 〈H〉 =
Λ4

e
exp
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−2b1〈|"|〉
2
]

. (30)

Close but above Tc (i.e. T = Tc +∆T ) we have:
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+ ρ
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, (31)

with

ρ &
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4κTc − 3T∗

a2Tc − 4b1α(κTc − T∗)
,

κ =
αa2 + a23
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. (32)

a positive function of the coefficients of the effective po-
tential. In this regime

〈H〉 =
Λ4

e
exp

[
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+ ρ
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Tc
)2
]

. (33)
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Introducing canonically normalised field

2

tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
charged under ZN . The Polyakov loop is a remarkable
example, defined as

` (x) =
1

N
Tr[L] ⌘ 1

N
Tr

"
P exp

"
i g

Z 1/T

0
A0(⌧,x)d⌧

##
,

(1)
where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]

V [H, `] =
H
2
ln


H
⇤4

�
+ T

4V [`] +HP[`] + VT [H] , (2)

where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators

a0 a1 a2 a3 a4 b3 b4

3.72 �5.73 8.49 �9.29 0.27 2.40 4.53

TABLE I. Parameters of the e↵ective potential in Eq. (5).

with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.

In the opposite limit, T � Tc, in the deconfined phase,
the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]

L =
c

2

@µH@
µH

H3/2
� V [H, `] , (3)

where

c =
1

2
p
e

✓
⇤

mgb

◆2

(4)

is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8

c
�2

�
4, and from this

point on we refer to � as the glueball field. It evolvesthe effective Lagrangian reads:
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
high temperatures and vanishes for temperatures below
the critical one. The stationary points of ` are ` = 0 and
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representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
Cosmological evolution of the glueball field—Thanks to

the previous discussion, we are left with a relatively sim-
ple recipe to describe the glueball field dynamics across
the phase transition. Note that the evolution can be
treated as completely classical, since the e↵ective La-
grangian in Eq. (5) fully accounts for quantum e↵ects
at tree level.
In a first approximation, the glueball field is homoge-

neous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

�̈+ 3H�̇+ @�V [�, T ] = 0 , (7)

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the Uni-
verse, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no in-
teractions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ⇠T . The photon temperature T�

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using

t =
1

2

s
45

4⇡3g⇤,⇢(T�)

mP

T 2
�

, (8)
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where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]
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where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators
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with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.

In the opposite limit, T � Tc, in the deconfined phase,
the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]
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is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
high temperatures and vanishes for temperatures below
the critical one. The stationary points of ` are ` = 0 and
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representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
Cosmological evolution of the glueball field—Thanks to

the previous discussion, we are left with a relatively sim-
ple recipe to describe the glueball field dynamics across
the phase transition. Note that the evolution can be
treated as completely classical, since the e↵ective La-
grangian in Eq. (5) fully accounts for quantum e↵ects
at tree level.
In a first approximation, the glueball field is homoge-

neous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

�̈+ 3H�̇+ @�V [�, T ] = 0 , (7)

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the Uni-
verse, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no in-
teractions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ⇠T . The photon temperature T�

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using

t =
1

2

s
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
high temperatures and vanishes for temperatures below
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representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
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at tree level.
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
high temperatures and vanishes for temperatures below
the critical one. The stationary points of ` are ` = 0 and

|`±| =
3b3
4b4

0

BBBBB@
1±

vuuuut
1 +

512 b2(T )b4 � 4
c1b4

c2

✓
�

T

◆4

1152 b23

1

CCCCCA
,

(6)
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tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
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where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]
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where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators
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TABLE I. Parameters of the e↵ective potential in Eq. (5).

with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.
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the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]
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is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8
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Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]

V [H, `] =
H
2
ln


H
⇤4

�
+ T

4V [`] +HP[`] + VT [H] , (2)

where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators

a0 a1 a2 a3 a4 b3 b4

3.72 �5.73 8.49 �9.29 0.27 2.40 4.53

TABLE I. Parameters of the e↵ective potential in Eq. (5).

with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.

In the opposite limit, T � Tc, in the deconfined phase,
the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]

L =
c

2

@µH@
µH

H3/2
� V [H, `] , (3)

where

c =
1

2
p
e

✓
⇤

mgb

◆2

(4)

is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8

c
�2

�
4, and from this

point on we refer to � as the glueball field. It evolves

2

tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
charged under ZN . The Polyakov loop is a remarkable
example, defined as

` (x) =
1

N
Tr[L] ⌘ 1

N
Tr

"
P exp

"
i g

Z 1/T

0
A0(⌧,x)d⌧

##
,

(1)
where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]

V [H, `] =
H
2
ln


H
⇤4

�
+ T

4V [`] +HP[`] + VT [H] , (2)

where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators

a0 a1 a2 a3 a4 b3 b4

3.72 �5.73 8.49 �9.29 0.27 2.40 4.53

TABLE I. Parameters of the e↵ective potential in Eq. (5).

with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.

In the opposite limit, T � Tc, in the deconfined phase,
the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]

L =
c

2

@µH@
µH

H3/2
� V [H, `] , (3)

where

c =
1

2
p
e

✓
⇤

mgb

◆2

(4)

is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8

c
�2

�
4, and from this

point on we refer to � as the glueball field. It evolves

7

210 (1982) 423.
[61] J. Schechter, E↵ective Lagrangian with Two Color

Singlet Gluon Fields, Phys. Rev. D 21 (1980) 3393.
[62] J. Schechter, Introduction to e↵ective Lagrangians for

QCD, eConf C010815 (2002) 76 [hep-ph/0112205].
[63] B. Lucini, A. Rago and E. Rinaldi, SU(Nc) gauge

theories at deconfinement, Phys. Lett. B 712 (2012) 279
[1202.6684].

[64] R. Gomm, P. Jain, R. Johnson and J. Schechter, Scale
Anomaly and the Scalars, Phys. Rev. D 33 (1986) 801.

[65] R. Ouyed and F. Sannino, The Glueball sector of two
flavor color superconductivity, Phys. Lett. B 511 (2001)
66 [hep-ph/0103168].

[66] D. Curtin, C. Gemmell and C. B. Verhaaren, Simulating
Glueball Production in Nf = 0 QCD, 2202.12899.

[67] P. Asadi, E. D. Kramer, E. Kuflik, G. W. Ridgway,
T. R. Slatyer and J. Smirnov, Thermal squeezeout of
dark matter, Phys. Rev. D 104 (2021) 095013
[2103.09827].

[68] P. Asadi, E. D. Kramer, E. Kuflik, T. R. Slatyer and
J. Smirnov, Glueballs in a thermal squeezeout model,
JHEP 07 (2022) 006 [2203.15813].

[69] M. D’Elia, A. Di Giacomo and E. Meggiolaro, Gauge
invariant field strength correlators in pure Yang-Mills
and full QCD at finite temperature, Phys. Rev. D 67
(2003) 114504 [hep-lat/0205018].

[70] N. Yamanaka, H. Iida, A. Nakamura and
M. Wakayama, Dark matter scattering cross section and
dynamics in dark Yang-Mills theory, Phys. Lett. B 813
(2021) 136056 [1910.01440].

[71] N. Yamanaka, H. Iida, A. Nakamura and
M. Wakayama, Glueball scattering cross section in
lattice SU(2) Yang-Mills theory, Phys. Rev. D 102
(2020) 054507 [1910.07756].

[72] Planck Collaboration, N. Aghanim et al., Planck 2018
results. VI. Cosmological parameters, Astron.
Astrophys. 641 (2020) A6 [1807.06209]. [Erratum:
Astron.Astrophys. 652, C4 (2021)].

matching the size of discontinuity to lattice:

FOPT

Huang, Reichert, Sannino and Wang, 

PRD 104 (2021) 035005

Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26



19

Cosmological evolution of the glueball field

Introduction

Introduction

Stochastic Gravitational Wave (GW) background

Superposition of unresolved astrophysical sources

Cosmological events

(i) Inflation
(ii) Cosmic strings
(iii) Strong cosmological phase transitions (PTs) !

by expanding and colliding vacuum bubbles of new phase

GW background as a gravitational probe for New Physics

Focus on the EW phase transition (EWPT) relevant for EW baryogenesis

Study a simple model with multiple-step strongly 1st-order EWPTs

Study the impact of multiple-step strong PTs on GW spectra

APM,RP,TV (AU,LU,NPI,UPS) Multi-peaked signatures of primordial gravitational waves from multi-step electroweak phase transition July 2nd, 2018 4 / 26

Since quantum effects are embedded into the effective Lagrangian, 
the evolution can be treated as if it were classical
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The glueball field is considered homogeneous and evolves in expanding FLRW 
Universe, with the Klein-Gordon e.o.m.

