Spin-orbit duality

based on arXiv:2212.11340

Kostas Filippas

Institute of Nuclear and Particle Physics NCSR Demokritos - Athens, Greece

I. Summary of the spin-orbit duality

II. Duality as a Hopf fibration and the conformal group

III. Oscillator vs Ising model

IV. QED realization

[Part I](#page-2-0) [The duality](#page-2-0)

Part $I - The$ duality

Noether's theorem on Lorentz invariance, $\dot{J}^{\mu\nu} = 0$, decomposes

$$
J^{\mu\nu} = L^{\mu\nu} + S^{\mu\nu} \tag{1}
$$

This kinematic/dynamic complementarity is made geometric by $(1+3)$ -decomposing wrt $\eta^{\mu\nu} = \frac{p^{\mu}p^{\nu}}{p^2}$ $\frac{\mu}{\rho^2} + h^{\mu\nu}$,

$$
J^{\mu\nu} = E^{\mu\nu} + H^{\mu\nu} : \qquad \{ p_\nu \star E^{\mu\nu} = 0 \; , \; H^{\mu\nu} p_\nu = 0 \} := \mathcal{H} \qquad (2)
$$

This is a **Hodge decomposition**, generalization of the \mathbb{R}^3 Helmholtz decomposition (into curl-free and divergence-free parts). For $J^{\mu\nu}$,

$$
p_{\nu} \star L^{\mu\nu} = 0 \quad \text{and} \quad S^{\mu\nu} p_{\nu} = 0 \quad \text{(SSC)} \tag{3}
$$

Algebraically, $SSC = S^{\mu\nu}$ set as generators of the little group.

Part $I - The$ duality

Hodge decomposition separates between electric and magnetic parts,

$$
J = E \wedge p + \star (p \wedge H) \tag{4}
$$

where

$$
E^{\mu} = \frac{L^{\mu\nu} p_{\nu}}{p^2} = n^{\mu} \qquad \text{spacelike four-position}
$$
\n
$$
H^{\mu} = \frac{p^{\nu} \star S^{\mu\nu}}{p^2} = W^{\mu} \qquad \text{Pauli-Lubanski (position) vector}
$$
\n(5)

Then, if $p^{\mu} \mapsto p^{\mu}$, spin-orbit duality is an electric-magnetic duality,

$$
n^{\mu} \mapsto W^{\mu}
$$

\n
$$
W^{\mu} \mapsto -n^{\mu} \qquad \Leftrightarrow \qquad J \mapsto \star J
$$

Why is this transformation a meaningful duality?

 \triangleright It is an automorphism of H (original motivation).

 \triangleright It preserves the Poincarè conservation laws $\dot{J} = \dot{p} = 0$.

 \triangleright For $F^{\mu\nu}$, in the rest frame, it is the usual $\mathsf{U}(1)$ electromagnetic duality.

• Algebraically, the Lorentz algebra $\mathfrak{so}(1,3)$ is preserved. (Hints: $\dot{J} = 0$ and \star is a linear map that shifts orthonormal basis).

• Geometrically, $J \mapsto \star J$ is a swap between rotations and boosts, i.e. the topological invariance

 $\mathsf{RP}^3 \times \mathsf{R}^3 \mapsto \mathsf{R}^3 \times \mathsf{RP}^3$

• Translation generators are preserved (hint: $\dot{p} = 0$). But spacetime transforms and those are not translations anymore. The Poincare group transforms.

Part $I - The$ duality

For **Poincarè generators**, their possible compositions are

$$
\mathsf{W}:=\frac{\star(\mathsf{J}\wedge\mathsf{P})}{\mathsf{P}^2}\qquad\text{and}\qquad\mathsf{N}:=\frac{\mathsf{J}\cdot\mathsf{P}}{\mathsf{P}^2}\qquad\qquad(6)
$$

whereas $L = N \wedge P$. Then, W generates SO(3) and N boosts,

$$
[W, W] = \frac{J}{P^2}, \qquad [W, N] = \frac{\star J}{P^2}, \qquad [N, N] = -\frac{J}{P^2}
$$
 (7)

The duality is

$$
N \mapsto W \qquad \Leftrightarrow \qquad J \mapsto \star J \qquad (8)
$$

It leaves the W, N algebra invariant \leftrightarrow $\mathfrak{so}(1,3)$ and H are preserved. It does not say anything (yet) for the Poincarè algebra.

