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9.1 Basics
Quantum Chromodynamics (QCD), the gauge field theory that describes the strong interactions

of colored quarks and gluons, is the SU(3) component of the SU(3)◊SU(2)◊U(1) Standard Model
of Particle Physics. The Lagrangian of QCD is given by

L =
ÿ

q

Â̄q,a(i“µ
ˆµ”ab ≠ gs“

µ
t
C
abA

C
µ ≠ mq”ab)Âq,b ≠

1
4F

A
µ‹F

A µ‹
, (9.1)

where repeated indices are summed over. The “
µ are the Dirac “-matrices. The Âq,a are quark-field

spinors for a quark of flavor q and mass mq, with a color-index a that runs from a = 1 to Nc = 3,
i.e. quarks come in three “colors.” Quarks are said to be in the fundamental representation of the
SU(3) color group.

The A
C
µ correspond to the gluon fields, with C running from 1 to N

2
c ≠1 = 8, i.e. there are eight

kinds of gluon. Gluons transform under the adjoint representation of the SU(3) color group. The
t
C
ab correspond to eight 3 ◊ 3 matrices and are the generators of the SU(3) group (cf. the section

on “SU(3) isoscalar factors and representation matrices” in this Review, with t
C
ab © ⁄

C
ab/2). They

encode the fact that a gluon’s interaction with a quark rotates the quark’s color in SU(3) space.
The quantity gs (or –s = g2

s
4fi ) is the QCD coupling constant. Besides quark masses, which have

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

1st December, 2023 11:08am

50  YEARS  OF  QUANTUM CHROMO DYNAMICS ~ 1973 

QCD

“A Tool Supporting Experimental 
Exploration“

“A Tool for Astrophysics and Nuclear 
Technology”

“A pointer to New Realities”

(Frank Wilczek, arXiv:2403.06038v1)
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Table 9.1: Unweighted and weighted pre-averages of –s(m2

Z) for each sub-
field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the ‰

2 averaging method.
The same ‰

2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
· decays & low Q

2 0.1173 ± 0.0017 0.1174 ± 0.0009 0.1177 ± 0.0013
QQ̄ bound states 0.1181 ± 0.0037 0.1177 ± 0.0011 0.1175 ± 0.0011
PDF fits 0.1161 ± 0.0022 0.1168 ± 0.0014 0.1179 ± 0.0011
e

+
e

≠ jets & shapes 0.1189 ± 0.0037 0.1187 ± 0.0017 0.1174 ± 0.0011
hadron colliders 0.1168 ± 0.0027 0.1169 ± 0.0014 0.1177 ± 0.0011
electroweak 0.1203 ± 0.0028 0.1203 ± 0.0016 0.1171 ± 0.0011
PDG 2023 (without lattice) 0.1175 ± 0.0010 0.1178 ± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023
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Figure 9.5: Summary of determinations of –s as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
–s(m2

Z) = 0.1180 ± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

weighted fits with our standard procedure in columns two and three of Table 9.1. We observe
that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value
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QUANTUM CHROMO DYNAMICS 

Lattice Quantum Chromodynamics (LQCD) provides 
a first-principles nonperturbative approach

nonperturbative methods are necessary to 
explore the low-energy region of QCD

space-time 
discretisation

K. Wilson, 1974
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Confinement of quarks and QCD on spacetime lattices

An important empirical aspect of QCD is that only color-singlet hadrons are observed in nature.

Kenneth Wilson demonstrated (in the strong coupling limit)  that SU(3) Yang-Mills theory produces an attractive potential that 
increases linearly with the distance between quarks, effectively confining them.

10 E FF ECTIVE ACTION FOR COMPOSITE OPERATORS

{1973); S. Weinberg, iMd. 7, 2887 {1973);R. Jackiw,
Ref. 4.

t~The analysis of the physical interpretation. of Z{P, G)I,~„,
is an adaptation to the present context of the correspond-
ing argument for P5)~„,,„.. That discussion is due to
K. Symanzik, Commun. Math. Phys. 16, 48 {1970). We

learned it from S. Coleman, in proceedings of the
Lectures given at the International Summer School of
Physics "Ettore Majorana, " 1973 {unpublished).

~oR. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.
D {tobe published).

PHYSICAL REVIEW D VOLUME 10, NUMBER 8 15 0C TOB ER 1974

Confinement of qnarks*

Kenneth G. %ilson
Laboratory of nuclear Studies, Cornell University, Ithaca, iVevv York l4850

{Received 12 June 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires
the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory
on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge
fields as angular variables {which makes a gauge-fixing term unnecessary). The lattice gauge theory has
a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free
quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The
strong-coupling expansion involves sums over all quark paths and sums over all surfaces {on the lattice)
joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

I. INTRODUCTION

The success of the quark-constituent picture
both for resonances and for deep-inelastic elec-
tron and neutrino processes makes it difficult to
believe quarks do not exist. The problem is that
quarks have not been seen. This suggests that
quarks, for some reason, cannot appear as sep-
arate particles in a final state. A number of
speculations have been offered as to how this
might happen. '
Independently of the quark problem, Schwinger

observed many years ago' that the vector mesons
of a gauge theory can have a nonzero mass if vacu-
um polarization totally screens the charges in a
gauge theory. Schwinger illustrated this result
with the exact solution of quantum electrodynamics
in one space and one time dimension, where the
photon acquires a mass -e' for any nonzero charge
e [e has dimensions of (mass)'~' in this theory J.
Schwinger suggested that the same effect could oc-
cur in four dimensions for sufficiently large cou-
pllngs.
Further study of the Schwinger model by Lowen-

stein and Swieca' and Casher, Kogut, and Suss-
kind' has shown that the asymptotic states of the
model contain only massive photons, not elec-
trons. Nevertheless, as Casher clat. have shown
in detail, the electrons are present in deep-in-
elastic processes and behave like free pointlike

particles over short times and short distances.
The polarization effects which prevent the ap-
pearance of electrons in the final state take place
on a longer time scale (longer than 1/m&, where
rn& is the photon mass).
A new mechanism which keeps quarks bound

will be proposed in this paper. The mechanism
applies to gauge theories only. The mechanism
will be illustrated using the strong-coupling limit
of a gauge theory in four-dimensional space-time.
However, the model discussed here has a built-in
ultraviolet cutoff, and in the strong-coupling limit
all particle masses (including the gauge field
masses) are much larger than the cutoff; in con-
sequence the theory is far from covariant.
The confinement mechanism proposed here is

soft (long-time scale). However, in the model dis-
cussed here the cutoff spoils the possibility of
free pointlike behavior for the quarks.
The model discussed in this paper is a gauge

theory set up on a four-dimensional Euclidean lat-
tice. The inverse of the lattice spacing a serves
as an ultraviolet cutoff. The use of a Euclidean
space (i.e., imaginary instead of real times) in-
stead of a Lorentz space is not a serious re-
striction; the energy eigenstates (including scat-
tering states) of the lattice theory can be deter-
mined from the "transfer-matrix" formalism as
has been discussed by suri' and reviewed by
Wilson and Kogut. ' A brief discussion of the

~ ""g7
VO1.UME 20, NUMBER 2 Aran. , 1948

Space- . . ime A~~~iroac. i 1:o .5 on-. le. .a1:ivistic
4 uantuns .V. :ec.zanies

R. P. I EvNMAN
Cornell University, Ithaca, Veto York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(t) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of h)
for the path in question. The total contribution from all paths reaching x, t from the past is the
wave function P(x, t). This is shown to satisfy Schroedinger's equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

I. INTRODUCTION
; 'I is a curious historical fact that modern
& - quantum mechanics began with two quite
di8'erent mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
matically equivalent. These two points of view
were, destined to complement one another and
to be ultimately synthesized in Dirac's trans-
formation theory.
This paper will describe what is essentially a

third formulation of non-relativistic quantum
theory. This formulation was suggested by some
of Dirac's' ' remarks concerning the relation of

classical action' to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.
The formulation is mathematically equivalent

to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems
A and 8 interact, the coordinates of one of the
systems, say 8, may be eliminated from the
equations describing the motion of A. The inter-

' P. A. M. Dirac, The Principles of Quantum 3Eeohanics
(The Clarendon Press, Oxford, 1935), second edition,
Section 33; also, Physik. Zeits. Sowjetunion 3, 64 (1933).' P. A. M. Dirac, Rev. Mod. Phys. 1'7, 195 (1945).

3 Throughout this paper the term "action" will be used
for the time integral of the Lagrangian along a path.
%'hen this path is the one actually taken by a particle,
moving classically, the integral should more properly be
called Hamilton's 6rst principle function.

367

This paper also draws on the 
path integral formulation of 
quantum mechanics and 
quantum field theory, 
introduced by Richard 
Feynman.

While this work only provided a plausible argument for 
quark confinement, it also introduced lattice gauge theory, 
which has since become an invaluable tool for studying the 
low-energy behavior of QCD.