3

FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
high temperatures and vanishes for temperatures below
the critical one. The stationary points of ` are ` = 0 and
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representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
Cosmological evolution of the glueball field—Thanks to

the previous discussion, we are left with a relatively sim-
ple recipe to describe the glueball field dynamics across
the phase transition. Note that the evolution can be
treated as completely classical, since the e↵ective La-
grangian in Eq. (5) fully accounts for quantum e↵ects
at tree level.
In a first approximation, the glueball field is homoge-

neous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

�̈+ 3H�̇+ @�V [�, T ] = 0 , (7)

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the Uni-
verse, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no in-
teractions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ⇠T . The photon temperature T�

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using

t =
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If there are no interactions with the SM, the dark sector is colder than 
the SM thermal bath, with the visible-to-dark sector temperature ratio
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
of the minimum in the e↵ective potential. Being the or-
der parameter of the phase transition, ` approaches 1 at
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representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
Cosmological evolution of the glueball field—Thanks to

the previous discussion, we are left with a relatively sim-
ple recipe to describe the glueball field dynamics across
the phase transition. Note that the evolution can be
treated as completely classical, since the e↵ective La-
grangian in Eq. (5) fully accounts for quantum e↵ects
at tree level.
In a first approximation, the glueball field is homoge-

neous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

�̈+ 3H�̇+ @�V [�, T ] = 0 , (7)

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the Uni-
verse, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no in-
teractions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ⇠T . The photon temperature T�

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using
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Time variable is found in terms of the photon temperature:
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FIG. 1. Vacuum expectation value of the glueball field H

as a function of temperature. The field is normalized to its
value in the confined phase. The discontinuity at T = Tc is
characteristic of a first-order phase transition and the value of
the jump depends on the parameter c1, whose limiting values
shown in this plot are obtained by a comparison with the lat-
tice data [69]. The values shown correspond to 1� uncertainty
range. We do not use the lattice data for higher temperatures
in the comparison, as our model neglects thermal corrections,
which are increasingly relevant above Tc.
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where we have kept only the lowest order in P[`] satis-
fying the symmetries. The Polyakov loop potential V[`]
is determined from symmetry arguments combined with
fits to lattice thermodynamic quantities. Our choice here
is taken from Ref. [33] and the numerical values of the
constants are reported in Tab. I, for clarity.

Temperature dependence of the Polyakov loop—The
Lagrangian in Eq. (5) describes the evolution of the
glueball-dark gluon system across the phase transition.
This e↵ective description is expected to be valid in a
broad temperature range, except when the temperature
is large T � Tc, where VT [H] needs to be included. Since
the Polyakov loop is a non-dynamical degree of freedom,
its temperature evolution is determined by the location
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representing two minima, ` = 0 and ` = `+, separated
by a maximum in ` = `�. The solution ` = 0 denotes
the confined phase and it is a global minimum only for
temperatures below the critical temperature. In the de-
confined phase, the solution ` = 0 becomes metastable
and ` = `+ becomes the global minimum. The Polyakov
loop is then “integrated out” using its equation of motion
` = `(�, T ), giving rise to a potential for the glueball field
in the form V [�, T ] = V [�, `(�, T )]. Moreover, we set the
zero-point energy of the glueball field to zero in order to
properly describe glueballs as matter. The evolution of
the glueball minimum in this new potential is shown in
Fig. 1 in terms of the field H and compared to lattice
simulations. Below Tc, hHi is constant with tempera-
ture and it discontinuously jumps to a lower value right
above the critical temperature. We match the size of the
discontinuity predicted in our potential to a result from
lattice, given in Ref. [69] (the red point in Fig. 1). This
constraint is enough to impose limitations on the value
of c1 in Eq. (5), the glueball-Polyakov loop coupling. We
found this value to be c1 = 1.225 ± 0.19 at 95% CL.
The associated uncertainty of ⇠ 20% dominates the un-
certainty in the glueball relic abundance in our analysis,
such that ⇠ O(3%) uncertainties on the fitting parame-
ters in Tab. I have been ignored.
Cosmological evolution of the glueball field—Thanks to

the previous discussion, we are left with a relatively sim-
ple recipe to describe the glueball field dynamics across
the phase transition. Note that the evolution can be
treated as completely classical, since the e↵ective La-
grangian in Eq. (5) fully accounts for quantum e↵ects
at tree level.
In a first approximation, the glueball field is homoge-

neous and evolves in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. The Klein-Gordon
equation for a field in a FLRW metric reads

�̈+ 3H�̇+ @�V [�, T ] = 0 , (7)

where the Hubble parameter H when glueballs form is
approximately determined by the SM content of the Uni-
verse, as it is assumed to have more degrees of freedom
than the confining dark sector and, if there are no in-
teractions with the SM, this sector is colder than the
SM thermal bath. We denote the visible-to-dark sector
temperature ratio by ⇠T . The photon temperature T�

determines the Hubble parameter H and can be taken as
a time variable in Eq. (7) by using
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where mP is the Planck mass and g⇤,⇢(T�) is the number
of degrees of freedom of the SM bath at temperature
T� = ⇠TT . Note that the dark sector temperature T is
the one that governs the phase transition, i.e. entering in
Eq. (2). In terms of this variable Eq. (7) reads
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠

2
T .

The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum

FIG. 2. Evolution of the glueball field for a phase transition
scale ⇤ = 10�5

mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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2⇡3
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+ V [�] . (10)

This energy density scales as ⇠ T
3, as CDM, when the

harmonic approximation is valid, i.e. after the decoupling
of 3 ! 2 interactions. Numerically solving Eq. (9) down
to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
pansion, for ⇤ . 0.1M , the energy density is given by
0.015 . T

�3
f ⇤�1

⇢ . 0.020 for 1.035 < c1 < 1.415. In
conclusion, the predicted glueball relic density is

0.12⇣�3
T

⇤

137.9 eV
. ⌦h2 . 0.12⇣�3

T

⇤

82.7 eV
, (11)

and this result should be compared to ⌦h2 ⇠
0.12 ⇣�3

T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠
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M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum

FIG. 2. Evolution of the glueball field for a phase transition
scale ⇤ = 10�5

mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
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placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
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ones determining the relic abundance of glueballs when
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cillator in a non-linear potential, and the energy stored
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the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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harmonic approximation is valid, i.e. after the decoupling
of 3 ! 2 interactions. Numerically solving Eq. (9) down
to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
pansion, for ⇤ . 0.1M , the energy density is given by
0.015 . T

�3
f ⇤�1
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and this result should be compared to ⌦h2 ⇠
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T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum

FIG. 2. Evolution of the glueball field for a phase transition
scale ⇤ = 10�5

mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.
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dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
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sible because of the n+m-th order interaction term in the
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all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
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of 3 ! 2 interactions. Numerically solving Eq. (9) down
to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
pansion, for ⇤ . 0.1M , the energy density is given by
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and this result should be compared to ⌦h2 ⇠
0.12 ⇣�3

T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due

encodes non-perturbative dynamics of the glueball field!
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After the phase transition, we assume that the energy stored in the glueball

fields gives rise to the Dark Matter relic density (no further decays implied)
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Due to the interaction term, dark glueballs are formed from dark gluons populating 
the Universe in the deconfined regime
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Higher-order non-linear interaction terms among glueballs are important

for large amplitudes of glueball field oscillations around the minimum 
(particularly relevant for phase transition) 4
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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harmonic approximation is valid, i.e. after the decoupling
of 3 ! 2 interactions. Numerically solving Eq. (9) down
to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
pansion, for ⇤ . 0.1M , the energy density is given by
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and this result should be compared to ⌦h2 ⇠
0.12 ⇣�3

