International Conference on QCD Vacuum Structure and Confinement (QCD-VSC-2024)

26 - 30 August 2024 Naxos Island of Cyclades, Greece

Manifestations of High-Energy QCD Asymptotics

Victor T. Kim

Petersburg Nuclear Physics Institute NRC Kurchatov Institute, Gatchina

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Outline:

- **Introduction & Motivation**
- High-energy asymptotics of QCD: BFKL evolution
- Manifestation of BFKL evolution at LHC
- Summary

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

NRC KI - PNPI

2

High-Energy Asymptotics: Pomeron

Pomeron at high energies is responsible for:

- elastic scattering
- diffractive scattering
- inelastic scattering
- total x-section

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Pomeron before QCD: original foundations

asymptotic theorem:

particle and antiparticle x-section equality

I. Pomeranchuk 34 (1958) 725

non-relativistic scattering: Regge poles

T. Regge (1959, 1960)

 $\eta(0) \, s^{\alpha(0)} \, \exp\left[rac{B_0}{2} + lpha'
ight]$

1.1

ctories and the residue ne signature factor $\eta(t)$ mplitude. The ratio of e pole is exchanged, is ξ

relativistic scattering: Regge poles

V. Gribov Nucl. Phys. 22 (1961) 249 M. Froissart Phys. Rev. 123 (1961) 1053

Pomeron: vacuum pole and trajectory $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP} \cdot t$

V. Gribov ZhETP 41 (1961) 667 [JETP 14 (1962) 472] G. Chew, S. Frautschi PRL 7 (1961) 394

-1, C = -1, G = -1, I

Victor Kim

 $\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t} = F(t) \, s^{2\alpha(0)-2} \, \mathrm{e}^{-2\,\alpha'\,|t|\,\ln s}$

elastic & diffractive cone shrinkage

x-section: constant with energy IHEP (Protving), U70 data since 1967

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

tories discussed in Sect. 5.7 have inte

Pomeron before QCD: developments

Unitarity condition:

Froissart-Martin x-section asymptotic bound $\leq \log^2(s)$

M. Foissart Phys. Rev. 123 (1961) 1053

Reggeon field theory

V.N. Gribov (1967)

multi-Pomeron exchanges

V.N. Gribov, A.A. Migdal (1968-1970) K.A. Ter-Martirosyan, A.A. Migdal, A.M. Polyakov 1972-1975 A.B. Kaidalov K.A. Ter-Martirosyan 1973-1979

supercritical Pomeron $\alpha_{IP}(0) > 1$

V.N. Gribov, A.A. Migdal, A.M. Polyakov 1970-1975

strongly-interacting supercritical Pomeron

V.N. Gribov, A.A. Migdal, A.M. Polyakov 1969

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Pomeron in perturbative QCD

Born approximation: two-gluon Pomeron

F.E. Low, Phys. Rev. D12 (1975) 163 S. Nussinov, Phys. Rev. Lett. 34 (1975) 1286

Leading logarithmic approximation: LL BFKL Pomeron

V.S. Fadin, E.A. Kuraev, L.N. Lipatov, Phys. Lett. B 60 (1975) 50
E.A. Kuraev, L.N. Lipatov, V.S. Fadin, ZhETF 71 (1976) 840 [JETP 45 (1977) 79]
E.A. Kuraev, L.N. Lipatov, V.S. Fadin, ZhETF 72 (1977) 377 [JETP 45 (1977) 79]
I.I. Balitsky, L.N. Lipatov, Yad. Fiz. 28 (1978) 1597

Next-to-leading logarithmic approximation: NLL BFKL Pomeron

V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429 (1998) 127

E.A. Camici, L.N. Ciafaloni, Phys. Lett. (1998)

S.J. Brodsky V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov, Pisma ZhETF 70 (1999) 161 (BFKLP)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

High energy asymptotics of pQCD


```
QCD in Bjorken limit
■ GLAPD: V. Gribov & L. Lipatov (71-72); L. Lipatov (74);
G. Altarelli & G. Parisi (77); Yu. Dokshitzer (77)
```

