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This figure shows galaxies discovered by the Sloan Digital Sky Survey (SDSS). Galaxy
filaments forming the cosmic web consist of walls of gravitationally bound galactic
superclusters that can be seen by eye. The figure shows galaxies up to around 2 billion
light-years away (z=0.14). Figure Credit: M. Blanton and SDSS
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The space-time distribution of galaxies as a function of redshift. This DESI
data has the Earth on the left and looks back in time to the right. Every dot
represents a galaxy (blue) or quasar (red). The upper wedge includes
objects all the way back to about 12 billion years ago. The bottom wedge
zooms In on the closer galaxies in more detail. The clumps, strands, and
blank spots are real structures in the Universe showing how galaxies group

together or leave voids on gigantic scales. Figure Credit: Eleanor Downing/
DESI collaboration
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Figure 3: The matter power spectrum (at z = 0) inferred from different cosmological probes
showing how CMB, LSS, clusters, weak lensing, and Ly-a forest all constrain matter power
spectrum P(k). The spectrum measures the power of matter fluctuations on a given scale k. For
the long wave length perturbations it has power-law behaviour P(k) o« kI1S with the scalar spectral
index ng = 0.967 £ 0.004, tilted away from the scale invariant ng = 1 Harisson- Zeldovich

spectrum. The sound waves diminish the strength of small scale fluctuations, and power spectrum
tends to fall as P (k) o k=3 for k = 2 x 10—2[h Mps—1].



Galaxies are not distributed uniformly in space and time, as it can
be seen 1n Fig. 1 and Fig. 2 representing the data of the Sloan
Digital Sky Survey and of the Dark Energy Spectroscopic
Instrument collaboration. Extended galaxy redshift surveys
revealed that at a large-scale the Universe consists of matter
concentrations in the form of galaxies and clusters of galaxies of
Mpc scale, as well as filaments of galaxies that are larger than 10
Mpc in length and vast regions devoid of galaxies. The James
Webb ST telescope and the Euclid mission will observe the first
stars and galaxies that formed in the Universe from the epoch of
recombination to the present day. The Large Scale Structure (LSS)
of the Universe 1s this pattern of galaxies that provides information
about the spectrum of matter density fluctuations shown in Fig. 3



The prevailing theoretical paradigm regarding the existence
of LSS 1s that the 1nitial density fluctuations of the early
Universe seen as temperature deviations 1in the Cosmic
Microwave Background (CMB) grow through gravitational
instability into the structure seen today in the galaxy density
field. The best constraints on the matter density fluctuations
come from the study of the CMB remperature fluctuations
generated at the epoch of the last scattering of the radiation.
The LSS of galaxies provides independent measurements of
density fluctuations of similar physical scale, but at the late
epoch. The combination of CMB measurements with
measurements of LSS provide independent probes of the
matter power spectrum in complementary regions shown in

Fig.3.



Light caustics on a seabed




Caustics in Yang Mills Classical Mechanics

Yang-Mills mechanical system Ly = %(a’:2+y°2) — %.732?/2



Caustics in Yang Mills Classical Mechanics
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Geometrisation of Self-Gravitating N-body System

Let us consider a system of N massive particles with masses M, and the coordinates

that are defined on a Riemannian coordinate manifold ¢®(s) € Q3" and have the velocity
vector
_ 49"

ut(s) = T (2.7)

ds® = gapdq®dq’,  gap = dap(E — U(q)) = 6usW (q),

geodesic trajectories on the Riemannian manifold Q*" are defined by the following equation:

¢, dg”dg
T 1y —
ds? ds ds

0, (2.10)

In terms of the coordinate system (2.6)) introduced above (7,, a = 1,..., N) this equation

reduces to the Euler-Lagrangian equation for massive particles interacting though the potential

function U(77, ..., 7N):
d*7, oU
p, e - O —1....N. 2.14
aw -~ on, ¢ (2.14)




Geometrisation of Self-Gravitating N-body System

ds® = gapdq®dq®,  gap = Sup(E — U(q)) = dusW (q),

U:—GZ : Tibzri—r}i 1 =1,2,3 a,b=1,.... N

d*q® oU

dt? 0q”

the benetfit of using g coordinates !
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The vector field dg™ defined along the geodesic v(s) and satisfying the above equations is called
a Jacobi field. The equation can be written also in an alternative first-order form:

Dog” 54,0 Dou®
— du
ds ’ ds

= —nguﬁéq’yu". (3.27)
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The sign of the sectional curvature defines the stability of geodesic trajectories in
different parts of the phase space (qg,u)

In the regions where the sectional curvature is negative the trajectories of particles
are unstable, are exponentially diverging, and the self-gravitating system is in a
phase of deterministic chaos. In the regions where the sectional curvature is
positive the trajectories are stable, exhibit geodesic focusing, generating caustics.