T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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where mP is the Planck mass and g⇤,⇢(T�) is the number
of degrees of freedom of the SM bath at temperature
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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scale ⇤ = 10�5

mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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harmonic approximation is valid, i.e. after the decoupling
of 3 ! 2 interactions. Numerically solving Eq. (9) down
to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
pansion, for ⇤ . 0.1M , the energy density is given by
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and this result should be compared to ⌦h2 ⇠
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T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min
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tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠
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around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
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sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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is comparable with the Hubble parameter, H ' mgb(T ). The
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dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
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and this result should be compared to ⌦h2 ⇠
0.12 ⇣�3

T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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where the second term can be neglected for a large range
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We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠

2
T .
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coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
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populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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oscillations with a high initial velocity that wash out any
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placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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determine the relic abundance when 
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
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of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
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sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
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The evolution of the glueball field is that of a dumped harmonic oscillator in

a non-linear potential, with oscillations about the minimum
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Energy stored in those oscillations gives rise to the relic DM abundance:
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which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
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early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
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confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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to the temperature Tf , and below this temperature the
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and

⇢ =
2⇡3

45
g⇤,⇢(T )

T
6

M2

✓
d�

dT

◆2

+ V [�] . (10)

This energy density scales as ⇠ T
3, as CDM, when the

harmonic approximation is valid, i.e. after the decoupling
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pansion, for ⇤ . 0.1M , the energy density is given by
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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The grey region indicates the phase in which the glueball mass
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the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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pansion, for ⇤ . 0.1M , the energy density is given by
0.015 . T

�3
f ⇤�1

⇢ . 0.020 for 1.035 < c1 < 1.415. In
conclusion, the predicted glueball relic density is

0.12⇣�3
T

⇤

137.9 eV
. ⌦h2 . 0.12⇣�3

T

⇤

82.7 eV
, (11)

and this result should be compared to ⌦h2 ⇠
0.12 ⇣�3

T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
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the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum
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of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
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The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum

FIG. 2. Evolution of the glueball field for a phase transition
scale ⇤ = 10�5

mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
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which is equivalent to having a massive free field. On the
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tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
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mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
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red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
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sume that the energy density stored in the glueball field
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physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
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populate the Universe and interact with each other fol-
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close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
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In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
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around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
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all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
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We confirm the existence of the glueball overabundance problem for high-scale 
confinement previously found in the literature due to the linear scaling 
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We revisit the possibility that Dark Matter is composed of stable scalar glueballs of a confining
dark SU(3) gauge theory coupled only to gravity. The relic abundance of dark glueballs is studied for
the first time in a thermal e↵ective theory accounting for strong-coupling dynamics. An important
ingredient of our analysis is the use of an e↵ective potential for glueballs that is fitted by lattice
simulations. We predict the relic abundance to be in the range 0.12⇣�3

T ⇤/(137.9 eV) . ⌦h2 .
0.12⇣�3

T ⇤/(82.7 eV), with ⇤ being the confinement scale, ⇣T the visible-to-dark sector temperature
ratio and the uncertainty is coming from the fit to lattice data. This prediction is an order of
magnitude smaller than the existing glueball abundance results in the literature. Our framework
can be easily generalised to di↵erent gauge groups and modified cosmological histories paving the way
towards consistent exploration of strongly-coupled dark sectors and their cosmological implications.

Introduction—Confining dark Yang-Mills sectors are
often considered as a possible source of Cold Dark Matter
(CDM) in the Universe. In the simplest case, such dark
gauge sectors are decoupled from the Standard Model,
except for the gravitational interaction. However, the
strong self-interactions confine the gauge sector into com-
posite objects such as glueballs, in the case of a dark
sector only composed of dark gluons. In a minimal ap-
proach, the lightest composite state predicted by a pure
strongly-coupled gauge theory, the scalar dark glueball,
is extensively discussed in the literature as a possible
natural CDM candidate [1–14] (see also Ref. [15] for
a more general discussion including ‘dark hadrons’ and
Ref. [16] for phenomenology of generic late-time forming
DM). As an important case of self-interacting DM, this
type of DM enables a consistent description of the struc-
ture of the Universe at small scales, in particular, help-
ing resolve the so-called missing satellite problem [17]
and the cusp-core problem in the CDM distribution at
galactic scales [18, 19]. Furthermore, strongly-coupled
dark Yang-Mills theories resembling Quantum Chromo-
dynamics (QCD) in the Standard Model are physically
motivated (e.g., these sectors show up frequently in string
compactifications [20–30]) and a wealth of knowledge
in non-perturbative QCD can be directly applied there.
Note, since only a pure Yang-Mills theory has robust and
clean results available from lattice simulations [31], it
has traditionally been the best starting point to study
strongly coupled dark sectors rigorously.

With the presence of a first-order confinement-
deconfinement phase transition at a critical temperature
Tc [31–35], an analysis of relic abundance of this type
of DM is nontrivial and requires a detailed knowledge of
thermal field theory in a non-perturbative domain. The

⇤ Corresponding author.
zhiwei.wang@thep.lu.se

existing calculations predict that the relic abundance of
dark glueballs overcloses the Universe for a confining sec-
tor with critical temperature above the eV-scale, if that
sector is not significantly cooler than the SM thermal
bath. When multiple dark gauge sectors are present,
a situation ubiquitous in string theory, this becomes a
serious problem for phenomenology [36]. Therefore, a
precise understanding of the cosmological generation of
glueball DM, with the inclusion of strong-coupling e↵ects,
is necessary. In this work, we develop a novel approach
to study the relic abundance of dark glueballs by using
the well established low-energy e↵ective model of glueball
and gluon dynamics at finite temperatures [37]. We fur-
ther constrain the e↵ective model parameters by means
of lattice results such as thermodynamic quantities and
observables of the gluon condensate at finite tempera-
ture.

Our approach provides for the first time a rigor-
ous theoretical treatment of the dark glueball dynam-
ics yielding a prediction for the range of relic abundance
0.12⇣�3

T ⇤/(137.9 eV) . ⌦h2 . 0.12⇣�3
T ⇤/(82.7 eV),

about an order of magnitude below the previous esti-
mates in Refs. [1, 36], depending on the visible-to-dark
sector temperature ratio ⇣T . We confirm the linear de-
pendence of the relic abundance with the confinement
scale which is the essence of dark glueball overproduction
problem in the early Universe while the relic abundance
itself is significantly reduced.

Glueball e↵ective Lagrangian—A first-principle’s treat-
ment of the SU(N) confinement-deconfinement phase
transition is a tough theoretical challenge which requires
a consistent description of a deeply non-perturbative dy-
namics. Lattice simulations represent a valuable tool to
study phase transitions in Yang-Mills theories with and
without matter fields (e.g., see Refs. [31, 38, 39]). At
the same time, other complementary approaches have
been used to understand di↵erent aspects of the strong-
coupling e↵ects, such as e↵ective models and the func-
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tional renormalization group [40–59]. Here, we describe
the dynamics of dark glueballs by means of an e↵ective
field theory [37].

At non-vanishing temperatures T , the ZN center of
SU(N) is a relevant global symmetry [60] and it is pos-
sible to construct a number of gauge invariant operators
charged under ZN . The Polyakov loop is a remarkable
example, defined as

` (x) =
1

N
Tr[L] ⌘ 1

N
Tr

"
P exp

"
i g

Z 1/T

0
A0(⌧,x)d⌧

##
,

(1)
where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g
is the SU(N) coupling constant and (⌧,x) are Euclidean
spacetime coordinates. The Polyakov loop is charged
with respect to the center ZN of the SU(N) gauge
group [60] under which it transforms as ` ! z` with
z 2 ZN . Since the expectation value of the Polyakov loop
vanishes at temperatures below the critical one and it is
non-zero at higher temperatures, it is typically used as
an order parameter for the Yang-Mills confinement phase
transition at temperature Tc ⇠ ⇤ [60]. This observation
was exploited to model the phase transition in a mean
field approach in terms of Polyakov loops known as the
Polyakov Loop Model (PLM) [51]. This model captures
the essential features of confinement phase transition in
SU(N) theories with N � 2 while PLM-inspired models
were also proposed to understand physics of heavy-ion
collisions at the RHIC collider [57, 58]. In [33], it has
been shown that PLM can very well capture thermody-
namic observables predicted by lattice simulations [31].