- Small-angle scattering ("semi-hard" processes):

QED in Gribov-Regge limit

V. Gribov, V. Gorshkov, L. Lipatov & G. Frolov (67-70) H. Cheng & T. Wu (66-70)

QCD in Gribov-Regge limit BFKL: V. Fadin, E. Kuraev & L. Lipatov (75-78) I. Balitsky & L. Lipatov (78)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

High-energy QCD asymptotics: GLAPD and BFKL

 $s=(p_1+p_2)^2$ $t=(p_1-p_3)^2 \qquad Q^2=-t$ Scattering in the Standard Model (QCD) at high energies: Large logarithms: as log(s), as log(Q²)

```
Bjorken limit (large-angle scattering):

s ~ Q<sup>2</sup> >> m<sup>2</sup>

Q<sup>2</sup>/s = x ~ 1

Gribov-Lipatov-Altarelli-Parisi-Dokshitzer (GLAPD):

(a<sub>S</sub> log(Q<sup>2</sup>))<sup>n</sup> resummation

Inclusive cross section ~ 1/Q<sup>4</sup>
```

Gribov-Regge limit (small-angle scattering): $s>>Q^2 >> m^2$ $Q^2/s = x \Rightarrow 0$ Balitsky-Fadin-Kuraev-Lipatov (BFKL): $(a_s \log(s))^n$ resummationTotal cross section ~ $s^{(a_P-1)}$ a_P - Pomeron interceptsoft scattering data: $a_P = 1.1$

Victor Kim

pQCD x-section asymptotics

Bjorken limit (GLAPD): s ~ Q² >> m² Q²/s = x ~ 1 Large-angle (large-x) scattering

Gribov-Regge limit (BFKL): s>>Q² >> m² Q²/s = x -> 0 Small-angle (small-x) scattering

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Asymptotics of QED cross sections

All orders: V.N. Gribov, L.N. Lipatov, G.V. Frolov & V.G. Gorshkov (69-71) H. Cheng & T.T. Wu (69-70)

Cross section at s -> ∞ : ~ $(\alpha_{QED})^4 (S/S_0)^{(aP-1)}$ a_P =1+ C $(\alpha_{OED})^2 \approx 1.002$

photon: no reggeization!

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

High-energy limit pQCD as LL BFKL: γγ

 $\sigma \sim (\alpha_{QED})^2 \log(s)/s$

 $\sigma \sim (\alpha_{QED})^2 (\alpha_S)^2 \text{ const(s)}$

Resummation of all leading logarithms: LL BFKL

gluon: reggeization!

Cross section at s -> ∞ : ~ $(\alpha_{QED})^2 (\alpha_S)^2 (S/S_0)^{(aP-1)}$

 $a_P = 1 + C \alpha_S \approx 1.5$ LL BFKL S. Brodsky & F. Hautmann (96)

a_P =1+ C α_S ≈ 1.2 NLL BFKL S.Brodsky, V Fadin, VK,L. Lipatov, G. Pivovarov (2001-02)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Highly virtual photon scattering at LEP-2

Full NLL BFKL calculations: require extra studies

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

LL BFKL: problems

LL BFKL: designed for infinite collision energies multi-Regge-kinematics

LL BFKL problems (at finite energies): - fixed (non-running) coupling a_s - energy-momentum conservation - transverse momentum conservation

Cross section in LL BFKL: $\sigma = \sigma_0 (S/S_0)^{(aP-1)}$ $a_P = 1 + C a_S \approx 1.5-1.6$

Data: a_P ≈ **1.2-1.3**

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024 Victor Kim NR

BFKL: next-to-leading logs (NLL) improved by running a_s

next-to-leading log approximation (NLL) BFKL MSbar-renormalization scheme: large corrections V.S. Fadin & L.N. Lipatov (89-98) C.Camici & M. Ciafaloni (96-98)

BFKLP: NLL BFKL + resummation of running coupling a_S generalized for the case with non-Abelian LO S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP

BLM approach Brodsky, Lepage & Mackenzie – 1983
 works only (!) for the case with Abelian LO

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKLP: generalized BLM for non-Abelian case

S.Brodsky, P. Lepage, P.Mackenzie (1983) BLM

propagator insertions. It seems difficult if not impossive to separate the divergent part of the vertex, which remains a from the finite propagator dependent part i

$$\mu^2 \frac{da_s}{d\mu^2} = \beta(a_s) = -\sum_{i>0} \beta_i(n_f) a_s^{i+2}$$

(d) Equation (11a) is a particularly converesent perturbative results since all flavor d plicit in the definition of $\alpha_{\overline{MS}}$.

