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Part | — The duality

Noether's theorem on Lorentz invariance, J* = 0, decomposes
JHY = [ 4 SV (1)

This kinematic/dynamic complementarity is made geometric by

(1 + 3)-decomposing wrt n"* = p‘;ﬁ’y + hHv,

JHY = EMY 4 {py*EM =0, H"p, =0} :=H (2)

This is a Hodge decomposition, generalization of the R3 Helmholtz
decomposition (into curl-free and divergence-free parts). For J*¥,

py*xL" =0 and S"p,=0 (SSC) (3)

Algebraically, SSC = S#¥ set as generators of the little group.



Part | — The duality

Hodge decomposition separates between electric and magnetic parts,

J = EAp + *(pAH) (4)
where
L*p, . i
EF = 7 =n" spacelike four-position
(5)
pY *« SHV ) ) .
HH = T = WH Pauli-Lubanski (position) vector

Then, if p* — p*, spin-orbit duality is an electric-magnetic duality,

nt — WH
& J—*xJ
WH +— —nt




Part | — The duality

Why is this transformation a meaningful duality?

> It is an automorphism of A (original motivation).
> It preserves the Poincaré conservation laws J = p = 0.

> For F*¥ | in the rest frame, it is the usual U(1) electromagnetic duality.



Part | — The duality

e Algebraically, the Lorentz algebra so(1,3) is preserved.
(Hints: J =0 and * is a linear map that shifts orthonormal basis).

e Geometrically, J+—> xJ is a swap between rotations and boosts,
i.e. the topological invariance

RP’ xR* — R®xRP’
e Translation generators are preserved (hint: p = 0). But spacetime

transforms and those are not translations anymore. The Poincaré group
transforms.



Part | — The duality

For Poincaré generators, their possible compositions are

*(JAP J-P
W::% and N:? (6)

whereas L = N A P. Then, W generates SO(3) and N boosts,

J *J J
The duality is
N— W
&= J— (8)
W — —N

It leaves the W, N algebra invariant < so0(1,3) and H are preserved.
It does not say anything (yet) for the Poincare algebra.



Part | — The duality

The duality maps the coordinates n* — A* := W*", becoming trivial at

p=VvVW?2= % or p= w (Mgller radius)
(9)

This is a conformal immersion R3\ {0} — S?. The holographic map

RS — S2xR ]

> p is a natural localization boundary: Classically, envelopes region of
non-covariance. Quantum-mechanically, p ~ A¢, signifies pair production.




Part | — The duality

» In fact: defining the timelike position as A = %: X=A+N,
SHv

. (10)

[X#,X"] = —

Formally, this means a massive theory with spin is noncommutative.
This was first seen in relativistic mechanics by [Prycel948] and
on the superparticle by [Casalbuonil976] and [Brink&Schwarz1981].

> This sets the fundamental scale at g ~ A¢, exactly on S? x R.

> It reaffirms 5, where duality becomes trivial, as natural QM boundary.



Part | — The duality

The dual theory on S? x R is noncommutative,

[)’%,u’)%u] _ Lz ()%/l,pu _ )%ypu + G/LI//)(T)%ppU)
“ pﬁup\u (11)
[X*, "] =i

Minus the 3rd term, it is a k-deformation of the Poincare-Hopf algebra,
with & = m. Also,
A

(X', p° = i — Newton-Wigner localization (12)
p

In the rest frame, or in the low-energy regime,

o o Xi
X%, X =i~ — x-Minkowski
m (13)
[X1, X = —idce Xy — fuzzy sphere



Part | — The duality

In QM vacuum, the duality implies

%y = £ (14)

o Left: | (2) = 22 2 S [ K=D0 177 g AXAY = ryy ).
m m
> Right: | (R) = (V) = —— [ 222 tAZ AX,AY £0}. "
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Part Il — Duality as a Hopf fibration

In Euclidean signature, since:

> n* (n*n, > 0) is an SO(4) rep, foliating R* into concentric S%'s,

> §% 22 SU(2) is a U(1)-bundle, since the homogeneous S? =2 SU(2)/U(1),

n* — WH = 1st Hopf map S3 i S?

In this view, the duality induces the conformal immersion

R\ {0} =S*xR — S?xR (15)

11



Part Il — Duality as a Hopf fibration

Realization: SU(2) spinor ¢ : 1y = const., a hypersurface S* C C2.
The Hopf map is S — S? € R3,

v o x =y¢ley (16)

where x2 = (19)? = const. = x' € §2.

Example: the 4D CBS superparticle with action
Sces = /dt e H(x" — iOohf + i90“§)2 — em? (17)

feels the duality

which realizes the Hopf map.

12



Part Il — Duality and the conformal group

RY3 + §2 x R yields that the bulk G = 1SO(1,3) transforms:

> SO(1,3) subgroup is preserved,

> translations (p = 0 preserved) are realized projectively,

[ G = SO(23) ]

e SO(2,3) = Conf(1,2) = Conf(S? x R).
e SO(1,3) is now realized as Conf(2) = Conf(S?).

e The inverse map G— G may be an Inonu-Wigner contraction.