At temperatures around Tc, one can treat the glueball
field H and the Polyakov loop ` in a unified description,
with an e↵ective temperature-dependent potential given
by [37]

V [H, `] =
H
2
ln


H
⇤4

�
+ T

4V [`] +HP[`] + VT [H] , (2)

where the first term is the zero-temperature glueball po-
tential which can be obtained via the constraint of trace
anomaly [61, 62], ⇤ is the confinement scale of the theory,
and V [`] and P [`] are assumed to be real polynomials in `

and invariant under ZN , with coe�cients that depend on
fits to lattice data. Thermal corrections are included in
VT [H], which might involve terms that are non-analytic
in H [48].

Note that (i) the potential in Eq. (2) reduces to the
glueball dynamics at low temperatures and follows the
PLM in the hot phase, (ii) the glueball field H is a di-
mension four scalar field and (iii) the term that couplesH
and ` is the most general interaction term which can be
constructed without spoiling the zero temperature trace
anomaly (Eq. (21) of Ref. [62]).

In this simplified model we neglect the entire tower
of heavier glueballs and pseudo-scalar glueballs and the
infinite series of dimensionless gauge invariant operators

a0 a1 a2 a3 a4 b3 b4

3.72 �5.73 8.49 �9.29 0.27 2.40 4.53

TABLE I. Parameters of the e↵ective potential in Eq. (5).

with di↵erent charges under ZN . Nevertheless this model
describes the essential features of the Yang-Mills phase
transition. Below the critical temperature Tc the last
term in Eq. (2) is negligible. Since the glueballs are rel-
atively heavy compared to the ⇤ scale their temperature
contribution VT [H] can also be disregarded in the first ap-
proximation [37]. We leave a refined analysis accounting
for thermal e↵ects in the glueball potential for a future
investigation.

In the opposite limit, T � Tc, in the deconfined phase,
the term T

4V[`] dominates, i. e. dark gluons are the
dominant component. The precise relation between the
confinement scale ⇤ and the critical temperature of the
phase transition Tc depends mildly on the gauge group
and matter structure of the theory and is determined
by lattice simulations. In this paper, we consider Tc ⇠
1.61⇤ for SU(3) (see e.g. Ref. [63] for arbitrary number
of colors).

We consider the following Lagrangian for the glueball
and Polyakov loop degrees of freedom [37, 64, 65]

L =
c

2

@µH@
µH

H3/2
� V [H, `] , (3)

where

c =
1

2
p
e

✓
⇤

mgb

◆2

(4)

is a constant determined by the glueball mass mgb, that
in the following is assumed to be mgb = 6⇤ [66]. The
Polyakov loop is a non-dynamical order parameter and
since it is assumed to be homogeneous in space, we ignore
terms involving spatial derivatives of `. This corresponds
to neglect the non-trivial dynamics of a first order phase
transition, which proceeds via the formation of bubbles
and their subsequent collisions. This could have a signif-
icant impact on the formation of glueballs, as observed
in presence of matter (see e.g. Refs. [67, 68]). The kinetic
term for the glueball field H is non-standard, as it can
be inferred from its dimensionality. For this reason, we
write the glueball field H in terms of a canonically nor-
malised scalar field � as H = 2�8

c
�2

�
4, and from this

point on we refer to � as the glueball field. It evolves
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where the second term can be neglected for a large range
of temperatures as g⇤,⇢ is constant except at a few iso-
lated events (the QCD phase transition, for example).
We consider it as a free parameter and take g⇤,⇢ = 100,
which has very little impact on our final result. The
visible-to-dark sector temperature ratio can be absorbed
in an e↵ective Planck mass, M ⌘ mP /⇠

2
T .

The non-perturbative dynamics of the system is en-
coded in Eq. (9) and, after the phase transition, we as-
sume that the energy density stored in the glueball field
gives precisely the DM relic density. From the particle
physics point of view the evolution can be described as
follows. In the deconfined phase the Universe is popu-
lated by dark gluons that form glueballs at the phase
transition, thanks to the interaction term in Eq. (5).
When the phase transition is completed, DM glueballs
populate the Universe and interact with each other fol-
lowing the potential in Eq. (5), corresponding to inter-
actions in the form (�� �min)n for n = 2, 3..., with �min

being the value of the field at the minimum of the po-
tential. The importance of the higher-n terms depends
on the displacement of � from its minimum, which is a
measure of the glueball density. If, for example, � is very
close to its minimum, only the quadratic term is relevant,
which is equivalent to having a massive free field. On the
other hand, large amplitudes (i.e. larger densities) for
� require increasingly more non-linear interaction terms
(see also Refs. [70, 71]).

In Fig. 2 we show the evolution of the glueball field
as a function of temperature, starting from di↵erent ini-
tial conditions set in the deconfined phase. In the very
early stage, the field evolution is dominated by the Hub-
ble friction and it remains frozen until H becomes com-
parable to the temperature-dependent e↵ective glueball
mass in the deconfined phase, represented by the gray
region labelled as H ' mgb(T ). This happens at a tem-
perature Tosc ⇠

p
M⇤, when the field starts to oscillate

around the minimum of the potential, shown as a dashed
red line in Fig. 2, with a damped amplitude. We take
Tosc � Tc, as M � ⇤, unless the confinement scale is
close to the Planck scale or the dark sector is very cold.
Therefore, the oscillations of the glueball field in the de-
confined phase have enough time to decay, regardless of
initial condition, and � just follows the minimum of the
potential (with damped oscillations of small amplitude
but with an increasing average speed) until the phase
transition occurs at Tc (see Fig. 2). At the critical tem-
perature, the value of the Polyakov loop jumps discon-
tinuously, causing a discontinuous jump in the minimum

FIG. 2. Evolution of the glueball field for a phase transition
scale ⇤ = 10�5

mP , c1 = 1.225 and di↵erent initial conditions.
The grey region indicates the phase in which the glueball mass
is comparable with the Hubble parameter, H ' mgb(T ). The
vertical dashed line marks the phase transition at Tc = 1.61⇤.
The red dashed line shows the evolution of the minimum of
the glueball potential.

of the glueball potential, as shown in Fig. 1, generating
oscillations with a high initial velocity that wash out any
dependence on initial conditions at T > Tc.
Glueball relic density—In the confined phase, � is dis-

placed enough from its minimum to allow for annihilation
of n glueballs into m < n glueballs, n ! m, which is pos-
sible because of the n+m-th order interaction term in the
Lagrangian. As the glueball number density decreases,
all the higher order n ! m processes become less e�cient
until the only e�cient number-changing process is 3 ! 2.
Note that the 3 ! 1 and 2 ! 1 processes are prohib-
ited due to kinematic constraints arising from the energy
conservation. The 3 ! 2 interactions are precisely the
ones determining the relic abundance of glueballs when
�3!2 < H. The evolution is that of a simple damped os-
cillator in a non-linear potential, and the energy stored
in these oscillations around �min ⇡ 0.28⇤ corresponds to
the relic DM abundance, namely, ⌦h2 = ⇢/⇢c, where the
critical density is ⇢c = 1.05⇥ 104 eV cm�3, and
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This energy density scales as ⇠ T
3, as CDM, when the

harmonic approximation is valid, i.e. after the decoupling
of 3 ! 2 interactions. Numerically solving Eq. (9) down
to the temperature Tf , and below this temperature the
evolution is simply determined by the cosmological ex-
pansion, for ⇤ . 0.1M , the energy density is given by
0.015 . T
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⇢ . 0.020 for 1.035 < c1 < 1.415. In
conclusion, the predicted glueball relic density is
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and this result should be compared to ⌦h2 ⇠
0.12 ⇣�3

T ⇤/5.45 eV [1], which overestimates the relic den-
sity by one order of magnitude. This di↵erence is due
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to two main concurrent e↵ects. The first one is an over-
estimation of the energy stored in the dark gluon field.
In the literature, dark gluons are considered as radia-
tion for all temperatures above the phase transition. In
our approach, the energy density of dark gluons for tem-
peratures right above the critical one strongly deviates
(reduced by a factor ⇠ 50) from that of an ideal gas,
in agreement with lattice results. The second e↵ect is
that glueballs do not redshift as CDM immediately af-
ter the phase transition, going through a phase in which
their equation of state is �1 . p/⇢ . 0, making them
dilute slower than dust. The combination of these ef-
fects leads to the found discrepancy. We note also that
thermal corrections increase the glueball relic density, by
displacing the high-temperature minimum of a ⇠ 10%
farther from the low-temperature minimum [48]. We es-
timated an increase of the relic density up to ⇠ 80% due
to such thermal corrections, which will be subject of a
future investigation.