Vor.vMz 43, NvMsKR 8 PHYSICAL REVIEW LETTERS 20 AUGUsT 1979

er to the zero of t' and the data analysis will have
accompanying uncertainties.
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Confinement and the Critical Dimensionality of Space-Time
Michael Creutz

Department of Physzcs, Brookhaven National Znboratory, Upton, Near Fork 11973
(Received 11 June 1979)
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based on quarks interacting with non-Abelian
gauge fields. The viability of this picture depends
on the conjectured phenomenon of confinement,
wherein the only physically observable particles
are invariant under the gauge group. Thus far,
the only demonstration of this property is in the
strong-coupling limit and with a space-time lat-
tice regulating ultraviolet divergences. ' Approx-
imate renormalization-group arguments' suggest
that four space-time dimensions represent a cri-
ical case where confinement persists for all cou-
plings when the gauge group is non-Abelian. In
contrast, Abelian groups should exhibit a phase
transition to a nonconfining weak-coupling phase
containing massless gauge bosons. Thus arises
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world, the lattice formulation of electrodynamics
can avoid confinement of electrons, while the con-
tinuum limit of the strong-interaction gauge theo-
ry can exhibit asymptotic freedom, a vanishing
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Recent Monte Carlo results have given mixed

support for these arguments. For the four-di-
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served transition is first order, contrary to the
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a second-order transition analogous to that in the
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Confinement of quarks and QCD on spacetime lattices (cont’d)
During the early development of lattice QCD, the Hamiltonian formulation 
of lattice gauge theory was also proposed by Kogut and Susskind.
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Hamiltonian formulation of Wilson's lattice gauge theories
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and Tel Aviv University, Ramat Aviv, Israel
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Wilson's lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
model is reduced to the interactions of an infinite collection of coupled rigid rotators. The
gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described
in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.

I. INTRODUCTION

The quark model has systematized a very large
amount of information concerning the hadron spec-
trum. However, free isolated quarks do not ap-
pear to exist. In order to confine quarks into bar-
yons and me sons, one is then led to suppose that
the field-theoretic coupling between quarks be-
comes strong at large distances. This explanation
is, however, somewhat perplexing because the
forces between quarks at small distances appear
to be weak. Such behavior can in principle be
found in renormalizable field theories in which
effective coupling constants can change from one
size scale to the next. Clearly, in order to under-
stand the successes of the quarkless quark model
we need a theory in which weak short-distance
forces give rise to strong long-range forces. The
only theory in which this behavior appears possi-
ble is one containing non-Abelian (Yang-Mills}
gauge fields ~

It is instructive to recall why this behavior does
not occur in conventional formulations of Abelian
vector-gluon theories (electrodynamics, for ex-
ample). Consider a static free charge of magni-
tude e inserted into the vacuum of quantum elec-
trodynamics. As is well known, the electrodynam-
ic vacuum is an ordinary dielectric, ' so the free
charge creates a polarization charge of opposite
sign. The polarization charge is distributed in
the vicinity of the free charge. Therefore, the
total charge contained within a sphere of radius
r is eZ(r), where Z(r) is a fraction less than l
which decreases as r increases. The factor Z(r)
causes the intensity of electromagnetic interac-
tions to be dependent on the distance scales in-
volved. ' In fact, if we are only interested in long-
wavelength phenomena in electrodynamics, we

can ignore all the short-distance fluctuations of
the theory and replace the bare electric charge e
by the screened or renormalized charge. More
precisely, long-wavelength phenomena are insen-
sitive to a cutoff at length A. if the bare charge is
replaced by eZ(A). Since Z(A} decreases as A in-
creases, this theory has just the reverse behavior
of what we want.
In theories with Yang-Mills fields the interac-

tion between a pair of static charges is also gov-
erned. by an effective coupling constant gZ(r} As.
in electrodynamics, a cutoff version of Yang-
Mills theory must replace g bygZ(A). This time
it is found, however, that Z(A) can be an increas-
ing function of A, . The implication is that the ef-
fective couplings between the low-momentum
modes of the theory may become very strong al-
though the shorter-distance behavior may not in-
volve strong coupling.
In this paper we shall be interested in the large-

distance properties of a non-Abelian theory as-
suming that the effective coupling g(A) is sufficient-
ly large to use Wilson's strong-coupling methods. 4
An ultraviolet cutoff is introduced into the theory
through a spatial lattice. This construction de-
stroys most of. the space -time symmetries of rel-
ativistic field theories. For this reason the the-
ory discussed here is not a realistic Yang-Mills
theory. However, following Wilson, 4 we are main-
ly interested in determining the special effects of
exact gauge invariance in strongly coupled gauge
theories. As a result of this study, we find that
quarks can be confined in locally gauge-invariant
theories. The confining mechanism is the appear-
ance of one-dimensional electric flux tubes which
must link separated quarks. ' The appropriate de-
scription of the strongly coupled limit consists of
a theory of interacting, propagating strings.

More recently, this Hamiltonian approach has opened up the 
exciting possibility of simulating QCD on a quantum 
computer.
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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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when the neighbors have values s~, s;, . . . .  where j ,  k etc. are points in the 
neighborhood of i. As j moves far from i, m becomes ever less sensitive to 
s'j.  At each change the state at a particular point i will move from w h a t  it 
was to a state s with a probability m that depends only upon the s ta tes  of 
the neighborhood (which may be so defined as to include the point i itself). 
This gives the probability of mak ing  a transition. It 's  the same as i n  a 
cellular automaton; only, instead of its being definite, it 's a probability. Tell  
me the environment, and I'll tell you the probability after a next m o m e n t  of 
time that this point is at state s. And that's the way it's going to work, okay?  
So you get a mathematical equation of this kind of form. 

Now I explicitly go to the question of how we can simulate wi th  a 
c o m p u t e r - - a  universal automaton or something-- the  quantum-meclianJcal 
effects. (The usual formulation is that quantum mechanics has some so r t  of 
a differential equation for a function ~k.) If you have a single particle, q, is a 
function of x and t, and this differential equation could be simulated jus t  
like my probabilistic equation was before. That  would be all right and one 
has seen people make little computers which simulate the Schr6edinger 
equation for a single particle. But the full description of quantum mechanics  
for a large system with R particles is given by a function q~(x I, x 2 . . . . .  x n ,  t)  
which we call the amplitude to find the particles x I . . . . .  xR, and therefore,  
because it has too many variables, it cannot be simulated with a n o r m a l  
computer with a number of elements proportional to R or propor t ional  to 
N. We had the same troubles with the probability in classical physics. A n d  
therefore, the problem is, how can we simulate the quantum mechanics? 
There are two ways that we can go about it. We can give up on our rule 
about what the computer was, we can say: Let the computer itself be bui l t  
of quantum mechanical elements which obey quantum mechanical laws. Or 
we can turn the other way and say: Let the computer still be the same k ind  
that we thought of be fo re - - a  logical, universal automaton; can we imi ta te  
this situation? And I 'm going to separate my talk here, for it branches in to  
two parts. 

4. Q U A N T U M  C O M P U T E R S - - U N I V E R S A L  Q U A N T U M  
S I M U L A T O R S  

The first branch, one you might call a side-remark, is, Can you d o  it 
with a new kind of c o m p u t e r - - a  quantum computer? (I'11 come back to the 
other branch in a moment.) Now it turns out, as far as I can tell, that y o u  
can simulate this with a quantum system, with quantum computer elemexats. 
It 's  not a Turing machine, but a machine of a different kind. If  we disregard 
the continuity of space and make it discrete, and so on, as an approximat ion  
(the same way as we allowed ourselves in the classical case), it does seem to 

R.P. Feynman: early 
ideas for simulating 
physical systems 
using quantum 
computers.
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reticolo ipercubico isotropo
lungo le d dimensioni

sito del reticolo:
xy = any , ny � Z 1 < xy < Ly
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Esempio: azione discretizzata per la teoria �4

adimensionali

definiamo quantità adimensionali su reticolo (rescaling in unita’
di lattice spacing in base alle rispettive dimensioni canoniche): 
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LATTICE  QCD
Ken Wilson (1974)   —>  space-time discretisation —> lattice regularization of QCD —>  

nonperturbative calculations by numerical evaluation of the Feynman path integral that defines the theory

hyper cubic lattice

18. Lattice QCD 3

Figure 18.1: Sketch of a two-dimensional slice through the µ − ν plane of a
lattice, showing gluon fields lying on links and forming either the plaquette product
appearing in the gauge action or a component of the covariant derivative connecting
quark and antiquark fields.