13
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Part |1l — Dual Landau levels

The simplest arena is a spin-s charge in a uniform magnetic field,

B’ = €k 9; A, producing the Landau levels (w. = £),

H:E%(M+A%%»2, Erw%<n+1) (19)

T N 1
H= 7m(P’+Al(>N<J))2 ) E,= (n* + n(2s + 1) +s)

2mp?
(20)

1 . . . .
where Hopf map S3 = S? takes the U(1) connection Ai(x/) — Ai(%)),
the potential of a Dirac monopole of minimum charge.
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Part |1l — Dual Landau levels

The dual monopole problem on S? has Lowest Landau Level:

o Eo(: Eo) = %,

o (25 4 1)-fold degenerate,

e 25+ 1 Landau orbitals, a spin-s SO(3) rep: fuzzy sphere.

Original postulate of the duality: the vacuum on the dual S? is a fuzzy
sphere of 2s + 1 eigenstates. v

15



Part |1l — Dual Landau levels

Taking p,s — oo, holding B = % fixed, is the thermodynamic limit,

i 1
E, b E,,:w(n+2> (21)

» But, what is the interpretation of TL on the dual spectrum?

> S3 — S? is a conformal immersion, hence p — o0 is the inverse map
(S? — S3) wrt spectral parameters:

TL is the duality on the spectrum.

> The dual theory is conformal, hence TL is actually mandatory for the
correct spectrum:

The dual spectra match, E, =E,.
16



Part 11l — Oscillator vs Ising model

For uniform B’ = eifké'jAk, the generic form of the Hamiltonian is

2
1
H= 2t ol +w B L (22)

The duality takes x' — % —and also L — S'— hence

2
H:p—+“—;52+m3.5 (23)

» This is an Ising model for just one electron:

2 only makes sense on S2.

> The 1st term, with p' conjugate to &' = =

> The 2nd term is self-interaction, a QM memory term (new  old state).

> The 3rd term is the usual coupling between S’ and external B'. 17



Part 11l — Oscillator vs Ising model

Disregarding electric repulsion (wrt the external B'), consider N
electrons, i.e. the center-of-mass position x' = (xi + ...+ xj)/N,

N 5 N
1
H= E (pm+mw§x2+wLB~L> —|—mw3 E X3 Xp (24)

2m " 2
a#b
and the duality implies
. by P2 w? o, RN
H—Z(m+2m5 +CULB-5>+m§Sa'5b (25)

» This is an Ising model for N electrons:

> The new term is the known inter-site interaction. It is between all
possible spin-lattice sites: i.e. not only for next-neighbor (short-range)
interactions but for long-range ones too.

> How to interpret its independence of inter-site distance? 18
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Part IV — QED realization

In field theory, the simplest example is massive spinors in external A,

5= [ dtx i50% — i (26)

» In analogy, we understand the duality to:

> leave the kinetic term invariant,
> shift A* into a monopole,
> transform the mass term.

» The mass term should somehow transform, since:

> the dual theory on S2 x R is conformal, G = SO(2,3),
> 91 is the probability density, a field analog of position.

19



Part IV — QED realization

There is an elegant way to realize the duality. The generalized momenta
N, = id,,N, = id,1 define a kind of generalized field coordinates,

yH = 'Y and V"= — Ll

: 27
Wars Nar (27)
» Those make sense, because:

> V.= ?TZ is the probability density, analog of position,

> [W#, v = 11/15 "% same as the underlying noncommutative algebra.
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Part IV — QED realization

We may even extract a spacelike coordinate N*, analog of n*, by
considering the projector A, = i? a,ﬁy/pé

_ _ _ b 1 39
\U-N:W-W—W-(A-W):%—Z%ZZ%, (28)

The numerical factors naturally decompose into timelike/spacelike dof.
Manipulating the Dirac equation, we obtain an explicit expression,

_Say L e DS

N 02 ' 2

(29)

Moreover, it turns out we may isolate the spatial dof into ),

P — W-N (30) 21



Part IV — QED realization

We may even define an analog of orbital angular momentum acting on
Dirac spinors,

S#PH S$¥Po
= pzp(‘)l,— p2’]8u (31)

Then, the total angular momentum generator,

£

= ey, (32)

where G#¥ = S /2 satisfies the Lorentz algebra. Hence, the duality
JH — xJMV s (in this representation) J** — xJ3". Equally,

(]

where WH = (ig,, *x SHh) / p. 22



Part IV — QED realization

Hence, the duality transforms the mass term,

U-N —» U.W (33)

or, wrt Dirac spinors,
_ Dy
myp /w%(a”*sw)w
(34)
| -
=" [e5 VP e2] rapA
Here, v# = ~v?elel: ef = 3D vielbein and e = 4D/3D duality map.
Also, A\ are Weyl spinors. Finally,

mz/;d) — :115\ ~¢ Wa 2P 7o A

where w is the spin connection on S? x R. -



Part IV — QED realization

Hence, the duality transforms the action,
o T 7, < FY A0 il ab
SE= vy — mfnp = S = iy | Dy — ZWa” Tab A
RL3 S?xR

where N¢ massive 4D Dirac spinors realize 2/Nf massless 3D Weyl's.

» Hence, the 4D mass term transforms:

> in analogy with position, representing the probability density,
> into a massless structure, since the dual theory must be conformal,

> into exactly the spin connection needed for the dual S x R.
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Part IV — Nested holography

The dual theory has G = SO(2,3) = Conf(1,2) = Isom(AdS,). Seeing it
as the conformal class of S? x R, it's the conformal boundary of AdS,.

> The S? x R cylinder continues inside to AdS,.

> The AdS/CFT duality, we realize a nested holography:

massive QFT  spin-orbit  (massless) CFT ~ AdS/CFT_ supergravity
on RL3 duality on S xR duality on AdS4 X X

25




thanks !
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