(c) The leading-order which comes from qua This is usually all that

LO Abelian -> LO non-Abelian

MSbar-scheme -> MOM scheme 3g-vertex

S.Brodsky, V.Fadin, VK, L.Lipatov, G. Pivovarov(99) BFKLP

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKLP (generalized BLM) works for non-Abelian cases NLL BFKL and Y->ggg decay

Naïve BLM application does not work (!):

- NLL BFKL in Msbar scheme
- Upsilon ->ggg decay in NLO in MSbar scheme

MSbar-scheme: nonphysical RG scheme (!) numerically close to V-scheme (heavy quark potential) – Abelian in LO

physical RG scheme: MOM scheme (gauge dependent)

- NLL BFKL <- non-Abelian in LO
- Upsilon ->ggg decay <- non-Abelian in LO

one can use MOM-scheme based on ggg-vertex non-Abelian in LO

BLM generalized for non-Abelian case:

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP BFKLP: NLL BFKL + resummation of running coupling as

BLM resummation depends on non-Abelian structure in LO

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKLP: NLL BFKL within generalized BLM

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP

 $\langle a^2 \rangle \Gamma$

$$\omega_{\overline{MS}}(Q_1^2,\nu) = \int d^2 Q_2 \ K_{\overline{MS}}(\mathbf{Q}_1,\mathbf{Q}_2) \left(\frac{Q_2^2}{Q_1^2}\right)^{-\frac{1}{2}+i\nu}$$

$$\sigma \sim s^{\alpha_{IP}-1} = s^{\omega^{\max}}$$

mov

$$= N_{C} \chi_{L}(\nu) \frac{\alpha_{\overline{MS}}(Q_{1}^{2})}{\pi} \left[1 + r \,\overline{_{MS}}(\nu) \frac{\alpha_{\overline{MS}}(Q_{1}^{2})}{\pi} \right],$$

$$\chi_{L}(\nu) = 2 \,\psi(1) - \psi(1/2 + i \,\nu) - \psi(1/2 - i \,\nu)$$

(-2)

$$r_{\overline{MS}}(\nu) = r_{\overline{MS}}^{\beta}(\nu) + r_{\overline{MS}}^{\text{conf}}(\nu)$$

$$r_{\overline{MS}}^{\beta}(\nu) = -\frac{\beta_0}{4} \left[\frac{1}{2} \chi_L(\nu) - \frac{5}{3} \right]$$

$$r_{\overline{MS}}^{\text{conf}}(\nu) = -\frac{N_C}{4\chi_L(\nu)} \left[\frac{\pi^2 \sinh(\pi\nu)}{2\nu \cosh^2(\pi\nu)} \left(3 + \left(1 + \frac{N_F}{N_C^3} \right) \frac{11 + 12\nu^2}{16(1 + \nu^2)} \right) - \chi_L''(\nu) + \frac{\pi^2 - 4}{3} \chi_L(\nu) - \frac{\pi^3}{\cosh(\pi\nu)} - 6\zeta(3) + 4\varphi(\nu)$$

D N=4 A.V. Kotikov, L.N. Lipatov (2000)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKLP: NLL BFKL within generalized BLM

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKLP: NLL BFKL within generalized BLM

V.S. Fadin & L.N. Lipatov (89-98) C.Camici & M. Ciafaloni (96-98) next-to-leading log approximation (NLL) BFKL MSbar-renormalization scheme: large corrections