as long as one chooses β = 6/g2
lat for the lattice coupling. In this expression, glat is

the bare coupling constant in the lattice scheme, which can be related (by combining
continuum and lattice perturbation theory) to a more conventional coupling constant
such as that in the MS scheme (see Sec. 18.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In
particular, the lattice breaks Euclidean rotational invariance (which is the Euclidean
version of Lorentz invariance) down to a discrete hypercubic subgroup. One wants to
reduce discretization errors as much as possible. A very useful tool for understanding
and then reducing discretization errors is the Symanzik effective action: the interactions
of quarks and gluons with momenta low compared to the lattice cutoff (|p| ≪ 1/a)
are described by a continuum action consisting of the standard continuum terms (e.g.
the gauge action given in Eq. (18.2)) augmented by higher dimensional operators
suppressed by powers of a [5]. For the Wilson lattice gauge action, the leading

corrections come in at O(a2). They take the form
∑

j a2cjO
(j)
6 , with the sum running

over all dimension-six operators O
(j)
6 allowed by the lattice symmetries, and cj unknown

coefficients. Some of these operators violate Euclidean rotational invariance, and all of
them lead to discretization errors of the form a2Λ2, where Λ is a typical momentum
scale for the quantity being calculated. These errors can, however, be reduced by adding
corresponding operators to the lattice action and tuning their coefficients to eliminate the
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(Quantum Chromo Dynamics on a discrete space-time lattice)

Aspetti non perturbativi della QCD L. Cosmai 58

reticolo ipercubico isotropo
lungo le d dimensioni

sito del reticolo:
xy = any , ny � Z 1 < xy < Ly

V = L1 × L2× L3 × L4

xy nya

�(x) �(na)
Z
d4x a4

X

n

#y� dy�(x)v
1

a
(�(x+ aŷ)c �(x))

D�
Y

n

d�(na)

Tabella di conversione

continuo reticolo

S =
X

x

a4

(
1

2

4X

y=1

(dy�(x))
2 +

1

2
m2�2(x) +

x

4!
�4(x)

)
Esempio: azione discretizzata per la teoria �4

adimensionali

definiamo quantità adimensionali su reticolo (rescaling in unita’
di lattice spacing in base alle rispettive dimensioni canoniche): 

�(x) = a�(x) m= am

volume del reticolo:

S =
X

x

(
1

2

4X

y=1

(dy�(x))
2 +

1

2
m2�

2
(x) +

x

4!
�
4
(x)

)

Equivalence with Classical Statistical Mechanics

Quantum Field Theory 
in  d space-time 
dimensions 

Classical Statistical Mechanics 
in d spatial dimensions

Thermodynamic limit:

Ns → ∞ , Nt → ∞
Continuum limit:

a(β) → 0 ⇔ β ≡ 6
g2 → ∞

In principle, to take the true continuum limit:

However, this is not feasible in a numerical calculation. The 
practical recipe is:

Compute physical observables for a few values of the lattice 
spacing .a(β)

Choose  and  in order that the physical extension of the 

lattice box remains fixed for the different values 
of .

Ns Nt
a3N3

s × aNt
a(β)

Study  (scaling analysis) the  dependence from  of the 
results at fixed physical volume  and extrapolate the 
results to .  
The extrapolation to  can then be repeated for 
different physical sizes of the lattice box and this allows 
also to extrapolate the data to  infinite physical volume.

a(β)

a(β) → 0
a(β) → 0
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The Lattice QCD workflow 

(Monte Carlo sampling phase)

⟨𝒪⟩ ≈ 𝒪 = 1
N ∑

U
𝒪(U)

Peq(U) = 1
𝒵 Det(M†M)e−S(U)

Numerical evaluation (using Monte Carlo methods) of the functional integral for the 
operators corresponding to specific physical observables

GENERATION
Gauge-field configurations , distributed according to the QCD action,  are 
generated by means of Monte Carlo techniques

U

A certain number of configurations (each consisting of a fixed number of complex 
numbers) are stored on disk for subsequent analysis.

MEASUREMENT
Measurements of physical observables are  performed on the stored gauge configurations.

ANALYSIS
Averaging of the measurements over configurations, extrapolations to certain limits.

𝒪(U)

Possible comparison of the outcome of these calculations with experimental results.

highly computing demanding tasks !
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Space&'me)la+ce) Processor)array)

Λ1) Λ2)

Λ3) Λ4)

P1) P2)

P3) P4)

Parallel to the development of Lattice Quantum Chromo Dynamics (LQCD), there 
have been equally remarkable advances in computer design and implementation.

It soon became clear that parallel assemblies of computing nodes offered the most 
effective route to the highest computational performance.

figure from: http://
www.int.washingto
n.edu/talks/

ideal case of the parallel 
computation paradigm !

Locality: (property of the field theoretic 
description of fundamental interactions)  

the numerical operations at a site n can be 
carried out independently of  those at a site m                        
unless the pair is within the limited 
neighborhood of each other; 
calculations by a given processor can be carried 
out independently of those by the other 
processors, except that the processors with 
overlapping boundaries have to exchange 
values of fields in the boundaries before and/or 
after the calculations in each sub lattice; 
for a fixed lattice size, the computation time can 
be reduced by a factor NP , and for a fixed sub-
lattice size, one can enlarge the total lattice size 
proportionately to the number of processors NP 
without increasing the computation time. 

Data for a single lattice site or block of 
sites may be stored in the local memory 
of each processor and the four-
dimensional lattice mapped down to 
the network of the machine. Generally 
this can be done so that only nearest-
neighbour data communication is 
required in the generation of gauge 
field configurations.
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LQCD collaborations 
have also played a 
crucial role in the 
development of 
specialized hardware. 
The architecture of 
modern 
supercomputers, like 
the renowned IBM Blue 
Gene/Q, was influenced 
by the design of 
computers specifically 
tailored for lattice QCD 
simulations.

10

Lattice QCD and parallel computers building

name year authors peak speed
Columbia 1984 Christ-Terrano –
Columbia-16 1985 Christ et al 0.25 GFlop/s
APE1 1988 Cabibbo-Parisi 1 GFlop/s
Columbia-64 1987 Christ et al 1 GFlop/s
Columbia-256 1989 Christ et al 16 GFlop/s
ACPMAPS 1991 Mackenzie et al 5 GFlop/s
QCDPAX 1991 Iwasaki-Hoshino 14 GFlop/s
GF11 1992 Weingarten 11 GFlop/s
APE100 1994 APE Collab. 0.1 TFlop/s
CP-PACS 1996 Iwasaki et al 0.6 TFlop/s
QCDSP 1998 Christ et al 0.6 TFlop/s
APEmille 2000 APE Collab. 0.8 TFlop/s
apeNEXT 2004 APE Collab. 10 TFlop/s
QCDOC 2005 Christ et al 10 TFlop/s
PACS-CS 2006 Ukawa et al 14 TFlop/s
QCDCQ 2011 Christ et al 500 TFlop/s
QPACE 2012 Wettig et al 200 TFlop/s

APE100

APEmille
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PERFORMANCE DEVELOPMENT

1

2

3

4

5

DOE/SC/ORNL

DOE/SC/ANL

Microsoft Azure

RIKEN R-CCS

EuroHPC/CSC

1,206.0

1,012.0

561.2

442.0

379.7

22.7

38.7

29.9

6.01

Frontier

Aurora

Eagle

Fugaku

LUMI

USA

USA

USA

Japan

Finland

 

8,699,904

9,264,128

1,123,200

7,630,848

2,220,288

HPE Cray EX235a, AMD Opt 3rd Gen EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11

Microsoft NDv5, Xeon Platinum 8480C (48C 2GHz), NVIDIA H100, NVIDIA Infiniband NDR 

Fujitsu A64FX (48C, 2.2GHz), Tofu Interconnect D

HPE Cray EX235a, AMD Opt 3rd Gen EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11

CORESSITE COUNTRY
RMAX 

PFLOP/S
POWER 

MW
MAY 2024

HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 (52C 2.4GHz), 
Intel Data Center GPU Max, Slingshot-11

10 Eflop/s

1 Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflop/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

2018 2019 2020 2021 2022 2023 ’2420062005200420032002200120001999199819971996199519941993 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Sum

N=1

N=500

!"#$%%&"'(
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Main computing resources in Europe
https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en

LUMI supercomputer 
375 PFlop/s    -  FINLAND

LUMI-G (accelerated partition) 
2978 nodes with 4 AMD MI250x 
GPUs and a single 64 cores AMD 
EPYC "Trento" CPU. 
379.70 PFlop/s HPL 
LUMI-C (CPU partition) 
2048 CPU-based compute nodes 
(128 cores/node AMD EPYC)

LEONARDO-booster
1 x CPU Intel Xeon 8358 32 cores, 2,6 GHz 
512 (8 x 64) GB RAM DDR4 3200 MHz 
4 X Nvidia custom Ampere GPU 64GB HBM2 
2 x NVidia HDR 2×100 Gb/s cards 

3456 nodes

LEONARDO-GP

2x Intel Sapphire Rapids, 56 cores, 4.8 GHz 
512 (16 x 32) GB RAM DDR5 4800 MHz 
3xNvidia HDR cards 1x100Gb/s cards 
8 TB NVM