Part $I - The$ duality

The duality maps the coordinates $n^{\mu} \mapsto \tilde{n}^{\mu} := W^{\mu}$, becoming trivial at

$$
\rho = \sqrt{W^2} = \frac{S}{m} \qquad \text{or} \qquad \hat{\rho} = \frac{\hbar \sqrt{s(s+1)}}{m} \qquad \text{(Møller radius)}
$$
\n(9)

This is a conformal immersion $\mathbb{R}^3\setminus\{0\}\to\mathbb{S}^2$. The holographic map

$$
\begin{array}{|c|c|} \hline &\mathbb{R}^{1,3}&\mapsto&\mathbb{S}^{2}\times\mathbb{R} \\ \hline \end{array}
$$

 \triangleright ρ is a natural localization boundary: Classically, envelopes region of non-covariance. Quantum-mechanically, $\hat{\rho} \sim \lambda_C$, signifies pair production.

In fact: defining the timelike position as $A = \frac{DP}{P^2}$: $X = A + N$,

$$
\left[\mathbf{X}^{\mu},\mathbf{X}^{\nu}\right] = -\frac{\mathbf{S}^{\mu\nu}}{\mathbf{P}^2} \tag{10}
$$

Formally, this means a massive theory with spin is **noncommutative**. This was first seen in relativistic mechanics by [Pryce1948] and on the superparticle by [Casalbuoni1976] and [Brink&Schwarz1981].

 \triangleright This sets the <mark>fundamental scale</mark> at $\hat{\rho} \sim \lambda_{\textit{C}}$, exactly on $\mathbb{S}^2 \times \mathbb{R}$.

 \triangleright It reaffirms $\hat{\rho}$, where duality becomes trivial, as natural QM boundary.

Part $I - The$ duality

The dual theory on $\mathbb{S}^2 \times \mathbb{R}$ is noncommutative,

$$
[\hat{X}^{\mu}, \hat{X}^{\nu}] = \frac{i}{\rho^2} \left(\hat{X}^{\mu} \rho^{\nu} - \hat{X}^{\nu} \rho^{\mu} + \epsilon^{\mu \nu \rho \sigma} \hat{X}_{\rho} \rho_{\sigma} \right)
$$

$$
[\hat{X}^{\mu}, \hat{\rho}^{\nu}] = i \frac{\hat{\rho}^{\mu} \hat{\rho}^{\nu}}{\rho^2}
$$
 (11)

Minus the 3rd term, it is a κ -deformation of the Poincarè-Hopf algebra, with $\kappa = m$. Also,

$$
[\hat{X}^i, \hat{p}^0] = -i\frac{\hat{p}^i}{\hat{p}^0} \qquad \rightarrow \qquad \text{Newton-Wigner localization} \quad (12)
$$

In the rest frame, or in the **low-energy** regime,

$$
[\hat{X}^0, \hat{X}^i] = -i\frac{\hat{X}^i}{m} \rightarrow \kappa\text{-Minkowski}
$$
\n
$$
[\hat{X}^i, \hat{X}^j] = -i\lambda_C \epsilon^{ijk} \hat{X}_k \rightarrow \text{fuzzy sphere}
$$
\n(13)

Part $I - The$ duality

In QM vacuum, the duality implies

$$
\langle \hat{X}^i \rangle = \frac{\langle \hat{S}^i \rangle}{m}
$$
 (14)

 $2s + 1$ states $-$ on the dual fuzzy sphere $-$ are uncertainty rings:

[Part II](#page-12-0) [Duality as a Hopf fibration](#page-12-0) [and the conformal group](#page-12-0)

In Euclidean signature, since:

 \rhd n^μ $\left(n^\mu n_\mu>0\right)$ is an SO(4) rep, foliating \mathbb{R}^4 into concentric \mathbb{S}^3 's,

⊳ $\mathbb{S}^3 \cong$ SU(2) is a U(1)-bundle, since the homogeneous $\mathbb{S}^2 \cong$ SU(2)/U(1),

$$
n^{\mu} \mapsto W^{\mu} = 1st \text{ Hopf map } \mathbb{S}^{3} \xrightarrow{\mathbb{S}^{1}} \mathbb{S}^{2}
$$

In this view, the duality induces the conformal immersion

$$
\mathbb{R}^4 \setminus \{0\} \cong \mathbb{S}^3 \times \mathbb{R} \quad \to \quad \mathbb{S}^2 \times \mathbb{R} \tag{15}
$$

Part II $-$ Duality as a Hopf fibration

Realization: SU(2) spinor ψ : $\psi^{\dagger}\psi = \text{const.}$, a hypersurface $\mathbb{S}^3 \subset \mathbb{C}^2$. The Hopf map is $\mathbb{S}^3 \to \mathbb{S}^2 \subset \mathbb{R}^3$,

$$
\psi \quad \rightarrow \quad x^i = \psi^\dagger \sigma^i \psi \tag{16}
$$

where $x^2 = (\psi^{\dagger} \psi)^2 = \text{const.} \Rightarrow x^i \in \mathbb{S}^2$.