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov(98-99) BFKLP BFKLP: NLL BFKL + resummation of running coupling as in physical renormalization scheme

BFKLP: Conformal BFKL kernel in NLL -> SUSY N=4 Pomeron intercept: $a_P=1.2 - 1.3$ Cross section: $\sigma_0 (S/S_0)^{(aP-1)} a_P = 1 + C a_S$

L.N. Lipatov, A.V. Kotikov et al. (2000-06) SUSY N=4 BFKL Pomeron Anomalous dimensions: test of AdS/CFT

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKL observables

Heavy quark production I.I. Balitsky, L.N. Lipatov (1978)

Inclusive jet M.G. Ryskin (1980)

Lepton pair production M.G. Ryskin, E.M. Levin (1981)

Deep inelastic processeses -> small-x physics unitarization -> small-x shadowing L.V. Gribov, M.G. Ryskin, E.M. Levin (1981-83)

Most forward/backward (Mueller-Navelet) dijets: x-section ~ exp(|Δ|y) A. Mueller & H. Navelet, Nucl. Phys. B (1987)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKL direct observable: dijet with large rapidity separation between jets

Jet production

GLAPD: ordering on κT y – no ordering

BFKL: ordering on y κT – no ordering

Most forward/backward (Mueller-Navelet) dijets: x-section ~ exp(|Δ|y) A. Mueller & H. Navelet, Nucl. Phys. B (1987)

Most forward/backward (Mueller-Navelet) dijets: azimuthal decorrelations V. Del Duca & C. Schmidt, Phys. Rev. D (1994) W.J. Stirling, Nucl. Phys. B (1994)

Inclusive dijets VK & G.B. Pivovarov, Phys. Rev. D (1996)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

CMS: dijet "K-factor"

EPJ C 72 (2012) 2216 7 TeV, pT_min = 35 GeV Δy = | | < 9.4

MC generators: contain terms beyond GLAPD

GLAPD

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Dijets: <cos> vs NLL BFKL+BFKLP

CMS (2016) 7 TeV, pT_min = 35 GeV Δy = | | < 9.4

NLL BFKL + BFKLP (2014) B. Ducloue, L. Szymanowski & S. Wallon

23

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Dijets: <cos2/>/<cos>) vs NLL BFKL + BFKLP

BFKL conformal feature: cosine ratio A. Sabio Vera et al (2007)

CMS (2016) 7 TeV, pT_min = 35 GeV Δy < 9.4 NLL BFKL + BFKLP (2014) B. Ducloue, L. Szymanowski & S. Wallon

24

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

MN dijets within NLL BFKL improved by BFKLP

BFKL with BFKLP F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa, . Rev. (2015)

BFKL with BFKLP: 2.76 TeV dijet x-section A. Egorov & VK Phys. Rev. (2023)

CMS (2022) 2.76 TeV, pT_min = 35 GeV

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

25

MN dijet x-section ratio within NLL BFKL with BFKLP:

collision energy dependence at LHC

A. Egorov & VK, Phys. Rev. D (2023)

NLL BFKL with BFKLP prediction: strong energy dependence

26

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Direct NLL BFKL manifestation in dijets

CMS dijet production (2022) with large rapidity separation between jets A. Egorov & VK, Phys. Rev. D (2023)

- -> Some indication on BFKL in exclusive dijets production
- at LHC 13 TeV at CMS:
- Mueller-Tang (MT) dijets
- → Some indication with NLL BFKL (BFKLP improved) in Mueller-Navelet (MN) and inclusive dijet in x-section ratios and azimuthal decorrelations at LHC 7 TeV
- MN and inclusive dijet
- -> The new observation of NLL BFKL (BFKLP improved) in dijets
- in at LHC 2.76 TeV

- MN dijet x-sections A. Egorov & VK, Phys. Rev. D (2023)
- Prediction for dijet observables:
- - MN dijet x-section energy ratios 8/2.76, 13/2.76 13/8
 - K-factor with extra jet veto, number of extra jets, ... ?
 - LHC Run 3 at 13.6 TeV ?!