1536 nodes

LEONARDO supercomputer 
250 PFlop/s    -  ITALY MARENOSTRUM 5 

275 PFlop/s    - SPAIN
MareNostrum 5 ACC 
(Accelerated Partition) 
1120 nodes based in Intel 
Sapphire rapids (64 cores/node) 
and Nvidia Hopper GPUs (4 
GPUs/node).  230 PFlops HPL 
MareNostrum 5 GPP (General 
Purpose Partition) 
6408 nodes based in Intel 
Sapphire rapids (112 cores/
node).    45 PFlops HPLLISA-GPU  ( > 100 PFlops HPL)

LISA-CPU  ( > 6 PFlops HPL)
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HPC Vega IZUM 
6.92  PFlop/s   - SLOVENIA

MELUXINA supercomputer 
12.81 PFlop/s    - LUXEMBOURG

KAROLINA supercomputer 
9.59 PFlop/s - CZECH Republic

DISCOVERER supercomputer 
4.51 PFlop/s    - BULGARIA

DEUCALION supercomputer 
7.22 PFlop/s    - PORTUGAL

Main computing resources in Europe (cont’d)

Jupiter

1 Exaflop 
Sustained performance

will be the first EuroHPC 
exascale(*) 
supercomputer 
(@Julich-Germany)
(*) 1018 Flop/s
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Example of  
Lattice QCD computation @ Exascale Frontier

Lattice volume:      —>  SU(3) matrices —>  real numbers  —>
  storage per lattice configuration      (with a local volume of  —>  cores

V = 2563 × 512 4V 4V × 18
∼ 2 . 5 TB 84 2.1 × 106

Physics goals: 
calculations with ensembles of gauge fields with physical volumes   large enough to ensure that finite-
volume effects are under control.

V

Simulation with up/down, strange, charm and bottom quarks at their physical masses with physical 
volume  at a lattice spacing  ( )  (lattice size ) V = (10 fm)4 a = 0 . 04 fm a−1 ∼ 5 GeV 2563 × 512

∼ 12, 000 Exaflop hours = 12, 000 × (3600 × 1018) floating-point operations
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Lattice QCD
13 12. CKM Quark-Mixing Matrix

γ

γ

α

α

dm∆

K
ε

K
ε

sm∆ & dm∆

ub
V

βsin 2

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 12.2: Constraints on the fl̄, ÷̄ plane. The shaded areas have 95% CL.

and the Jarlskog invariant is J =
!
3.08+0.15

≠0.13
"

◊ 10≠5. The parameters in Eq. (12.3) are

sin ◊12 = 0.22500 ± 0.00067 , sin ◊13 = 0.00369 ± 0.00011 ,

sin ◊23 = 0.04182+0.00085
≠0.00074 , ” = 1.144 ± 0.027 . (12.28)

Fig. 12.2 illustrates the constraints on the fl̄, ÷̄ plane from various measurements, and the global
fit result. The shaded 95% CL regions all overlap consistently around the global fit region. This
reverts a change in the 2020 edition, when the shown CL of each region was increased to 99%,
because of poor consistency (primarily due to changes in |Vud|), which is no longer the case.

If one uses only tree-level inputs (magnitudes of CKM elements not coupling to the top quark
and the angle “), the resulting fit is almost identical for ⁄ in Eq. (12.26), while the other pa-
rameters’ central values can change by about a sigma and their uncertainties double, yielding
⁄ = 0.22507 ± 0.00068, A = 0.805 ± 0.028, fl̄ = 0.166+0.026

≠0.024, and ÷̄ = 0.370+0.029
≠0.028. This illustrates

how the constraints can be less tight in the presence of BSM physics.

12.5 Implications beyond the SM
The e�ects in B, Bs, K, and D decays and mixings due to high-scale physics (W , Z, t, H in

the SM, and unknown heavier particles) can be parameterized by operators composed of SM fields,

11th August, 2022

Precision studies of flavor 
physics, within and beyond 
the Standard Model

Study of QCD 
in extreme 
conditions

The development of numerical algorithms is crucial: 
over the history of lattice gauge theory calculations, the 
improvement from algorithm development has been similar 
to the gain from Moore’s law.

A large number of computing nodes is required (up to 
 cores.  On the largest scales the challenge lies in 

efficiently and effectively exchanging data among the 
processors or nodes  —>  MPI, MPI+OpenMP.

𝒪(105)
Lattice QCD is an essential tool for obtaining precise first-principle 
theoretical predictions of the hadronic processes underlying many key 
experimental searches.

As experimental measurements become more precise, lattice QCD will 
play an increasingly important role in providing the necessary 
matching theoretical precision.

Achieving the needed precision requires simulations on lattices with 
significantly increased resolution.

The latest lattice QCD results related to 
the muon g-2 problem have 
significantly reduced the discrepancy 
between theoretical predictions and 
experimental measurements. The new 
calculations now differ from the 
experimental measurements by only 
0.9 standard deviations.  
This finding is critical as it challenges 
the previously observed tension 
between experiment and theory, 
which had fueled speculation about 
new physics beyond the Standard 
Model.
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https://www.claymath.org/millennium-problems/

If there is a mass gap, 
there cannot be free 
massless gluons which 
would have no lower 
bound on their energy. 
Hence, a mass gap 
implies confinement. 

Color  
confinement  
is still an 
unsolved 
problem

THE COLOR CONFINEMENT

Color confinement is supported by a wide range 
of experimental observations:  in high-energy 
particle collisions, quarks and gluons are never 
observed as free particles but always emerge as 
part of bound states (hadrons).

Understanding color 
confinement is crucial for 
explaining why quarks and 
gluons are never observed as 
free particles but are always 
confined within hadrons.

While confinement is well-
supported by lattice QCD and 
experimental evidence, 
providing an analytic proof 
from first principles remains 
an open challenge in 
theoretical physics. 
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Achieving a detailed understanding of color confinement 
remains a central goal for nonperturbative studies of QCD 
and is strictly related to the phase diagram of QCD.

Lattice numerical simulations have long revealed the 
emergence of tube-like structures when analyzing the 
chromoelectric fields between static quarks.

THE COLOR CONFINEMENT (cont’d)

From the phenomenological point of view, the 
knowledge of the flux tube structures in QCD could 
provide useful hints to the description of 
hadronization processes in the Lund string model.

measured in units of the lattice spacing, obtained from the
large distance behavior of the heavy quark potential calcu-
lated from smeared Wilson loops at zero temperature [29].
This is also used to define the temperature scale and a

!!!!

!
p

is
used for setting the scale for the free energies and the
physical distances. For the conversion to physical units,
!!!!

!
p ! 420 MeV is used. For instance, we get Tc !
202"4# MeV calculated from Tc=

!!!!

!
p ! 0:48"1# [29]. In

parts of our analysis of the quark-antiquark free energies
we are also interested in the flavor and finite quark mass
dependence. For this reason we also compare our 2-flavor
QCD results to the available recent findings in quenched
(Nf ! 0) [12,20] and 3-flavor QCD (m"=m# ’ 0:4 [32])
[33]. Here we use Tc ! 270 MeV for quenched and Tc !
193 MeV [33] for the 3-flavor case.

Our results for the color singlet quark-antiquark free
energies, F1, and color averaged free energies, Fav, are
summarized in Fig. 1 as a function of distance at several
temperatures close to the transition. At distances much
smaller than the inverse temperature (rT $ 1) the domi-
nant scale is set by distance and the QCD running coupling
will be controlled by the distance. In this limit the thermal
modification of the strong interaction will become negli-
gible and the finite temperature free energy will be given
by the zero temperature heavy quark potential (solid line).
With increasing quark-antiquark separation, however, ther-
mal effects will dominate the behavior of the finite tem-
perature free energies (rT % 1). Qualitative and
quantitative differences between quark-antiquark free en-
ergy and internal energy will appear and clarify the im-
portant role of the entropy contribution still present in free
energies. The quark-antiquark internal energy will provide
a different look on the interquark interaction and thermal
modifications of the finite temperature quark-antiquark
potential. Further details of these modifications on the
quark-antiquark free and internal energies will be
discussed.

This paper is organized as follows: we start in Sec. II
with a discussion of the zero temperature heavy quark
potential and the coupling. Both will be calculated from
2-flavor lattice QCD simulations. We analyze in Sec. III
the thermal modifications on the quark-antiquark free en-
ergies and discuss quarkonium binding. Section IV con-
tains our summary and conclusions. A detailed discussion
of the quark-antiquark internal energy and entropy will be
given separately [34].