A possible constraint on the model comes from the
contribution of dark gluons to the e↵ective number of
relativistic species, constrained to be �Ne↵ < 0.35 at
the 95% CL [72]. A temperature ratio ⇣T & 2 is enough
to evade this constraint. Therefore, a dark gauge sector
interacting only via gravitational interactions with the
SM and a confinement scale at the eV scale might explain
the DM abundance without spoiling other cosmological
observables.

Discussion and conclusions—In this work, we pre-

sented a new approach to calculate the glueball CDM
relic density which includes the self-interactions in a
non-perturbative fashion. We bridge the well-established
thermal EFT with the existing lattice results to provide
rigorous phenomenological predictions. Because of its
generality, it is easy to apply this approach to di↵erent
gauge groups, but in this work we considered only SU(3)
for the sake of clarity. Moreover, the method presented in
this work is suitable for investigations of the glueball for-
mation in modified cosmological histories, requiring only
a simple modification of Eq. (9), one of the main results
of this work. Another interesting question is on the role
of thermal e↵ects in the glueball potential, that we ne-
glected in this preliminary study. We postpone this study
to a future work. Our work paves the road towards con-
sistent exploration of strongly-coupled dark sectors and
their cosmological implications.
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Thermal corrections to the glueball potential are expected to increase the glueball 
relic density by up to 80%, due to displacing the high-temperature minimum of a 
~10% farther from the low-temperature minimum (in progress)
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to two main concurrent e↵ects. The first one is an over-
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their cosmological implications.
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Composite QCD axion and neutrino mass

• Ginzburg, Zharkov 1967: neutrinos can be non-relativistically produced in a superfluid  
phase, related to the neutrino mass gap and Dark Energy 

• We postulate that neutrinos have a Peccei-Quinn (PQ) scale suppressed portal with  
the strongly-coupled QCD sector through quantum anomalies:  

• The QCD axion is then identified with the composite pair of neutrinos: 
 

• A four-fermion interaction responsible for condensation of neutrino pairs 
and for generation of the neutrino mass scale in the SM:


 

• Neutrino condensate can naturally account for the right amount of Dark Matter

2

a recent discussion of the sterile neutrino condensate
and possible connections to the DM, see Ref. [20]).
Indeed, the issue is automatically solved if the lowest
excitation of the neutrino condensate is identified with
the QCD axion, being produced from the misalignment
mechanism in the early Universe in a non-relativistic
cold phase. More specifically, the neutrino condensation
dynamically breaks the UPQ(1) symmetry3.

The model. We may start considering a complex
scalar field that is charged with respect to the PQ sym-
metry, and is emerging from a BCS-like condensation of
neutrinos, namely,

� = ⇢ e
ı a
fPQ , a =

1

f2
a

⌫TC�1�5⌫ , (3)

where fPQ is the PQ scale, fa is the axial-symmetry
breaking scale (the axion decay constant) related to the
neutrino condensation scale — this is in turn related, as
we will see later on, to the QCD interaction portal. The
a-field is introduced as an auxiliary field able to embed
a Majorana-like neutrino operator.

The PQ breaking Lagrangian is expressed as

L = @�†@�� V (�) , V (�) = (|�|2 � f2
PQ)

2 , (4)

where V (�) acquires a VEV at the fPQ scale. The neu-
trino current can be considered as the imaginary part of
a scalar field, interacting with its real component. Ac-
counting for the Sombrero potential, the mixing terms
cast

Lmix =
1

f2
PQ

⇢2(@a)2 . (5)

In terms of the neutrino fields, the operator in (5) can be
straightforwardly recast using the identity

(@µa)
2 =

1

f4
a

(@⌫TC�1)2⌫2 +
1

f4
a

(⌫TC�1)2(@⌫)2

+ 2
1

f4
a

(@µ⌫
T
C
�1⌫)(⌫TC�1@µ⌫) .

The spontaneous symmetry breaking of the PQ sym-
metry cannot generate any mass for the SM neutrino
pairs. Nonetheless, the neutrino can acquire a mass gap

like sector, so as to unveil DE [15–17] and eliminate the QCD
vacuum contribution to the DE [18, 19]. Nonetheless, here we
go beyond this assumption and explore the full potential of non-
perturbative QCD to address the missing matter/energy problem
in the Universe.

3 Regarding the vacuum stability, a solution to the problem was
proposed by e.g. invoking a new Naturalness principle, the
Holographic Naturalness [21–23], and thus this aspect is not fur-
ther discussed here. On the other hand, the screening of the
QCD vacuum energy density outside the Fermi scale of QCD
was explored in Ref. [13], having possible phenomenological im-
plications in gravitational waves astrophysics [14].

by means of the axial anomaly induced by the QCD sec-
tor4. This is possible if the neutrino has an e↵ective
coupling to the field strength of the type

1

fPQf2
a

(⌫TC�1�5⌫)G eG , (6)

which is e↵ectively corresponding to the coupling of the
composite axion, f�1

PQaG
eG (see Fig. 1).

2

to the QCD interaction portal. Here, the a-field is in-
troduced as an auxiliar field embedding a Majorana-like
neutrino operator.

The PQ breaking lagrangian is

L = @�†@�� V (�) , (4)

where V (�) gets a VEV to the fPQ scale; for example

V (�) = (|�|2 � f2
PQ)

2 .

The neutrino current can be considered as the imag-
inary part of a scalar field if interacting with the Real
part; for the Sombrero potential the mixing terms are as
follows

Lmix =
1

f2
PQ

⇢2(@a)2 . (5)

In terms of neutrino fields, the operator above can be
rewritten using the following identity.

(@µa)
2 =

1

f4
A

(@⌫TC�1)2⌫2 +
1

f4
A

(⌫TC�1)2(@⌫)2

+ 2
1

f4
A

(@µ⌫
T
C
�1⌫)(⌫TC�1@µ⌫) .

The spontaneous symmetry breaking of the Peccei-
Quinn symmetry does not generate any mass for the neu-
trino pairs, which, therefore, remain unbounded yet.

The neutrino can get the mass gap from axial anoma-
lies induced by the QCD sector. This is possible if the
neutrino has an e↵ective coupling with the field strengths
as follows:

1

fPQf2
A

(⌫TC�1⌫)GG̃ . (6)

which is e↵ectively corresponding to the coupling of the
composite axion as f�1

PQaGG̃ (see Fig.1) 4.

FIG. 1: The QCD axion portal with gluon through
axial anomaly is replaced by a four-fermion interaction

vertex among neutrinos and SM fermions.

4 In the axial triangle anomaly, the axion coupling with the in-
ternal line fermions is replaced by an e↵ective four-fermion in-
teraction vertex among neutrinos and internal fermions. Such
an e↵ective operator can be UV completed considering scalar or
vector lepto-quarks which couple neutrinos to quarks.
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There could exisit interactions between neutrinos and quarks mediated by a scalar boson
�, we can integrate out the non-relavent boson and obtain an e�ective diagram:
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Figure 1: Neutrino quark interaction mediated by a scalar boson.

Then through the normal chiral anomaly in QCD, the following diagram can be ob-
tained:
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Figure 2: Neutrinos coupling to the QCD section through chiral anomaly, the dots repre-
sents possible couling between gluons.