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Pomeron in pQCD: established NLL BFKL in dijets

New Physics:

- new particles and interactions beyond SM
- new dynamics within SM

New dynamics within SM:

- phase transitions at dense baryon matter

NB. New Physics beyond SM should manifest above new high energy SM dynamics!

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

LL BFKL remarkable properties

2D-conformal properties BFKL(Schredinger eq) as "quantization" of RG-DGLAP (Euler-Lagrange eq) L.N. Lipatov (1986)

Effective action for reggeized gluons L.N. Lipatov (1995)

LL BFKL 2D-conformal block symmetry: Feynman-like rules for inclusive x-sections VK, G.B. Pivovarov (1997)

LL BFKL 2D-conformal block symmetry H. Navelet, R. Peschanski (1998-1999)

Effective Regge QCD: gluon intercept as RG constant VK, G.B. Pivovarov (1997)

Feynman rules for Reggeized gluons E.N. Antonov, E.A. Kuraev, L.N. Lipatov, I. Cherednikov (2005)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

LL BFKL motivated approaches

LL BFKL Pomeron 2D conformal symmetry and 1/N expansion ⇒ factorization into integrable theory high-energy QCD -> integrable system! L.N. Lipatov (1994)

L.D. Faddeev, G.P. Korchemsky (1994)

LL BFKL Pomeron with 1/N expansion Dipole Pomeron A.H. Mueller (1994) N.N. Nikolaev, B.G. Zakharov (1994)

Reggeon field theory with BFKL Pomeron E.M. Levin, A. Kovner, M. Lublinsky (2024)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

LL BFKL motivated approaches

kT-factorization

S. Catani, M. Ciafaloni, F. Hautmann (1991)
J.C. Collins, R.K. Ellis (1991)
E.M. Levin, M.G. Ryskin, Yu. Shabelski, M.G. Shuvaev (1991)
G. Salam, H. Jung, N. Raicevic
S.P. Baranov, A.V. Lipatov, M.A. Malyshev, N.P. Zotov, G.I. Lykasov,
V.A. Saleev, A. Shipilova, A. Nefedov, ...

CCFM evolution: interpolates with color coherence between LL BFKL and DGLAP M. Ciafaloni (1988), S. Catani, F. Fiorani, G. Marchesini (1990)

KMR evolution: interpolates between LL BFKL and DGLAP M.A. Kimber, A.D. Martin, M.G. Ryskin (1999)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

BFKL generalizations in QCD

Non-planar Pomeron in QCD with 1/N expansion:

- G.Veneziano (1977)
- dual parton model
- A.Capella, J. Tran Tanh Van (1981)
- quark-gluon string model (QGSM)
- A.B. Kaidalov, K.A. Ter-Martirosyan (1982)

Unitarity with 1/N expansion for saturation limitBalitsky-Kovchegov equationwith $\alpha_S \rightarrow 0$: reproduces BFKLI.I. Balitslky (1996)Yu. Kovchegov (1999, 2000)

 Color Glass Condensate evolution for saturation limit with α_S → 0: reproduces BFKL
 L. McLerran, R. Venugopalan (1994) H. Weigert, A. Kovner, A. Leonidov (2001)
 F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan (2010)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

NLL BFKL motivated approaches

SUSY N=2 NLL BFKL Pomeron A.V. Kotikov, L.N. Lipatov (2000)

AdS/CFT-correspondence test with anomalous dimensions A.V. Kotikov, L.N. Lipatov, A. Onischenko, V. Velizhanin (2002-2006)

Graviton-Pomeron duality C.-I. Tan, C. Brower (2006) L. Alvarez-Gaume et al. (2007)

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim

Summary

FKL reproduces main classical Pomeron properties bringing new remarkable features: conformality, integrability, AdS/CFT duality, holographic properties ...

New Physics beyond SM should manifest within BFKL: the new high energy SM dynamics!

The first direct observation: NLL BFKL manifests in dijet production with large rapidity separation in CMS data at LHC 2.76 TeV

"QCD-VSC-2024", Naxos of Cyclades, 30 August 2024

Victor Kim