II. THE ZERO TEMPERATURE HEAVY QUARK
POTENTIAL AND COUPLING

A. Heavy quark potential at T ! 0

For the determination of the heavy quark potential at
zero temperature, V"r#, we have used the measurements of
large smeared Wilson loops given in [29] for the same
simulation parameters (Nf ! 2 and ma ! 0:1) and action.
To eliminate the divergent self-energy contributions we

matched these data for all $ values (different $ values
correspond to different values of the lattice spacing a) at
large distances to the bosonic string potential,

V"r# ! & "
12

1

r
' !r ( & 4

3

%str

r
' !r; (1)

where we already have separated the Casimir factor so that
%str ( "=16. In this normalization any divergent contribu-
tions to the lattice potential are eliminated uniquely. In
Fig. 2 we show our results together with the heavy quark
potential from the string picture (dashed line). One can see
that the data are well described by Eq. (1) at large dis-
tances, i.e. r

!!!!

!
p

* 0:8, corresponding to r * 0:4 fm. At
these distances we see no major difference between the 2-

-2

-1

0

1

2

3

0.5 1 1.5 2 2.5 3

V/σ1/2

rσ1/2

-π/12r+σr
-4α/3r+σr

(a)

βlat    
4.40  
4.30  
4.10  
4.00  
3.90  
3.80  
3.70  
3.663
3.60  
3.50  

-2

-1

0

1

0.2 0.4 0.6 0.8 1

V/σ1/2

rσ1/2

(b)

FIG. 2. (a) The heavy quark potential at T ! 0 from [29]
obtained from 2-flavor QCD lattice simulations with quark
masses ma ! 0:1 for different values of the lattice coupling $.
(b) shows an enlargement of the short distance regime. The data
are matched to the bosonic string potential (dashed line) at large
distances. Also included is the fit to the Cornell form (solid line)
given in Eq. (4). Note here that the heavy quark potential from
quenched lattice QCD and the string model potential coincide
already at r

!!!!

!
p

* 0:8 [35,36] (r * 0:4 fm).

STATIC QUARK-ANTIQUARK INTERACTIONS IN ZERO . . . PHYSICAL REVIEW D 71, 114510 (2005)

114510-3

O. Kaczmarek and F. Zantow, [arXiv:hep-lat/0503017].

Heavy quark potential – free energy of a static quark-
antiquark configuration separated by a distance d.

V(d) = − π
12

1
d + σd

 :  string tensionσ

The observation of these tube-like structures in lattice 
simulations is related to the linear potential between 
static color charges and  provides direct numerical 
evidence for color confinement.
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How to measure the chromoelectromagnetic  field tensor on the lattice?

q q̄

d
To explore on the lattice the field configurations produced by a 
static quark-antiquark pair —> connected correlation function (*)

Di Giacomo, Maggiore, Oleínik , NPB347(1990)441

Kuzmenko, Simonov, PLB494(2000)81

Di Giacomo, Dosch, Shevchenko, Simonov, Phys.Rept.372(2002)319

(*)
Skala, Faber, Zach, NPB494(1997)293
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THE SPATIAL DISTRIBUTION OF THE COLOR FIELDS

lattice  measurements of the connected correlation function

ρconn
W,μν = ⟨tr(WLUPL†)⟩

⟨tr(W)⟩ − 1
N

⟨tr(UP)tr(W)⟩
⟨tr(W)⟩

d

xt

xl

Ex(xt)

W

UP

L (Schwinger line)

t

x

d

xl

xt

q q̄

lattice  definition of the gauge-invariant field strength tensor

ρconn
W,μν ≡ a2g⟨Fμν⟩qq̄ ≡ a2g Fμν

rotating the plaquette relative to the plane of the Wilson loop allows us to 
extract the components of the field tensor:

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane 

UP ( ̂μ = 4, ̂ν = 1) ⟶ Ex

UP ( ̂μ = 4, ̂ν = 2) ⟶ Ey

UP ( ̂μ = 4, ̂ν = 3) ⟶ Ez

UP ( ̂μ = 2, ̂ν = 3) ⟶ Bx

UP ( ̂μ = 3, ̂ν = 1) ⟶ By

UP ( ̂μ = 4, ̂ν = 2) ⟶ Bz

SYMMETRY: The fields take on the same 
values at spatial points connected by 
rotations around the axis on which the 
sources are located
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52 DUAL SUPERCONDUCTIVITY IN THE SU(2) PURE GAUGE. . . 5155

0.03

0.025—
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0.015
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0.005—

I

SU(2) 24 [i=2.7
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E

~ E,
B,

~ B
~ B,

0
a a

I

0

I I I I

results show that p~ is sizable when U„and TV are in
parallel planes. This corresponds to measuring the com-
ponent R~ of the chromoelectric field directed along the
line joining the qq pair (E in Fig. 2). Moreover, we see
that Ei(xi, x&) decreases rapidly in the transverse direc-
tion xz. In Fig. 3 we display the transverse distribution of
the longitudinal chromoelectric field along the Aux tube.
The static color sources are at xi = +5 and xi = —4 (in
lattice units). Figure 3 shows that the effects of the color
sources on the chromoelectric fields extends over about
three lattice spacings. Remarkably, far from the sources
the longitudinal chromoelectric field is almost constant
along the q-q line. Thus, the color field structure of the
q-q tube, which emerges from our results, is quite simple:
the Aux tube is almost completely formed by the longi-
tudinal chromoelectric field, which is constant along the
flux tube (if xi is not too close to the static color sources)
and decreases rapidly in the transverse direction.

-1 0 1 2 3 4 5 6 7 S 9 10 il
Xt

FIG. 2. The field strength tensor F„„(x~,xi) evaluated at
xi = 0 on a 24 lattice at P = 2.7, using Wilson loops of size
10 x 10 in Eq. (2.1).

tensor F„(xi,xi), where the coordinates xi, xi measure,
respectively, the distance from the middle point between
quark and antiquark [which corresponds to the center
of the spatial side of the Wilson loop W in Eq. (2.1)]
and the distance out of the plane defined by the Wilson
loop. The entries in Fig. 2 refer to measurements of the
Geld strength tensor taken in the middle of the Aux tube
(xi = 0) with eight cooling steps at P = 2.7 on the 244
lattice, using a square Wilson loop R' of size 10x 10. Our

B.Maximally Abelian projection

(tr (W"U")) 1 (tr (U") tr (W"))
(tr (WA)) 2 (tr (W~)) (2.8)

The correlator p+~ is obtained from Eq. (2.1) with the
substitution U&(x) -+ U (x). For instance the Abelian
projected plaquette in the (p, v) plane is

In the 't Hooft formulation [8] the dual superconductor
model is elaborated through the Abelian projection. The
idea is that the Abelian projected gauge Gelds retain the
long-distance physics -'~f the gauge system. In particular,
the physical quantities related to the confinement should
be independent of the gauge fixing and agree with those
obtained in the full gauge system. This suggested that
we [17] investigate the Abelian projected correlator

0.05

SU(2) 24 (=2.7

V„".(x) = U„"(x)U„"(x+P)V„"t(x+~)U„"t(x)
= diag1exp i8„„(x),exp i0„(x) ) . (2.9)—
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FIG. 3. The x~ dependence of the transverse profile of the
longitudinal chromoelectric field E~(xi, xi) = R~(xi, xi).

F„.(*) = 2 ~w(x)
A V~ A (2.10)

behaves like the gauge-invariant one defined by Eq. (2.3).
In Fig. 4 we report our results for the field strength ten-

Obviously the Abelian projected quantities are commu-
tating, so we do not need the Schwinger lines in Eq. (2.8).
It is worthwhile to stress that p~ is a gauge-dependent
correlator. We performed measurements for six different
values of P in the range 2.45 ( P ( 2.70 using the 16 and
20 lattices. In this case we find a good signal without
cooling. Measurements are taken on a sample of 500—700
configurations, each separated by 50 upgrades, after dis-
carding 3000 sweeps to allow thermalization. The maxi-
mally Abelian gauge is fixed iteratively via the overrelax-
ation algorithm of Ref. [11] with the overrelaxation pa-
rameter u = 1.7 (for further details see the Appendix).
Remarkably enough, it turns out that the Abelian field
strength tensor

P. Cea and L.C.,  
Phys. Rev.  D52 
(1995) 5152

The flux tube is almost completely formed 
by the longitudinal chromoelectric field.

Our earliest investigations

q q̄

d = 10 a

ρconn
W,μν ≡ a2g⟨Fμν⟩qq̄ ≡ a2g Fμν
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Systematic study of flux tubes in the case of:

SU(3) pure gauge theory at T = 0
SU(3) pure gauge theory at T ≠ 0

QCD with (2+1) flavors at T = 0
Ongoing and future studies: 

QCD with (2+1) flavors at T ≠ 0
QCD with (2+1) flavors at  in presence of 
background fields (magnetic or chromomagnetic) and/or 
at finite baryon density

T ≠ 0
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SU(3)   T = 0 The chromoelectromagnetic field tensor

The chromomagnetic field around the sources is compatible with zero within statistical errors.
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SU(3)
The dominant component of 
the chromoelectric field is 
longitudinal.