Four-fermion interaction and neutrino condensate:
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Figure 3: Feynman diagram for neutrino condensate, the condensate leads to a a⌫̄⌫ vertex.
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.
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FIG. 3: The four-fermion mass is responsible for the
condensation of a neutrino pair spontaneously breaking
the chiral symmetry and generating the neutrino mass.
The neutrino pair can be identified with a QCD axion

coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
(For a shorter notation, we will denote ⌫TC�1⌫ with ⌫⌫).
The Cooper pair mass has a functional form

m2
a =

D@2Veff

@a2

E���
hai

, (7)

where a is an auxiliar variable representing the neutrino
(psudo)scalar pair. This corresponds to

m2
a =

1

32⇡2fPQ

@

@a
hGG̃i

���
hai

. (8)

The mass of the axion is evaluated on the minimum
field configuration:

D@Veff

@a

E���
hai

=
1

32⇡2

1

fPQ
hGG̃i

���
hai

= 0 . (9)

As for the standard axion, the a(⌫) state has a periodic
shift symmetry, with periodicity

✓ � 1

fPQf2
A

h⌫⌫i ,

FIG. 1: The QCD axion portal with the gluon field
through the axial anomaly is replaced by a four-fermion
interaction between the SM neutrinos and the quarks.
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to the QCD interaction portal. Here, the a-field is in-
troduced as an auxiliar field embedding a Majorana-like
neutrino operator.

The PQ breaking lagrangian is

L = @�†@�� V (�) , (4)

where V (�) gets a VEV to the fPQ scale; for example

V (�) = (|�|2 � f2
PQ)

2 .

The neutrino current can be considered as the imag-
inary part of a scalar field if interacting with the Real
part; for the Sombrero potential the mixing terms are as
follows

Lmix =
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trino pairs, which, therefore, remain unbounded yet.
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lies induced by the QCD sector. This is possible if the
neutrino has an e↵ective coupling with the field strengths
as follows:
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coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
(For a shorter notation, we will denote ⌫TC�1⌫ with ⌫⌫).
The Cooper pair mass has a functional form
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FIG. 2: The four-fermion coupling is responsible for
condensation of a neutrino pair, spontaneously breaking
the chiral symmetry and generating the neutrino mass
scale in the SM. The neutrino pair in such a condensate
can then be identified with a QCD axion e↵ectively

coupled to the neutrinos.

Thanks to this coupling, neutrinos can be produced in
pairs, as cold, during the QCD phase transition. They
can condense as non-relativistic Cooper pairs5, and be

4 In order to compute the axial anomaly e↵ect, the axion cou-
pling to the internal fermion line is replaced by an e↵ective four-
fermion coupling between SM neutrinos and quark lines in the
triangle loop. Such an e↵ective operator can be UV-completed
considering e.g. beyond-the-SM scalar or vector lepto-quarks that
can mediate tree-level interactions between neutrinos and quarks
at high energy scales. In the SM framework, the Z-boson ex-
change can also mediate such four-fermion interactions at tree
level. However, this does not provide a mixing of di↵erent neu-
trino flavours that may be induced at a loop level only. Possible
UV completion for such an e↵ective operator is not relevant for
the current considerations and can be a subject for a future ded-
icated work.

5 The SU(2) group-coherent nature of BCS-like condensates, and
their phenomenological implications also for early cosmology,
have been investigated in Ref. [24].
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and possible connections to the DM, see Ref. [20]).
Indeed, the issue is automatically solved if the lowest
excitation of the neutrino condensate is identified with
the QCD axion, being produced from the misalignment
mechanism in the early Universe in a non-relativistic
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a scalar field, interacting with its real component. Ac-
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The spontaneous symmetry breaking of the PQ sym-
metry cannot generate any mass for the SM neutrino
pairs. Nonetheless, the neutrino can acquire a mass gap

like sector, so as to unveil DE [15–17] and eliminate the QCD
vacuum contribution to the DE [18, 19]. Nonetheless, here we
go beyond this assumption and explore the full potential of non-
perturbative QCD to address the missing matter/energy problem
in the Universe.

3 Regarding the vacuum stability, a solution to the problem was
proposed by e.g. invoking a new Naturalness principle, the
Holographic Naturalness [21–23], and thus this aspect is not fur-
ther discussed here. On the other hand, the screening of the
QCD vacuum energy density outside the Fermi scale of QCD
was explored in Ref. [13], having possible phenomenological im-
plications in gravitational waves astrophysics [14].
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The spontaneous symmetry breaking of the Peccei-
Quinn symmetry does not generate any mass for the neu-
trino pairs, which, therefore, remain unbounded yet.

The neutrino can get the mass gap from axial anoma-
lies induced by the QCD sector. This is possible if the
neutrino has an e↵ective coupling with the field strengths
as follows:
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FIG. 1: The QCD axion portal with gluon through
axial anomaly is replaced by a four-fermion interaction

vertex among neutrinos and SM fermions.

4 In the axial triangle anomaly, the axion coupling with the in-
ternal line fermions is replaced by an e↵ective four-fermion in-
teraction vertex among neutrinos and internal fermions. Such
an e↵ective operator can be UV completed considering scalar or
vector lepto-quarks which couple neutrinos to quarks.
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Then through the normal chiral anomaly in QCD, the following diagram can be ob-
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.

Contents

1 Diagrams 1

1 Diagrams

There could exisit interactions between neutrinos and quarks mediated by a scalar boson
�, we can integrate out the non-relavent boson and obtain an e�ective diagram:

⌫

⌫ q

q̄

� �

⌫

⌫ q

q̄

Figure 1: Neutrino quark interaction mediated by a scalar boson.

Then through the normal chiral anomaly in QCD, the following diagram can be ob-
tained:

⌫

⌫

⌫

⌫

... · · · ...

Figure 2: Neutrinos coupling to the QCD section through chiral anomaly, the dots repre-
sents possible couling between gluons.

Four-fermion interaction and neutrino condensate:

⌫

⌫

⌫

⌫

�

⌫ ⌫

h⌫⌫i

�

⌫ ⌫

a

Figure 3: Feynman diagram for neutrino condensate, the condensate leads to a a⌫̄⌫ vertex.

– 1 –

FIG. 3: The four-fermion mass is responsible for the
condensation of a neutrino pair spontaneously breaking
the chiral symmetry and generating the neutrino mass.
The neutrino pair can be identified with a QCD axion

coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
(For a shorter notation, we will denote ⌫TC�1⌫ with ⌫⌫).
The Cooper pair mass has a functional form
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(psudo)scalar pair. This corresponds to

m2
a =

1

32⇡2fPQ

@

@a
hGG̃i

���
hai

. (8)
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As for the standard axion, the a(⌫) state has a periodic
shift symmetry, with periodicity
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FIG. 1: The QCD axion portal with the gluon field
through the axial anomaly is replaced by a four-fermion
interaction between the SM neutrinos and the quarks.
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From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
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FIG. 2: The four-fermion coupling is responsible for
condensation of a neutrino pair, spontaneously breaking
the chiral symmetry and generating the neutrino mass
scale in the SM. The neutrino pair in such a condensate
can then be identified with a QCD axion e↵ectively

coupled to the neutrinos.

Thanks to this coupling, neutrinos can be produced in
pairs, as cold, during the QCD phase transition. They
can condense as non-relativistic Cooper pairs5, and be

4 In order to compute the axial anomaly e↵ect, the axion cou-
pling to the internal fermion line is replaced by an e↵ective four-
fermion coupling between SM neutrinos and quark lines in the
triangle loop. Such an e↵ective operator can be UV-completed
considering e.g. beyond-the-SM scalar or vector lepto-quarks that
can mediate tree-level interactions between neutrinos and quarks
at high energy scales. In the SM framework, the Z-boson ex-
change can also mediate such four-fermion interactions at tree
level. However, this does not provide a mixing of di↵erent neu-
trino flavours that may be induced at a loop level only. Possible
UV completion for such an e↵ective operator is not relevant for
the current considerations and can be a subject for a future ded-
icated work.