Example: the 4D CBS superparticle with action

$$
S_{CBS} = \int \mathrm{d}t \; e^{-1} (\dot{x}^{\mu} - i \dot{\theta} \sigma^{\mu} \bar{\theta} + i \theta \sigma^{\mu} \dot{\bar{\theta}})^2 - \mathrm{e} m^2 \qquad (17)
$$

feels the duality

$$
x^{i} \quad \mapsto \quad \tilde{x}^{i} = W^{i} = \theta \sigma^{i} \bar{\theta} \tag{18}
$$

which realizes the Hopf map.

Part $II -$ Duality and the conformal group

 $\mathbb{R}^{1,3} \mapsto \mathbb{S}^2 \times \mathbb{R}$ yields that the bulk $\textsf{G} = \textsf{ISO}(1,3)$ transforms:

 \triangleright SO(1,3) subgroup is preserved,

 \triangleright translations ($\dot{p} = 0$ preserved) are realized projectively,

$$
\tilde{G} = SO(2,3)
$$

- SO(2,3) \cong Conf(1,2) \cong Conf($\mathbb{S}^2 \times \mathbb{R}$).
- SO(1,3) is now realized as Conf(2) = Conf(\mathbb{S}^2).
- The inverse map $\tilde{G} \mapsto G$ may be an Inonu-Wigner contraction.

[Part III](#page-16-0) [Oscillator vs Ising model](#page-16-0)

Part III – Dual Landau levels

The simplest arena is a spin-s charge in a uniform magnetic field, $B^i = \epsilon^{ijk} \partial_j A_k$, producing the **Landau levels** $(\omega_c = \frac{B}{m})$,

$$
\mathcal{H} = \frac{1}{2m} \left(p^i + A^i(x^i) \right)^2 , \qquad E_n = \omega_c \left(n + \frac{1}{2} \right) \qquad (19)
$$

The duality $\mathbb{R}^3 \mapsto \mathbb{S}^2$ takes $x^i \mapsto \tilde{x}^i$, with $\tilde{x}^i \in \mathbb{S}^2$ (i.e. $\tilde{x}^2 = \rho^2$) and

$$
\tilde{\mathcal{H}} = \frac{1}{2m} \left(p^i + A^i(\tilde{x}^j) \right)^2 , \qquad \qquad \tilde{E}_n = \frac{1}{2m\rho^2} \left(n^2 + n(2s+1) + s \right) \tag{20}
$$

where Hopf map $\mathbb{S}^3 \stackrel{\mathbb{S}^1}{\longrightarrow} \mathbb{S}^2$ takes the $\mathsf{U}(1)$ connection $A^i(\mathsf{x}^j) \mapsto A^i(\tilde{\mathsf{x}}^j),$ the potential of a Dirac monopole of minimum charge.

Part III – Dual Landau levels

The dual monopole problem on \mathbb{S}^2 has Lowest Landau Level:

- $\tilde{E}_0 (= E_0) = \frac{\omega}{2}$
- $(2s + 1)$ -fold degenerate,
- $2s + 1$ Landau orbitals, a spin-s $SO(3)$ rep: fuzzy sphere.

\updownarrow

Original postulate of the duality: the vacuum on the dual \mathbb{S}^2 is a fuzzy sphere of $2s + 1$ eigenstates. \checkmark

Part III – Dual Landau levels

Taking $\rho, s \to \infty$, holding $B = \frac{s}{\rho^2}$ fixed, is the thermodynamic limit,

$$
\tilde{E}_n \quad \xrightarrow{\mathcal{T}L} \quad E_n = \omega \left(n + \frac{1}{2} \right) \tag{21}
$$

 \triangleright But, what is the interpretation of TL on the dual spectrum?

 $\triangleright \, \mathbb{S}^3 \to \mathbb{S}^2$ is a conformal immersion, hence $\rho \to \infty$ is the inverse map $(\mathbb{S}^2 \to \mathbb{S}^3)$ wrt spectral parameters:

TL is the duality on the spectrum.

 \triangleright The dual theory is conformal, hence TL is actually mandatory for the correct spectrum:

The dual spectra match,
$$
\tilde{E}_n = E_n
$$
.