The components of  the 
chromoelectric field  
transverse to the line 
connecting the sources 
can be matched to an 
effective Coulomb-like 
field.



Leonardo Cosmai - INFN, Bari & ICSC 26

Transverse chromoelectric components: effective Coulomb-like field

The irrotational condition on a discrete lattice (on a plaquette):

<latexit sha1_base64="/gs1YyFjQq8n2mrZ+yPPimZFoaI="></latexit>

EC
x (x, y) + EC

y (x + 1, y) � EC
x (x, y + 1) � EC

y (x, y) = 0

Solve this equation for EC
x

<latexit sha1_base64="ip7G5EuZjwVd9SG96WqOD8pQMGY="></latexit>

EC
x (x, y) =

ymaxX

y0=y

(Ey(x, y
0) � Ey(x + 1, y0)) + EC

x (x, ymax + 1)

<latexit sha1_base64="cWIOthkbum0QHq7+sriTD5J9NxU="></latexit>

EC
x (x, ymax + 1) = 0We further assume:

The components of  the chromoelectric field  transverse to the line connecting the sources can be matched to an effective Coulomb-like field 

 satisfying the following conditions:⃗E C( ⃗r)
The transverse component  of the chromoelectric field is identified with the transverse component  of 
the perturbative field:

Ey EC
y

The perturbative field    is irrotational:EC

EC
y ≡ Ey

⃗∇ × ⃗E C = 0

The lattice procedure to 
evaluate the perturbative 
Coulomb-like contribution 
to the longitudinal 
chromoelectric field
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The longitudinal    can be 
separated into the perturbative, 
short-distance part  and a  

nonperturbative term , 
encoding the confining 
information, which is shaped as a 
smooth flux tube.

Ex

EC
x

ENP
x

ENP
x = Ex − EC

x

SU(3) β = 6.370 d = 16a = 0.85 fm

The confining field of the QCD flux tube

Lattice scale:   
<latexit sha1_base64="vSc7JmKsMMrvgXm+l7yd6YQzrJc="></latexit>

a(�) = r0⇥exp
⇥
c0 + c1(��6) + c2(��6)2 + c3(��6)3

⇤

r0 = 0.5 fm

c0 = �1.6804 , c1 = �1.7331

c2 = 0.7849 , c3 = �0.4428

[S. Necco, R. Sommer, arXiv:hep-lat/0108008]

(*)

(*)

q q̄

d = 0 . 85 fm



Leonardo Cosmai - INFN, Bari & ICSC 28

The string tension and the width of the chromoelectric flux tube
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<latexit sha1_base64="uuk9/GysXCg2ZJqFP0ySb3mWybc="></latexit>

p
� =

sZ
d2xt

(ENP
x )2(xt)

2

<latexit sha1_base64="/Ja6su5+hwy2Ned/z3ppYI4bWJI="></latexit>

ENP
x (xt) =

�

2⇡

µ2

↵

K0[(µ2x2
t + ↵2)1/2]

K1[↵]

<latexit sha1_base64="bEArjk6S0kWfXNz2XYC4g7CWFFc="></latexit>

p
w2 =

sR
d2xt x2

tEx(xt)R
d2xt Ex(xt)

We can compute the (square root of the) string tension as:

This determination can be done: 

1) by a direct numerical integration 

2)  analytically, by fitting the numerical data for the transverse 

distribution of   to the Clem  parameterization of the 

field surrounding a magnetic vortex in a superconductor: 

ENP
x (xt)

We can compute the mean square root width of the flux tube:
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The string tension The width of the chromoelectric flux tube

SU(3)  T = 0

q q̄

0 . 4 fm ≤ d ≤ 1 . 2 fm

[M. Baker, P. Cea, V. Chelnolov, L.C., F. Cuteri, A. Papa, arXiv:1810.07133,  arXiv:1912.04739]
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SU(3)  T ≠ 0
Measuring the chromoelectric fields within a flux tube generated by a static quark-
antiquark pair in finite-temperature SU(3) gauge theory.

150 Page 4 of 9 Eur. Phys. J. C (2024) 84 :150

Table 1 Summary of the numerical simulations

Lattice β a(β) [fm] d/a d [fm] T/Tc Statistics

483 × 12 6.100 0.0789097 12 0.946917 0.8 2400

483 × 12 6.381 0.052633 12 0.631597 1.2 340

483 × 12 6.381 0.052633 16 0.842129 1.2 1500

483 × 12 6.554 0.0420845 15 0.631267 1.5 1100

323 × 8 6.248 0.0631757 10 0.631757 1.5 2580

483 × 12 6.778 0.0315769 20 0.631537 2.0 1020

4 Lattice setup and smearing procedure

We measured the color fields, as defined in Eq. (1), generated
by a quark-antiquark pair separated by a distance d. We set
the physical scale for the lattice spacing according to Ref.
[13]:

a(β) = r0×exp
[
c0 + c1(β−6)+ c2(β−6)2 + c3(β−6)3

]
,

r0 = 0.5 fm,

c0 = −1.6804 , c1 = −1.7331 ,

c2 = 0.7849 , c3 = −0.4428 , (11)

for all β values in the range 5.7 ≤ β ≤ 6.92. In this scheme,
the value of the square root of the string tension is

√
σ ≈

0.465 GeV (see Eq. (3.5) in Ref. [13]).
The correspondence between β and the distance d, shown

in Table 1, was obtained from this parameterization. We
performed measurements in the temperature range 0.8 ≤
T/Tc ≤ 2.0. The distance in lattice units between quark and
antiquark corresponds to the spatial size of the Wilson loop
in the connected correlator of Eq. (1).

The connected correlator defined in Eq. (1) exhibits large
fluctuations at the scale of the lattice spacing, which are
responsible for a bad signal-to-noise ratio. To extract the
physical information carried by fluctuations at the physical
scale (and, therefore, at large distances in lattice units) we
smoothed out configurations by a smearing procedure. Our
setup consisted of (just) one step of HYP smearing [14] on
the temporal links, with smearing parameters (α1,α2,α3) =
(1.0, 0.5, 0.5), and NHYP3d steps of HYP3d smearing [14]
on the spatial links, with smearing parameters (α1,α3) =
(0.75, 0.3). NHYP3d is chosen separately for each observable
in a way that maximizes the signal value, as described in [3].
The need to choose the smearing number separately for each
observable and each location is based on the role of smearing
as an effective renormalization – different observables have
different renormalization and the impact of renormalization
increases with the length of the Schwinger line, and is evident
from the comparison of the behavior of different observables

Fig. 4 Dependence of the nonperturbative chromoelectric field E (NP)
x

(top) and chromomagnetic current density Jz (bottom) at different loca-
tions on the smearing number

under smearing, shown in Fig. 4. In Table 1 we summarize
our numerical simulations.

5 Numerical results

5.1 Scaling check

To make sure that we are close enough to the continuum
limit, we performed a scaling check, comparing the fields and

123

M. Baker, V. Chelnokov, L. Cosmai, F. Cuteri and A. Papa,  [arXiv:2310.04298 [hep-lat]].
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currents at the midplane for two parameter sets having differ-
ent lattice step size a (0.063 fm and 0.042 fm) and different
distance between quark and antiquark in lattice units (10a
and 15a), but the same temperature T = 1.5Tc and physical
quark-antiquark separation d ≈ 0.631 fm. The results are
shown in Fig. 5. To be able to compare results exactly at the
midplane and avoid the discrepancy due to slightly differ-
ent location of the points at which the fields are measured, a
spline interpolation of the field values at the discrete lattice
points was employed.

The discrepancy between the full field values does not
exceed 2 ·10−3 GeV2, and in most of the cases lies within the
error bounds. For the nonperturbative field the discrepancy
reaches 3.5 · 10−3 GeV2 – up to 4.5σ , and is much more
visible in Fig. 5, due to the low value of the nonperturbative
field itself. The discrepancy in the current density reaches
1.6 · 10−2 GeV2/fm – about 5σ .

This shows that the raw data extracted from the lattice have
a negligible contribution from finite lattice step (compared
to the stochastic errors), though the analysis and extraction
of derived quantities may introduce discrepancies equal to
several standard stochastic errors.

5.2 3d plots and asymmetry

Figures 6, 7 and 8 show the dependence of the full longitudi-
nal chromoelectric field, the nonperturbative chromoelectric
field, and the chromomagnetic current density on the posi-
tion (xl , xt ) for three different values of temperature (T = 0,
T = 1.2Tc and T = 2Tc) and for the same quark-antiquark
distance d ≈ 0.63 fm.

One can see that the full field continues to form a tube-like
structure well after reaching the deconfinement temperature.
The remnants of the flux tube are visible also in the nonper-
turbative field and current density plots, despite the values
becoming much smaller at higher temperatures.