5 The SU(2) group-coherent nature of BCS-like condensates, and
their phenomenological implications also for early cosmology,
have been investigated in Ref. [24].
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a recent discussion of the sterile neutrino condensate
and possible connections to the DM, see Ref. [20]).
Indeed, the issue is automatically solved if the lowest
excitation of the neutrino condensate is identified with
the QCD axion, being produced from the misalignment
mechanism in the early Universe in a non-relativistic
cold phase. More specifically, the neutrino condensation
dynamically breaks the UPQ(1) symmetry3.
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where V (�) acquires a VEV at the fPQ scale. The neu-
trino current can be considered as the imaginary part of
a scalar field, interacting with its real component. Ac-
counting for the Sombrero potential, the mixing terms
cast
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The spontaneous symmetry breaking of the PQ sym-
metry cannot generate any mass for the SM neutrino
pairs. Nonetheless, the neutrino can acquire a mass gap

like sector, so as to unveil DE [15–17] and eliminate the QCD
vacuum contribution to the DE [18, 19]. Nonetheless, here we
go beyond this assumption and explore the full potential of non-
perturbative QCD to address the missing matter/energy problem
in the Universe.

3 Regarding the vacuum stability, a solution to the problem was
proposed by e.g. invoking a new Naturalness principle, the
Holographic Naturalness [21–23], and thus this aspect is not fur-
ther discussed here. On the other hand, the screening of the
QCD vacuum energy density outside the Fermi scale of QCD
was explored in Ref. [13], having possible phenomenological im-
plications in gravitational waves astrophysics [14].
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vertex among neutrinos and SM fermions.

4 In the axial triangle anomaly, the axion coupling with the in-
ternal line fermions is replaced by an e↵ective four-fermion in-
teraction vertex among neutrinos and internal fermions. Such
an e↵ective operator can be UV completed considering scalar or
vector lepto-quarks which couple neutrinos to quarks.
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.
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coupled with neutrinos.

From this coupling, neutrinos can be produced in
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condense as non-relativistic Cooper pairs and they can
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through the axial anomaly is replaced by a four-fermion
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an e↵ective operator can be UV completed considering scalar or
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.
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coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
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FIG. 2: The four-fermion coupling is responsible for
condensation of a neutrino pair, spontaneously breaking
the chiral symmetry and generating the neutrino mass
scale in the SM. The neutrino pair in such a condensate
can then be identified with a QCD axion e↵ectively

coupled to the neutrinos.

Thanks to this coupling, neutrinos can be produced in
pairs, as cold, during the QCD phase transition. They
can condense as non-relativistic Cooper pairs5, and be

4 In order to compute the axial anomaly e↵ect, the axion cou-
pling to the internal fermion line is replaced by an e↵ective four-
fermion coupling between SM neutrinos and quark lines in the
triangle loop. Such an e↵ective operator can be UV-completed
considering e.g. beyond-the-SM scalar or vector lepto-quarks that
can mediate tree-level interactions between neutrinos and quarks
at high energy scales. In the SM framework, the Z-boson ex-
change can also mediate such four-fermion interactions at tree
level. However, this does not provide a mixing of di↵erent neu-
trino flavours that may be induced at a loop level only. Possible
UV completion for such an e↵ective operator is not relevant for
the current considerations and can be a subject for a future ded-
icated work.

5 The SU(2) group-coherent nature of BCS-like condensates, and
their phenomenological implications also for early cosmology,
have been investigated in Ref. [24].

2

a recent discussion of the sterile neutrino condensate
and possible connections to the DM, see Ref. [20]).
Indeed, the issue is automatically solved if the lowest
excitation of the neutrino condensate is identified with
the QCD axion, being produced from the misalignment
mechanism in the early Universe in a non-relativistic
cold phase. More specifically, the neutrino condensation
dynamically breaks the UPQ(1) symmetry3.

The model. We may start considering a complex
scalar field that is charged with respect to the PQ sym-
metry, and is emerging from a BCS-like condensation of
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breaking scale (the axion decay constant) related to the
neutrino condensation scale — this is in turn related, as
we will see later on, to the QCD interaction portal. The
a-field is introduced as an auxiliary field able to embed
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The spontaneous symmetry breaking of the PQ sym-
metry cannot generate any mass for the SM neutrino
pairs. Nonetheless, the neutrino can acquire a mass gap

like sector, so as to unveil DE [15–17] and eliminate the QCD
vacuum contribution to the DE [18, 19]. Nonetheless, here we
go beyond this assumption and explore the full potential of non-
perturbative QCD to address the missing matter/energy problem
in the Universe.

3 Regarding the vacuum stability, a solution to the problem was
proposed by e.g. invoking a new Naturalness principle, the
Holographic Naturalness [21–23], and thus this aspect is not fur-
ther discussed here. On the other hand, the screening of the
QCD vacuum energy density outside the Fermi scale of QCD
was explored in Ref. [13], having possible phenomenological im-
plications in gravitational waves astrophysics [14].
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inary part of a scalar field if interacting with the Real
part; for the Sombrero potential the mixing terms are as
follows
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The spontaneous symmetry breaking of the Peccei-
Quinn symmetry does not generate any mass for the neu-
trino pairs, which, therefore, remain unbounded yet.

The neutrino can get the mass gap from axial anoma-
lies induced by the QCD sector. This is possible if the
neutrino has an e↵ective coupling with the field strengths
as follows:
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which is e↵ectively corresponding to the coupling of the
composite axion as f�1

PQaGG̃ (see Fig.1) 4.

FIG. 1: The QCD axion portal with gluon through
axial anomaly is replaced by a four-fermion interaction

vertex among neutrinos and SM fermions.

4 In the axial triangle anomaly, the axion coupling with the in-
ternal line fermions is replaced by an e↵ective four-fermion in-
teraction vertex among neutrinos and internal fermions. Such
an e↵ective operator can be UV completed considering scalar or
vector lepto-quarks which couple neutrinos to quarks.
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�, we can integrate out the non-relavent boson and obtain an e�ective diagram:
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Figure 1: Neutrino quark interaction mediated by a scalar boson.

Then through the normal chiral anomaly in QCD, the following diagram can be ob-
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Figure 2: Neutrinos coupling to the QCD section through chiral anomaly, the dots repre-
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.
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FIG. 3: The four-fermion mass is responsible for the
condensation of a neutrino pair spontaneously breaking
the chiral symmetry and generating the neutrino mass.
The neutrino pair can be identified with a QCD axion

coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
(For a shorter notation, we will denote ⌫TC�1⌫ with ⌫⌫).
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FIG. 1: The QCD axion portal with the gluon field
through the axial anomaly is replaced by a four-fermion
interaction between the SM neutrinos and the quarks.
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where V (�) gets a VEV to the fPQ scale; for example
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Quinn symmetry does not generate any mass for the neu-
trino pairs, which, therefore, remain unbounded yet.

The neutrino can get the mass gap from axial anoma-
lies induced by the QCD sector. This is possible if the
neutrino has an e↵ective coupling with the field strengths
as follows:
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ternal line fermions is replaced by an e↵ective four-fermion in-
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an e↵ective operator can be UV completed considering scalar or
vector lepto-quarks which couple neutrinos to quarks.
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FIG. 2: A four-neutrino Fermi interaction term is
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anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
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FIG. 3: The four-fermion mass is responsible for the
condensation of a neutrino pair spontaneously breaking
the chiral symmetry and generating the neutrino mass.
The neutrino pair can be identified with a QCD axion

coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
(For a shorter notation, we will denote ⌫TC�1⌫ with ⌫⌫).
The Cooper pair mass has a functional form
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FIG. 2: The four-fermion coupling is responsible for
condensation of a neutrino pair, spontaneously breaking
the chiral symmetry and generating the neutrino mass
scale in the SM. The neutrino pair in such a condensate
can then be identified with a QCD axion e↵ectively

coupled to the neutrinos.

Thanks to this coupling, neutrinos can be produced in
pairs, as cold, during the QCD phase transition. They
can condense as non-relativistic Cooper pairs5, and be

4 In order to compute the axial anomaly e↵ect, the axion cou-
pling to the internal fermion line is replaced by an e↵ective four-
fermion coupling between SM neutrinos and quark lines in the
triangle loop. Such an e↵ective operator can be UV-completed
considering e.g. beyond-the-SM scalar or vector lepto-quarks that
can mediate tree-level interactions between neutrinos and quarks
at high energy scales. In the SM framework, the Z-boson ex-
change can also mediate such four-fermion interactions at tree
level. However, this does not provide a mixing of di↵erent neu-
trino flavours that may be induced at a loop level only. Possible
UV completion for such an e↵ective operator is not relevant for
the current considerations and can be a subject for a future ded-
icated work.