A self-gravitating N-body system can be assigned to these distinguished regions of
the phase space depending on the initial distribution of particles velocities and
quadrupole momentum of the system.



Particle distribution in the phase space
and the corresponding sign of the sectional curvature

\* N/
\ DA

K(q,u,dq,) <0 K(q,u,0q,) >0

chaotic behaviour focusing behaviour

that generating caustics
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Raychaudhuri Equation and focusing

The scalar # measures the expansion of a small cloud of neighbouring geodesic trajectories
forming a congruence and as such measures the expansion if § > 0 or the contraction 8 < 0 of

the system of particles.



1dV dlnV
Y iy 0. (9.130)

Thus the expansion scalar 8 measures the fractional rate at which the volume of a small ball

of particles forming a congruence is changing with respect to the time measured along the

trajectory v(s). One can calculate the second derivative of the transversal volume:

V= (0+06% V. (9.131)

The vanishing of the volume element at q characterises q as a conjugate point. It follows

that the expansion scalar 6 given by a logarithmic derivative of the volume element ((9.130))

 dlnVy

0 — 10.146
- ( )

is a continuous function at all points of ~(s) at which V # 0, while # becomes unbounded near

point ¢ at which V = 0 with large and positive just to the future of ¢ and large and negative
just to the past of g on ~(s)
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Raychaudhuri Equation for N-body system

ds® = gapdq®dq”,  gap = dap(E — U(q)) = dasW (q),

The self-gravitating system of N particles interacts through the gravitational potential

function of the form

M, M, . | | |
U:—GZ b, ro, =1, —1, 1=123 a,b=1,...,. N (7.74)

a<b Tab

The Raychaudhuri equation ((10.157)) will take the following form:

9  3(3N —2) Wy 3N—4 1, o5
ds AT ((“W) 3(3N — 2)‘W ‘ ) TaN 10 et
3N_ 2 !/ 1 !/
+ ((uW u) + s W \). (11.166)

In the case of spherically symmetric evolution §*° = 0 [106] and the equation will take the

following form:

@ _
ds

(VW) 1
OW3 3N — 1

—(3N —1) 0, (11.171)



Raychaudhuri Equation for N-body system

When the number of particles is large N > 1 we will have

do

— = —3N

ds

(VW) 1
203 3N

0.

It is convenient to introduce the function B?

so that the equation (

11.172

VIV)?

BZ _ N 2(

(5) = (a2

) will take the following form:
do 1

(6% + B*(s)).

ds 3N



Solution of Raychaudhuri Equation for N-body system

0 B
f(s) = Btan (arctan g)) 3NS>’

The expansion scalar 6(s) becomes singular at the proper times s,:

3N 0(0
Seaqustics = g(arctan % + g + 7m>, n=20,=%1,+2, ... (11.176)

As far as the expansion scalar 6(s) tends to infinity at a certain epoch S.qustics, it follows that

the volume element that is occupied by the galaxies decreases and tends to zero creating the

regions in space of large galactic densities.

6(0) B

COS (arctan -5 3—N5> 3N
V(s) = V(O)[ = ]
COS (arctan —)

B

N



Solution of Raychaudhuri Equation for N-body system

The ratio of densities during the evolution from the initial volume V(0) to the volume V(s)

at the epoch s will give us the density contrast:

X . ,0(5) B V(O) B COS (arctan @) 3N
caustzcs(s) _|_ — /AN - [ 9(0) B )] .

COS (arctan B — 3NS5

(11.179)

As one can see, at the epoch ([11.176]) where the expansion scalar 6(s) becomes singular, the

trigonometric function in the denominator tends to zero and the density contrast is increasing

and tends to infinity, the phenomenon similar to the spherical top-hat model.

In terms of physical time (|2.12) the characteristic time scale of generation of gravitational

caustics 1s

(11.186)

Teaustics —
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Newtonian Cosmological Mechanics

Let us consider the evolution of a spherical shell of radius R that expands with the Universe,
so that R = Ry a(t) and a(t) is the scale factor in the Newtonian cosmological model of the
expanding Universe. One can derive the evolution of a(t) by using mostly the Newtonian
mechanics and accepting two results from the general relativity: The Birkhoft’s theorem stated
that for a spherically symmetric system the force due to gravity at radius R is determined only
by the mass interior to that radius and that the energy contributes to the gravitating mass
density through the matter density p,, at zero pressure, p = 0, and the energy density of
radiation /relativistic particles, p, = 3p/c?, where p = ¢/3 is pressure and ¢ = p,c* is energy
density. The expansion of the sphere will slow down due to the gravitational force of the matter
inside:

d*R GM G 4r 4 4G

where p = p,, +3P/c*. Since R = Ry a(t) and Ry is a constant, one can get the evolution

equation for the scale factor a(t) that reproduces the Friedmann equation:

B 4G
3

3P
(pm + 5 )a (8.100)

a =



Mgv; N M,yR3a*(t)
2 2 '

W(t):T:fj

The square of the force acting on a unit mass of the galaxies is

1 , N (GMMg)z_ N (47TGM
— M, 9 M,\R:2(t)) M,

We can evaluate the quantities entering into this equation by considering a self-gravitating

system of N galaxies of the mass M, each. The kinetic energy W of the galaxies was found

in (8.101) and the square of the force acting on a unit mass of the galaxies (VI¥)? in ({8.102)).