There is a lack of symmetry between the quark and anti-
quark on the 3d plots at high temperatures – closer to the
antiquark the full field values are much smaller, and the non-
perturbative field and current density values are much larger
than those close to the quark. The behavior of the full field
suggests that the smearing required to perform the effective
renormalization away from the quark at high temperatures is
so large that the field is (partially) destroyed by smearing.

The growth of the nonperturbative field and current den-
sity suggests that our method of fixing the smearing amount
(maximizing the signal value) might be inappropriate for very
small signals – at large distances we cannot distinguish the
actual field value from the subtraction errors and end up over-
amplifying the latter.

These effects are much smaller near the midplane, so in
what follows we will concentrate on the field at xl = d/2.

Fig. 5 Scaling analysis of (from top to bottom), full longitudinal chro-
moelectric field, nonperturbative chromoelectric field, and chromomag-
netic current density. Comparison is done at T = 1.5Tc for the fields and
current at the midplane with " = 483 × 12, β = 6.554, a ≈ 0.042 fm,
and " = 323 × 8, β = 6.248, a ≈ 0.063 fm

5.3 Nonperturbative chromoelectric field

Figure 9 shows a midplane section of Fig. 7, providing a better
view of the flux-tube remnant evaporation at T > Tc.

Figure 10 shows the values of the nonperturbative field
at the same temperature T = 1.2Tc, but for two distances

123

SCALING ANALYSYS 

d = 0 . 63 fm
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Measurement of the chromoelectric field using the maximal Wilson loop (i.e. the loop 
with the largest possible extension in the temporal direction). 

O. Jahn, O. Philipsen, Phys. Rev. D 70, 074504 (2004). arxiv:hep-lat/0407042

e.g.:  lattice  and distance  between the sources —> Wilson loop  483 × 12 d = 15a 15(space) × 12(time)

T = 1
a(β) Nt

Tc = 260 MeV
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The nonperturbative chromoelectric field

150 Page 6 of 9 Eur. Phys. J. C (2024) 84 :150

Fig. 6 3d plot of the full chromoelectric field for T = 0, 1.2Tc, 2Tc
and d = 0.631 fm

d = 0.632 fm and d = 0.842 fm. One can see that when
the quark-antiquark separation is increased by 1/3, the field
values fall by more than 50 %, and thus the flux-tube remnant
does not create a linear potential at large distances.

Fig. 7 3d plot of the nonperturbative chromoelectric field for T = 0,
1.2Tc, 2Tc and d = 0.631 fm

5.4 Magnetic current density

The same analysis can be done for the magnetic current
density that should generate the flux tube. Figure 11 shows
that the current density drops significantly when temperature
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5.4 Magnetic current density

The same analysis can be done for the magnetic current
density that should generate the flux tube. Figure 11 shows
that the current density drops significantly when temperature
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5.4 Magnetic current density

The same analysis can be done for the magnetic current
density that should generate the flux tube. Figure 11 shows
that the current density drops significantly when temperature

123

T = 2 . 0 Tc

The chromoelectric field continues to form a tube-like structure well after reaching the 
deconfinement temperature, despite the values becoming much smaller at higher temperatures. 
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Fig. 8 3d plot of the magnetic current density for T = 0, 1.2Tc, 2Tc
and d = 0.631 fm

becomes larger than Tc, and Fig. 12 shows that the current
density at the midplane drops when the distance between
quark and antiquark increases.

5.5 Field integrals: string tension and confining force

We also extracted the values of the integrals of the nonpertur-
bative field, obtaining from them the effective string tension

Fig. 9 The nonperturbative chromoelectric field at the midplane xl =
d/2, for T = 0, 1.2Tc, 2Tc and d = 0.632 fm

Fig. 10 The nonperturbative chromoelectric field at the midplane xl =
d/2, for 1.2Tc and d = 0.632, 0.842 fm

Fig. 11 Magnetic current density at the midplane xl = d/2, for T = 0,
1.2Tc, 2Tc and d = 0.632 fm

σeff and the effective confining force Feff , according to the

123
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The chromoelectric field at the midplane between the sources
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Fig. 8 3d plot of the magnetic current density for T = 0, 1.2Tc, 2Tc
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bative field, obtaining from them the effective string tension
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σeff and the effective confining force Feff , according to the

123

T = 0 T = 1 . 2 Tc

T = 2 . 0 Tc
d = 0 . 842 fm

The nonperturbative chromoelectric field at 
the midplane: providing a better view of the 
flux-tube remnant evaporation at T > Tc

d = 0 . 632 fm

T = 1 . 2 Tc

When the quark-antiquark separation is increased 
by 1/3, the field values fall by more than 50 %, 
and thus the flux-tube remnant does not create a 
linear potential at large distances. 

d = 0 . 632 fm , d = 0 . 842 fm

q q̄
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The effective string tension

150 Page 8 of 9 Eur. Phys. J. C (2024) 84 :150

Fig. 12 Magnetic current density at the midplane xl = d/2, for T =
1.2Tc and d = 0.632, 0.842 fm

following formulas:

σeff =
∫

dx2
t
E (NP)
x (xt )2

2
,

Feff = 2
∫ d

0
dxl

∫ ∞

0
dxt E (NP)

x (xl , xt )Jz(xl , xt ) . (12)

The evaluation of Eq. (12) was done by doing a spline
interpolation of the lattice data, and replacing the integration
over the whole transverse plane by the integration over the cir-
cle xt < xt,max. Note that Eqs. (12) can also be used above the
deconfinement transition to characterize the chromoelectric

field structure – thus we use “effective” in the notation. The
decrease of the values of the integrals above the phase transi-
tion is a sign of the flux tube dissolution. Below the deconfine-
ment transition these integrals just give us the string tension
σ and the confining force F .

The integration results are collected in Table 2. The
stochastic error estimates were obtained using the usual jack-
knife procedure. The systematic error estimates on

√
Feff

were obtained from comparing the integral in the range given
in column xl (the region in which we have direct data), with
the integral of the extrapolated field values in the full range,
and by considering the asymmetry of the obtained field,
through the comparison of integrals over two halves of the
region, (0 – d/2) and (d/2 – d).

One can see that below Tc both
√

σeff and
√
Feff values are

stable under variation of T and d both with temperature and
with d, and roughly compatible with each other (if we take
into account systematic errors on

√
Feff ). Here they describe

the actual string tension σ and confining force F . Once we
enter the deconfinement phase, both

√
σeff and

√
Feff become

drastically smaller, but do not go to zero.
Furthermore,

√
σeff and

√
Feff are also reduced when the

temperature, and, more importantly, the distance d, grow.
In this case σeff cannot be treated as a string tension, since
the assumption that the chromoelectric field profile does not
depend on xl and d is no longer valid. Thus, in the deconfined
phase σeff and Feff just serve as measures of the residual field
strength.

Table 2 Summary of effective string tension and confining force results for the lattice setups considered in this work. The first three lines (shaded
gray) give, for the sake of comparison, the corresponding determinations at zero temperature, taken from Ref. [3]

123

σeff = ∫ d2xt
(ENP

x (xt))2

2

The decrease of the values 
of the integrals above the 
phase transition is a sign 
of the flux tube 
dissolution.

}
}

T < Tc

T > Tc

numerical evaluation of the integral 
using the data for the nonperturbative 
chromoelectric field at the midplane
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LATTICE SETUP
Simulation of lattice QCD with 2+1 flavors of HISQ (Highly Improved Staggered Quarks) quarks, with the tree level 
improved Symanzik gauge action (HISQ/tree).

Couplings are adjusted so as to move on a line of constant physics (LCP), as determined in Bazavov et al (arXiv:111.1710)  with 
the strange quark mass  fixed at its physical value and a light-to-strange mass ratio , corresponding to a pion 
mass of 160 MeV in the continuum limit.

ms ml/ms = 1/20

We fix the lattice spacing through the  observable  as defined in Bazavov et al (arXiv:111.1710) r1

a
r1

(β)ml=0.05ms
= c0f(β) + c2(10/β)f3(β)

1 + d2(10/β)f2(β)
c0 = 44 . 06, c2 = 272102, d2 = 4281, r1 = 0 . 3106(20) fm

MILC code for producing gauge configurations (1 saved after 25 RHMC trajectories) and for the measurements of the 
chromoelectromagnetic field tensor.  Simulations on LEONARDO@Cineca.

Smoothing of gauge configuration:  1HYP on temporal links + n HYP3d on space links.