5 The SU(2) group-coherent nature of BCS-like condensates, and
their phenomenological implications also for early cosmology,
have been investigated in Ref. [24].
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Indeed, the issue is automatically solved if the lowest
excitation of the neutrino condensate is identified with
the QCD axion, being produced from the misalignment
mechanism in the early Universe in a non-relativistic
cold phase. More specifically, the neutrino condensation
dynamically breaks the UPQ(1) symmetry3.

The model. We may start considering a complex
scalar field that is charged with respect to the PQ sym-
metry, and is emerging from a BCS-like condensation of
neutrinos, namely,
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where fPQ is the PQ scale, fa is the axial-symmetry
breaking scale (the axion decay constant) related to the
neutrino condensation scale — this is in turn related, as
we will see later on, to the QCD interaction portal. The
a-field is introduced as an auxiliary field able to embed
a Majorana-like neutrino operator.

The PQ breaking Lagrangian is expressed as
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where V (�) acquires a VEV at the fPQ scale. The neu-
trino current can be considered as the imaginary part of
a scalar field, interacting with its real component. Ac-
counting for the Sombrero potential, the mixing terms
cast
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The spontaneous symmetry breaking of the PQ sym-
metry cannot generate any mass for the SM neutrino
pairs. Nonetheless, the neutrino can acquire a mass gap

like sector, so as to unveil DE [15–17] and eliminate the QCD
vacuum contribution to the DE [18, 19]. Nonetheless, here we
go beyond this assumption and explore the full potential of non-
perturbative QCD to address the missing matter/energy problem
in the Universe.

3 Regarding the vacuum stability, a solution to the problem was
proposed by e.g. invoking a new Naturalness principle, the
Holographic Naturalness [21–23], and thus this aspect is not fur-
ther discussed here. On the other hand, the screening of the
QCD vacuum energy density outside the Fermi scale of QCD
was explored in Ref. [13], having possible phenomenological im-
plications in gravitational waves astrophysics [14].
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ternal line fermions is replaced by an e↵ective four-fermion in-
teraction vertex among neutrinos and internal fermions. Such
an e↵ective operator can be UV completed considering scalar or
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.
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the chiral symmetry and generating the neutrino mass.
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coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
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teraction vertex among neutrinos and internal fermions. Such
an e↵ective operator can be UV completed considering scalar or
vector lepto-quarks which couple neutrinos to quarks.
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There could exisit interactions between neutrinos and quarks mediated by a scalar boson
�, we can integrate out the non-relavent boson and obtain an e�ective diagram:
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Figure 1: Neutrino quark interaction mediated by a scalar boson.

Then through the normal chiral anomaly in QCD, the following diagram can be ob-
tained:
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... · · · ...

Figure 2: Neutrinos coupling to the QCD section through chiral anomaly, the dots repre-
sents possible couling between gluons.

Four-fermion interaction and neutrino condensate:
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Figure 3: Feynman diagram for neutrino condensate, the condensate leads to a a⌫̄⌫ vertex.
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FIG. 2: A four-neutrino Fermi interaction term is
non-perturbatively generated through axial triangle
anomaly. An e↵ective Nambu-Jona-Lasinio theory for
non-relativistic neutrinos emerges out from it. The
internal fermion lines correspond to SM fermions.
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FIG. 3: The four-fermion mass is responsible for the
condensation of a neutrino pair spontaneously breaking
the chiral symmetry and generating the neutrino mass.
The neutrino pair can be identified with a QCD axion

coupled with neutrinos.

From this coupling, neutrinos can be produced in
pairs as cold during QCD phase transitions. They can
condense as non-relativistic Cooper pairs and they can
be produced, as mentioned above, from misalignement
mechanism – the very same of fundamental axions [9].
(For a shorter notation, we will denote ⌫TC�1⌫ with ⌫⌫).
The Cooper pair mass has a functional form

m2
a =

D@2Veff

@a2

E���
hai

, (7)

where a is an auxiliar variable representing the neutrino
(psudo)scalar pair. This corresponds to

m2
a =

1

32⇡2fPQ

@

@a
hGG̃i

���
hai

. (8)

The mass of the axion is evaluated on the minimum
field configuration:

D@Veff

@a

E���
hai

=
1

32⇡2

1

fPQ
hGG̃i

���
hai

= 0 . (9)

As for the standard axion, the a(⌫) state has a periodic
shift symmetry, with periodicity

✓ � 1

fPQf2
A

h⌫⌫i ,

FIG. 2: The four-fermion coupling is responsible for
condensation of a neutrino pair, spontaneously breaking
the chiral symmetry and generating the neutrino mass
scale in the SM. The neutrino pair in such a condensate
can then be identified with a QCD axion e↵ectively

coupled to the neutrinos.

Thanks to this coupling, neutrinos can be produced in
pairs, as cold, during the QCD phase transition. They
can condense as non-relativistic Cooper pairs5, and be

4 In order to compute the axial anomaly e↵ect, the axion cou-
pling to the internal fermion line is replaced by an e↵ective four-
fermion coupling between SM neutrinos and quark lines in the
triangle loop. Such an e↵ective operator can be UV-completed
considering e.g. beyond-the-SM scalar or vector lepto-quarks that
can mediate tree-level interactions between neutrinos and quarks
at high energy scales. In the SM framework, the Z-boson ex-
change can also mediate such four-fermion interactions at tree
level. However, this does not provide a mixing of di↵erent neu-
trino flavours that may be induced at a loop level only. Possible
UV completion for such an e↵ective operator is not relevant for
the current considerations and can be a subject for a future ded-
icated work.

5 The SU(2) group-coherent nature of BCS-like condensates, and
their phenomenological implications also for early cosmology,
have been investigated in Ref. [24].

Neutrinos can be produced in pairs as cold 
during the QCD phase transition and condense

as non-relativistic Cooper pairs via the 
misalignment mechanism
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Concluding remarks

• Local loss of continuous time-translational invariance leads to  
“time crystal”-type configurations in the QCD vacuum  

• Nielsen-Olsen proof of instability of CE condensate on a rigid Minkowski  
in NOT in contradiction with our picture: we consider YM evolution  
on a dynamical (FLRW) spacetime while equilibrium is achieved only  
asymptotically.  

• A possible decay of CE condensate into an anisotropic vacuum after  
a cosmological relaxation time would be exponentially suppressed and  
is practically never realised 

• Even starting from an initial non-zero energy-density, the evolution of localised 3-space  
“pockets” of the CE and CM condensates trigger a mutual screening, flowing towards  
a zero-energy density attractor and accompanying by a formation of the domain walls  
corresponding to an asymptotic restoration of the Z2 (Mirror) symmetry and effectively  
protecting the “false” CE vacua pockets from further decay  

• The vacua cancellation mechanism seems to naturally marry the existing confinement 
pictures related to a formation of a network of t’Hooft monopoles or chromovortices. 
In this approach, the scalar kink profile may correspond the J-invariant whose change 
may be related to the presence of monopole or vortex solutions localise inside  
the space-time domain walls. This implies the existence of space-time solitonic  
objects of a new type.
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• Breaking of the Mirror symmetry by gravitational interactions induces non-vanishing  
leading order contribution to the QCD ground state energy compatible with the observed  
cosmological constant value that must be taken into account in any model of DE  

• Pressure oscillations during the QCD relaxation epoch trigger multi-peaked primordial 
gravitational wave spectrum in the radio-frequency range that can be potentially probed 
by the SKA telescope  

• We developed a new approach based upon the well-established thermal EFT and the existing 
lattice results to calculate the glueball CDM relic density incorporating confinement effects  
and non-perturbative self-interactions  

• Cold neutrino pairs can be produced during the QCD transition and condense into axions  
through a possible four-fermion neutrino interaction and a coupling to the QCD anomaly  
enabling neutrino mass gap and Dark Matter generation

Concluding remarks