Thus we will obtain

/

«
Teaustics —
: 4rGp(t)

H(t), (11.187)




where the numerical coefficient o = \/ 1/10. This general result for the characteristic time scale
of the appearance of galactic caustics, the regions of the space where the density of galaxies
is large, means that the appearance of caustics depends on the given epoch of the Universe

expansion. The formula has a universal character and depends only on the density of matter

18

and the Hubble parameter®, These are time-dependent parameters that are varying during

the evolution of the Universe from the recombination epoch to the present day. Let us calculate

this time scale during the matter-dominated epoch when

3
o

pm(t) = po () (8.104)

In that case the equation ((8.100) has the following form:

A2 871G
W=k, A= (%)poag, k=10, —1, (8.105)

and for the flat Universe, £ = 0, we will get:

34\ 2/3 2 1
_> 12/3 (8.106)

an®) = (5°) B Ha =5, pal) =

By substituting these values into the general formula (8.103)) we will find that 7.,ystics 1S pro-

portional to the given epoch t:

Tcaustics — O m77 v = & . (8107)




This result means that the time required to generate galactic caustics is very short at the early

stages of the Universe expansion, at the recombination epoch, and linearly increases with the

expansion time. At the present epoch, a = ag, this time scale is large and is proportional to

the Hubble time:

2

caustics — T 8.108
70 t a3H0 ( )

where for a flat, matter-dominated Universe we substituted the expression for the matter

density equal to the critical density:
3H¢

Pe = STtG

Considering the radiation-dominated epoch one can obtain the identical functional time depen-

dence, with oo = 1/2/5.

(8.109)




Let us compare the above time scales with the Jeans gravitational instability of a
uniformly distributed matter. Jeans developed a Newtonian theory of instability
of a uniformly distributed matter in a non-expanding infinite space, and Lifshitz
considered small perturbations of a homogeneously expanding Universe in the
theory of the general relativity. Bonnor demonstrated that in the Newtonian
cosmological model of an expanding Universe

the Jeans exponential growth of density perturbation 6(t) ~ Ael/Teans 4 Be~t/Ticans trans-

forms into a slower power-growth rate §(t) ~ At?/3 + Bt~! = Aa(t) + Ba(t)~*/? and that his

result coincides with the Lifshitz’ exact solution for the long wave length perturbations.

1 2
TJeans ™ 9 Teollapse ™ 2t urn X .
/ \/ 47TGpC Hap : \/Gplump

where for a flat, matter-dominated Universe we substituted the expression for the matter

density equal to the critical density:
_3H;
Pe = 8nG-

(8.110)

The gravitational collapse time scale in the spherical top-hat model
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Gauge field theory vacuum and cosmological inflation without scalar field
Annals Phys. 436 (2022) 168681

Stability of the Yang Mills Vacuum State
Nucl.Phys. B 990 (2023) 116187



What is the Influence of the
Vacuum Energy Density

on the Cosmological Evolution?

Y. B. Zel’dovich, The Cosmological constant and the theory of elementary particles,
Sov. Phys. Usp. 11 (1968) 381

S. Weinberg, The Cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1-23

V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, New York, 2005.



[s there Energy Density in the Vacuum 7

Zero Point Energy of a Quantised Field




There is Energy Density in the Vacuum, it is Zero Point Energy

Lamb shift - 1947 Casimir effect 1948

1
l},;)O = E 57’_&0]@6_7&)13
zArea

lim [ U2°(]) = UF°(0) | = Upnys ~ Uphys =T cm” o3

v—0

d

The Cosmological vacuum energy density from a quantum field

d’p 1 1y 110 9
— O~ ~ 1.44 x 10
Fo / (27)3 2P T6m2 s2cm

Critical Energy Density in Universe

+ H
=

g
s2cm

)2 ~ 7.67 x 1079

€crit — 3 -



Vacuum energy contribution to the energy density of the universe

4
C Hg\ 2 9 g
cfr*i — 3 ~ 7.67 ].O 00
Cerit 87TG( c ) % s2cm 100%
4
C Hg\ 2 9 g
— 3 Qr =~ 5.2 1 %
A 87TG( c ) A 8 x 10 s2cm 08%