QCD (2+1) flavors at T = 0
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SUMMARY OF THE NUMERICAL SIMULATIONS
lattice
size beta a(beta) [fm] d [lattice

spacings] d [fm] #of
measurements

48^4 6.885 0.0949777 6 0.569866 500
32^4 7.158 0.0738309 8 0.590647 10064
24^4 6.445 0.144692 5 0.723462 3330
32^4 7.158 0.0738309 10 0.738309 10181
48^4 6.885 0.0949777 8 0.75982 779
32^4 6.885 0.0949777 8 0.759821 4409
32^4 6.5824 0.126658 6 0.759947 2667
32^4 6.3942 0.15203 5 0.760151 3000
32^4 6.885 0.0949777 9 0.854799 4347
32^4 6.25765 0.173715 5 0.868573 3545
32^4 6.5824 0.126658 7 0.886605 2667
32^4 6.3942 0.15203 6 0.912182 3000
48^4 6.885 0.0949777 10 0.949777 779
32^4 7.158 0.0738309 13 0.959801 10183
24^4 6.445 0.144692 7 1.01285 3330
32^4 6.5824 0.126658 8 1.01326 2666
32^4 7.158 0.0738309 14 1.03363 2107
32^4 6.25765 0.173715 6 1.04229 3549
32^4 6.885 0.0949777 11 1.04475 4408
32^4 6.3942 0.15203 7 1.06421 3000
32^4 6.33727 0.160714 7 1.125 3133
32^4 6.885 0.0949777 12 1.13973 4409
48^4 6.885 0.0949777 12 1.13973 769
32^4 6.5824 0.126658 9 1.13992 2667
32^4 6.314762 0.164286 7 1.15 3651
24^4 6.445 0.144692 8 1.157536 3330
32^4 6.28581 0.168999 7 1.18299 3148
32^4 6.25765 0.173715 7 1.216 3546
32^4 6.3942 0.15203 8 1.21624 3000
32^4 6.885 0.0949777 13 1.23471 4409
32^4 6.5824 0.126658 10 1.26658 2667
32^4 6.3942 0.15203 9 1.36827 3000

distance between the static sources:

0 . 570 ≤ d ≤ 1 . 368 fm

W

UP

L (Schwinger line)

t

x

d

xl

xt

q q̄

ρconn
W,μν

Nontrivial renormalization [N.Battelli, C.Bonati, arXiv:1903.10463] which depends on .  
By comparing our results we argued that smearing behaves as an effective 
renormalization.

xt

The smearing procedure can also be validated a posteriori by the observation of 
continuum scaling.

q q̄
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QCD (2+1):   HYP3D SMEARING

Behavior under smearing of the "full" longitudinal electric field, , for different 
values of the transverse distance , at  and  on a 

lattice . 

Ex
xt β = 7 . 158 d = 10a = 0 . 74 fm

324

The connected correlator exhibits large fluctuations 
at the scale of the lattice spacing, which are 
responsible for a small signal-to-noise ratio.

To extract the physical information carried by 
fluctuations at the physical scale (and, therefore, at large 
distances in lattice units), we smoothed out 
configurations by a smearing procedure.

Our setup consists of  
• one step of 4-dimensional hypercubic smearing on 

the temporal links (HYPt), with smearing parameters 
 

• N steps of hypercubic smearing  (HYP3d) restricted 
to the three spatial directions with 

.

(α1, α2, α3) = (1 . 0, 1 . 0 . 0 . 5)

(α1, , α3) = (0 . 75, 0 . 3)

Optimal number of smearing steps: 
the field takes its maximum value.

36



Leonardo Cosmai - INFN, Bari & ICSC 37

CONTINUUM SCALING

We verified that our lattice setup is close enough to the continuum limit

by checking that different choices of the lattice parameters, corresponding to the same physical distance  between the sources, 
lead to the same values of the relevant observables when measured in physical units.
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CONTINUUM SCALING (cont’d)

0 . 855 ≤ d ≤ 0 . 959 fm
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CONTINUUM SCALING (cont’d)

1 . 013 ≤ d ≤ 1 . 060 fm
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EFFECTIVE STRING TENSION
To characterize quantitatively the shape and some properties of the flux tube formed by the longitudinal electric field, we calculated numerically 
(at the midplane between the sources):

σeff = ∫ d2xt
(ENP

x (xt))2

2

“effective” string tension

6

Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-
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Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-

 at the midplaneENP
x  at the midplaneEx

The full field on the midplane contains also the perturbative 
contribution, which becomes less and less relevant when the 
distance between the sources increases. σeff ≈ 0 . 4 GeV
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WIDTH OF THE FLUX TUBE
To characterize quantitatively the shape and some properties of the flux tube formed by the longitudinal electric field, we calculated numerically 
(at the midplane between the sources):

w =
∫ d2xt x2

t ENP
x (xt)

∫ d2xt ENPx (xt)

width of the flux tube

6

Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-
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Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.
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324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
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324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
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324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
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 at the midplaneENP
x  at the midplaneEx

the width of the flux tube remains stable on 
a wide range of distances and is generally 
compatible for the full and the 
nonperturbative field.

w ≈ 0 . 5 fm
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POSSIBLE EVIDENCE FOR STRING BREAKING

Our numerical setup is not tailored for a clear-cut detection of the expected string breaking.

In the presence of light quarks it is expected that the string between the static quark-antiquark pair breaks at large distance 
due to creation of a pair of light quarks which recombine with the static quarks into two static-light mesons.

Evidences for string breaking:

However, we can look directly at the nonperturbative gauge-invariant longitudinal electric 
field, , in the region between two static sources that is responsible for the formation  of a well-
defined flux tube, characterized by  nonzero  effective string tension  and  width .

ENP
x

σeff w

Usually, the string breaking distance is defined as the point where the Wilson loop and the static-light meson operator have 
equal overlap onto the ground state.

, Nf = 2 mπ = 640 MeV  d* = 1 . 248(13) fm Bali et al., hep-lat/0505012

  (Wilson), Nf = 2 + 1 mπ = 280 MeV  d* ≈ 1 . 216 fm Kock et al., arXiv/1811.09289

  (Wilson), Nf = 2 + 1 mπ ∈ [200, 340] MeV  d* ≈ 1 . 211(7) fm Bulava  et al., arXiv/2403.00754
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POSSIBLE EVIDENCE FOR STRING BREAKING  (cont’d)
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d = 9a = 1 . 368 fm

d = 16a = 1 . 332 fm

We tried to push our numerical simulations to distances as large as 
, searching for hints of string breaking.∼ 1 . 37 fm

We find evidences for the full longitudinal electric field  on the midplane 
between two sources

Ex

1 . 064 fm ≲ d* ≲ 1 . 140 fm

there are not evidences for a sizeable nonperturbative longitudinal electric 
field .ENP

x

BUT

For d > 1 . 140 fm
No improvement in the signal can be observed if the distance in 
lattice units between the two sources is reduced, keeping  fixed.d

In SU(3) pure gauge, where the string remains unbroken by 
definition, the signal for the longitudinal field is clear even at 
large distances both in physical and lattice units.

Our preliminary estimate for the string breaking distance is:

1 . 140 fm ≲ d < 1 . 368 fm

0 . 570 fm ≤ d ≤ 1 . 064 fm
We are able to isolate the non perturbative part of the longitudinal electric field

(   under scrutiny)d ≈ 1 . 125 fm
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SUMMARY AND CONCLUSIONS
We have studied the chromoelectromagnetic field tensor in the region between a quark and an antiquark through Monte Carlo 
simulations, both in SU(3) pure gauge theory and in QCD with (2+1) dynamical staggered fermions at physical masses.

45

We have demonstrated that the longitudinal electric field forms a flux tube.

We can extract the nonperturbative component of the longitudinal electric field that is directly related to confinement.

In SU(3) pure gauge theory at zero temperature, we observe a flux tube structure even for relatively large separations of the static 
quark-antiquark pair.

In SU(3) pure gauge theory at finite temperature, we observe that the flux tube structure begins to dissipate above the deconfinement 
temperature.

In the case of QCD with (2+1) dynamical staggered fermions at physical masses, we have considered several values of the physical 
distance between the sources   .0 . 57 fm ≤ d ≤ 1 . 37 fm

This flux tube can be characterized by two quantities:   (related to the string tension), and the width .σeff w

Above  , the longitudinal nonperturbative field  is always compatible with zero, within large numerical uncertainties 
and we  have provided some numerical arguments in favour of a string breaking distance —>  

d ≃ 1 . 14 fm ENP
x

1 . 064 fm ≲ d* ≲ 1 . 140 fm
We plan to corroborate them with further investigations. And we also plan to study QCD flux tubes in presence of 
background fields at finite temperature and/or  at finite density.
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THANK YOU 
FOR YOUR 

ATTENTION !

“If, in some cataclysm, all of scientific knowledge were to be 

destroyed, and only one sentence passed on to the next generations of 

creatures, what statement would contain the most information in the 

fewest words? I believe it is the atomic hypothesis (or the atomic fact, 

or whatever you wish to call it) that all things are made of atoms—

little particles that move around in perpetual motion, attracting each 

other when they are a little distance apart, but repelling upon being 

squeezed into one another. In that one sentence, you will see, there is 

an enormous amount of information about the world, if just a little 

imagination and thinking are applied.”
Richard P. Feynman  

in The Feynman Lectures on Physics