Part III – Oscillator vs Ising model

For uniform $B^i = \epsilon^{ijk} \partial_j A_k$, the generic form of the Hamiltonian is

$$
\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega_c^2 x^2 + \omega_L B \cdot L \tag{22}
$$

The duality takes $x^i \mapsto \frac{S^i}{m}$ —and also $L^i \mapsto S^i$ — hence

$$
\tilde{\mathcal{H}} = \frac{p^2}{2m} + \frac{\omega_c^2}{2m} S^2 + \omega_L B \cdot S \tag{23}
$$

 \triangleright This is an **Ising model** for just one electron:

 \triangleright The 1st term, with p^i conjugate to $\tilde{x}^i = \frac{S^i}{m^i}$ $\frac{S^i}{m}$, only makes sense on \mathbb{S}^2 .

 \triangleright The 2nd term is self-interaction, a QM memory term (new \propto old state).

 \triangleright The 3rd term is the usual coupling between S^i and external B^i . ¹⁷

Part III $-$ Oscillator vs Ising model

Disregarding electric repulsion (wrt the external B^i), consider N electrons, i.e. the center-of-mass position $x^{i} = (x_1^{i} + \ldots + x_N^{i})/N$,

$$
\mathcal{H} = \sum_{l}^{N} \left(\frac{p^2}{2m} + \frac{1}{2} m \omega_c^2 x^2 + \omega_L B \cdot L \right) + m \omega_c^2 \sum_{a \neq b}^{N} x_a \cdot x_b \qquad (24)
$$

and the duality implies

$$
\tilde{\mathcal{H}} = \sum_{m=1}^{N} \left(\frac{p^2}{2m} + \frac{\omega_c^2}{2m} S^2 + \omega_L B \cdot S \right) + \frac{\omega_c^2}{m} \sum_{a \neq b}^{N} S_a \cdot S_b \tag{25}
$$

 \blacktriangleright This is an **Ising model** for N electrons:

 \triangleright The new term is the known inter-site interaction. It is between all possible spin-lattice sites: i.e. not only for next-neighbor (short-range) interactions but for long-range ones too.

 \triangleright How to interpret its independence of inter-site distance? 18

[Part IV](#page-22-0) [QED realization](#page-22-0)

Part $IV - QED$ realization

In field theory, the simplest example is **massive spinors** in external A^{μ} ,

$$
S = \int \mathrm{d}^4 x \; i \bar{\psi} \, \not{\!\!D} \psi - m \bar{\psi} \psi \tag{26}
$$

\blacktriangleright In analogy, we understand the duality to:

- \rhd leave the kinetic term invariant.
- \rhd shift A^{μ} into a monopole,
- \triangleright transform the mass term.

\triangleright The mass term should somehow transform, since:

 \triangleright the dual theory on $\mathbb{S}^2 \times \mathbb{R}$ is conformal, $\tilde{G} = \mathsf{SO}(2,3),$ $\triangleright \psi \psi$ is the **probability density**, a field analog of position. There is an elegant way to realize the duality. The generalized momenta $\Pi_\mu = i \partial_\mu \psi, \bar{\Pi}_\mu = i \partial_\mu \bar{\psi}$ define a kind of ${\tt generalized\ field\ coordinates},$

$$
\Psi^{\mu} := \frac{\gamma^{\mu} \psi}{2\sqrt{-p^2}} \quad \text{ and } \quad \overline{\Psi}^{\mu} := -\frac{\bar{\psi} \gamma^{\mu}}{2\sqrt{-p^2}} , \qquad (27)
$$

 \blacktriangleright Those make sense, because:

 $\triangleright \quad \overline{\Psi} \cdot \Psi = \frac{\bar{\psi} \psi}{m^2}$ is the probability density, analog of position,

 $\varphi \; \; [\overline{\Psi}^\mu,\Psi^\nu] = -\frac{i\bar{\psi}\, {\bf S}^{\mu\nu}\psi}{\rho^2},$ same as the underlying noncommutative algebra.

Part $IV - QED$ realization

We may even extract a spacelike coordinate N^{μ} , analog of n^{μ} , by considering the projector $A_{\mu\nu} = i^2 \overline{\partial}_{\mu} \overline{\partial}_{\nu} / p^2$,

$$
\overline{\Psi} \cdot \mathsf{N} = \overline{\Psi} \cdot \Psi - \overline{\Psi} \cdot (A \cdot \Psi) = \frac{\overline{\psi}\psi}{m^2} - \frac{1}{4} \frac{\overline{\psi}\psi}{m^2} = \frac{3}{4} \frac{\overline{\psi}\psi}{m^2} , \qquad (28)
$$