The Yang-Mills Theory Vacuum Energy Density

G.S. 1977, 2020

- 1IN /. 2¢°F - E2 _Fg
Lo=—F - 967T29F<1“ pt _1)’ Py 2 U= =
Ly=~F + 1 250°F | In( i ) —1]
" 29° Fuae = 1" exp (— 67 ) = A3
/ o b g*(1) H
/
where b = 11N — 2Ny.
2 2 2
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pe T 9672 pd 962




YM Quantum Energy Momentum Tensor

bg®  2¢°F b g°
_ mY M _ 7 —

L =T [T+ gz 10 p ] 9 2 v=0
(F)= F+ b92f(1 292;-1) (f)—1f+1b92f(1 292F+3)
= 06727 T A ’ P =37 T gg6n2” U T A '

F = 19°°97°G% Ggs > 0 G=G,,G" =0



Yang-Mills Quantum Equation of State

1bg?

292.7:
4

- 1
3 3967r2]:< "

+3).



Yang-Mills Quantum Equation of State

29°F |
1 4bg*F Wb MAp, S
p=et oo —7gAyy and w=== 2
3 3 967 € 3(111 29°F 1)
A4
Y M

general parametrisation of the equation of state p = we

Friedman Equations

a

417G

;i
a — 3@4 (6 3p)




General Relativity and Yang-Mills Vacuum Energy Density

_ < — 4 — 4

S = 167TG/R\/ gdaz—l—/(ﬁq—l—ﬁg)\/ gd .

R — = R—SWG[TYM(H[’QQmMF)— —bng]
(224 ZQNV o A 2% 9672 ,U4 Gpv 06772 )

The contribution of the YM vacuum field to the energy balance of the universe



Friedmann Evolution Equations in YM, QCD Vacuum

a(t) =agp a(r), ct=1Lr,

1 1 L \2
0 o o 2 N 2 __
— __\/—&Z(log P, 1) k=, k=0,=1, v = (ao)
1 S 4

b 11N — 2N

T 19272 19272
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Polarisation of the YM vacuum and the Effective Lagrangians

¢t 1 1 8rG 11N —2N; .,

— 3 . A
YM =9S¢ GI2° 12 3c& 19672 YM

Ayy 1S the dimensional transmutation scale of YM theory

(931 x 1073 eV

¢t 1 9.31 x 10®  QCD g
8mG L?  19.31 x 10 GUT s2em
\9.31 x 10119 Planck

the YM vacuum energy density is well defined and is finite

G.S.
Eur.Phys.J.C. 80 (2020) 165
e-Print: 2109.02162


https://arxiv.org/abs/2109.02162

Type Il Solution — Initial Acceleration of Finite Duration

da 1 1 L\?2
R _ _ _ 2 — 2 _ (=
dT—i\/&Q(log&4 1) = k72, k=041, v _(ao).
it = pde”,  belo,00,
db 2 2yl 1/2
E—N—%e (b2 (62—1)—1)
=2 (- ) 0?2 2 ades
M2 72 — 2\/57 ~ 7 <\/Ean a = U9



Type Il Solution Initial Acceleration of Finite Duration

ot = ,u%ebQ, b € [0, 00],

db 2 2 /Y2us b2 1/2
—e_b?<7'u2(eb7—1)—1) .

b2

0 2 4 6 8

The regime of the exponential growth will continuously transformed into the linear in time growth of

the scale factor*

a(t) ~ ct, a(n) ~ agpe”. (5.87)



Type Il Solution — Initial Acceleration of Finite Duration

2A

c+3p= -7 e VD) + 42 —2)ALy, b e 0,400,
2
E+3p
| 1 , T
1
9
_3
_4-

The r.h.s € 4+ 3p of the Friedmann acceleration equation (1.4) always negative



Evolution of Energy Density and Pressure
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Type Il Solution — Effective Parameter w

w(T)

02

0.1

0.2

-0.3

For the equation of state p = we one can find the behaviour of the effective parameter w

2 2,2 _ 4 1
(7) + v s _ < wp

3(02(r) +423) ’

wir =



Type Il Solution Initial Acceleration of Finite Duration

The number of e-foldings

typical parameters around 72 = 1.211, 3 ~ 1.75 we get 75 = 10 and N ~53. N = In C;((Tds)).

(GUM _ Lcum
5 ¢

Te ~ 4.2 X 10713 sec, where Loy >~ 1.25 X 10=%°cm

a(0) = LGUM& ~ 1.5 x 10~ *°¢cm, a(ts) = LGUM&eN ~ 1.25 x 10" %¢cm,
Y Y

The regime of the exponential growth will continuously transformed into the linear in time growth of

the scale factort

a(t) ~ ct, a(n) =~ ape”. (5.87)



Thank You !