The numerical factors naturally decompose into timelike/spacelike dof. Manipulating the Dirac equation, we obtain an explicit expression,

$$
N^{\mu} := \frac{\mathbf{S}^{\mu\nu}\partial_{\nu}\psi}{\rho^2} \quad \text{and} \quad \overline{N}^{\mu} := \frac{\partial_{\nu}\bar{\psi}\,\mathbf{S}^{\nu\mu}}{\rho^2} \,. \tag{29}
$$

Moreover, it turns out we may isolate the spatial dof into $\bar{\psi}\psi$.

$$
\bar{\psi}\psi \rightarrow \overline{\Psi}\cdot N \tag{30} \qquad (31)
$$

Part $IV - QED$ realization

We may even define an analog of orbital angular momentum acting on Dirac spinors,

$$
\mathfrak{L}^{\mu\nu} := \frac{\mathbf{S}^{\mu\rho}\partial_{\rho}}{\rho^2}\partial_{\nu} - \frac{\mathbf{S}^{\nu\rho}\partial_{\rho}}{\rho^2}\partial_{\mu}
$$
 (31)

Then, the total angular momentum generator,

$$
\mathfrak{J}^{\mu\nu} = \mathfrak{L}^{\mu\nu} + \mathfrak{S}^{\mu\nu} \,, \tag{32}
$$

where $\mathfrak{S}^{\mu\nu}=\mathbf{S}^{\mu\nu}/2$, satisfies the Lorentz algebra. Hence, the duality $J^{\mu\nu} \mapsto \star J^{\mu\nu}$ is (in this representation) $\mathfrak{J}^{\mu\nu} \mapsto \star \mathfrak{J}^{\mu\nu}$. Equally,

$$
N^{\mu} \quad \mapsto \quad W^{\mu}
$$

where $\mathsf{W}^{\mu} = (i\overrightarrow{\partial}_{\nu}\star\mathsf{S}^{\mu\nu}\psi)/p^2$

Part IV – QED realization

Hence, the duality transforms the mass term,

$$
\bar{\Psi} \cdot N \quad \mapsto \quad \bar{\Psi} \cdot W \tag{33}
$$

or, wrt Dirac spinors,

$$
m \bar{\psi}\psi \rightarrow i \frac{\bar{\psi}\gamma^{\mu}}{2} (\partial^{\nu} \times \mathbf{S}_{\mu\nu}) \psi
$$

$$
= \frac{i}{4} \bar{\lambda}\gamma^{\alpha} \left[e^b_{\beta} \nabla^{\beta} e^a_{\alpha} \right] \sigma_{ab} \lambda
$$
 (34)

Here, $\gamma^{\mu} = \gamma^{a} e^{\alpha}_{a} e^{\mu}_{\alpha}$: $e^{\alpha}_{a} = 3D$ vielbein and $e^{\mu}_{\alpha} = 4D/3D$ duality map. Also, λ are Weyl spinors. Finally,

$$
m\bar{\psi}\psi \quad \mapsto \quad \frac{i}{4}\bar{\lambda}\gamma^{\alpha}\,\omega_{\alpha}{}^{ab}\,\sigma_{ab}\,\lambda
$$

where ω is the spin connection on $\mathbb{S}^2 \times \mathbb{R}$.

Hence, the duality transforms the action,

$$
S = \int_{\mathbb{R}^{1,3}} i \bar{\psi} \mathcal{D} \psi - m \bar{\psi} \psi \quad \mapsto \quad \tilde{S} = \int_{\mathbb{S}^2 \times \mathbb{R}} i \bar{\lambda} \gamma^{\alpha} \left(D_{\alpha} - \frac{1}{4} \omega_{\alpha}{}^{ab} \sigma_{ab} \right) \lambda
$$

where N_f massive 4D Dirac spinors realize $2N_f$ massless 3D Weyl's.

\blacktriangleright Hence, the 4D mass term transforms:

 \triangleright in analogy with position, representing the probability density, \triangleright into a massless structure, since the dual theory must be conformal, \triangleright into exactly the spin connection needed for the dual $\mathbb{S}^2 \times \mathbb{R}.$

Part IV $-$ Nested holography

The dual theory has $\tilde{G} = SO(2,3) = Conf(1,2) = Isom(AdS₄)$. Seeing it as the conformal class of $\mathbb{S}^2 \times \mathbb{R}$, it's the ${\bf conformal}$ boundary of ${\bf AdS}_4.$

 \triangleright The $\mathbb{S}^2 \times \mathbb{R}$ cylinder continues inside to AdS $_4$.

 \triangleright The AdS/CFT duality, we realize a nested holography:

thanks!