Data driven parsing for the real world

Abstract

Data-driven parsers have been used in Al and inductive reasoning in ways beyond the abilities of
rule-driven parsers. This paper presents a small bibliography and guidelines for

developing multipurpose data-driven parsers in hopes that developers will assist the
author in disaster recovery and OLPC development, will push Free Open Software to

new heights, and will benefit from commercial opportunities.

Data-driven parsers of the highest types don't require a predetermined set of rules like rule-driven
parsers do. This is most like discovery learning that maybe helps children to learn their first language
so easily and fluently. The author contends this same type oflearning is necessary for natural
responses to a wide variety of real world situations. The data drives the progress and in the higher
types can change goals just like it real life. Rule driven parsers are primarily useful in closed
languages such as computer programs where the parser developer can know all of the rules before

starting.

Declarative programming is the basis for some data-driven parsers. One of the beauties of Python is
the flexibility to do easily almost anything any other language can do including declarative

programming.



About the author

Johnny Stovall entered the digital world by plugging cables into an IBM card sorter to

enable him to sort his 4 language dictionary in 4 different ways. The limitations of the device

did not permit data driven programming. Programmers could only make up rules and

instruct the device to follow them.

FORTRAN, Cobol, BASIC, and dozens of other computer languages including Java
were not really capable of making data driven programming easy. Python makes it as

easy as possible but the author spends a large portion of his life doing temporal things such as

disaster relief.

Data driven programming in Python will change the mindset of anyone who does it
right. That change of mindset can open previously unimagined ways to actually
change the world or to accomplish a multitude of lesser goals. The author's fondest

wish is that this short talk will be enough to convince you to make a commitment to

start learning Python and data-driven programming and continue to keep at it until
the computer begins to discover things you could have never known otherwise from
the datasets the world and you yourself consider to be most important.






Data-Driven Parsing For The Real World
copyright 2007 by Alive Again LLC
permission is hereby granted for non-commercial use

This paper will follow the last in first out order of solving problems in the same manner as the ancient
Greek classics and the Bible. We begin with the problem of people with limited thinking because of a
lid. Then we grapple with different ways people want to use computers. This leads to a discussion of
the rules for understanding. Next we attack the problem of who or what wil be in control. We
change direction by tackling the problems of control, then better ways to use computers, then rules
that always work, and finally how to remove the lids that hold people badk.

@raphic1 1rained fleas.) There used to be
a lid. Now the lid 1s off but the fleas will not
jump as high as they did when there was a lid.

Many people have an imaginary lid as to how much they think computers can do or how much they
want computers to do for them. Even if you are more technically advanced than the rest of us, this
introduction will help you deal with other people who had hit alid in old or inferior software.

Before we get into the specific details of data driven parsing itis helpful to understand their place in
the context of a much larger world. Most people think that human beings have always been and will
always be the most intelligent creatures on this earth. I started programming computers in order to
assist translators. Several languages including some that I did not understand were translated. The

translators said that the translation could not have been possible without my computer
assistance. They nicknamed me, “The impossible man.”

Garbage in garbage out was one of the most common phrases and thought patterns of those days.
Most people would tell me that you only get out of a computer what you put into it. When I
disagreed, most of them thought I was crazy.



(Graphic2 Person on top of @

computer)Is this the way you want ‘
the world to be?

(Graphic3 Will computers rule

the world?) Some people fear this
will happen.

Now it is more than 10 years since the IBM computer Big Blue defeated the world’s champion chess

player. Most desktop and laptop computers today have much greater power than Deep Blue.

They have also repeatedly proven that they can defeat any human chess player when
programmed correctly. Opposition to computer programs that learn became less frequent. The real
problem is people who unconsciously ignore all of this power. If you think that you are
smarter than any computer will ever be then you will never discover the full power of a computer.
Because, if you think that a computer is only a tool limited to giving you back a subset of the
knowledge that a programmer put into it, then you will not write computer programs that help
you learn things you could not have learned without the computer.



(Graphic4 Oll Well I'lg) PeOple
do not have a problem y

wanting machines to do
things that are beyond the
abilities of humans in the
physical realm.

Grphics 10Ks people turning the o1l drill.) The
drill will only move as fast as the person at the
end of the bar who must cover a lot of ground to
make one revolution.

Since 1972, 1 have been telling everyone who knows me

well that my vision of the future is that machines will

do mental exercises beyond the power of your

mind. But that will be good because after the machines



have done it, we will use the results and the procedures to enable our minds to do more than they
could do before the computers showed us greater mental discoveries and how to obtain them. A little
computer history will show why I am so confident that this is the future.

In 1975, no person could mathematicaly prove if any arbitrary map could be done in four colors could
be painted without running the same color together. When the first mathematical proof of the
four color theorem was shown by a team of expensive computers working on it for
more than a year; some mathematics professors questioned if it was a valid solution
because they could not understand it. But the fact that the first extremely hard
mathematical proof of map coloring had been proved on computers caused others to

press on to even greater heights with renewed confidence. Only four years later the
mathematical proof was shown again with a better algorithm. And since then even more difficult
problems have been put forward and solved with the help of computers. Here is my vision of the
future. Computers will be working alongside people, neither below or above them because people and
computers have complementary capabilities necessary to make a good team.

Grphics People and computers
side by side.)
Every instance in every

category should only

be doing what it does best.

Computer programming is a subset of problem solving. There are three major ways to solve
problems: top down, bottom up, and mixed or from any direction. The natural man is filled with
pride and think that people are and at the top and must always be at the top. Therefore most people
tend to reason top-down or deductively. Your thinking is not bad, if you think that computers are just
a bunch of electrical switches incapable of thinking. In addition you might realize that animals can
think and solve immediate problems. You may believe that only humans and a Supreme Being can
think in terms of the distant future even eternity and other abstract concepts. Even if this is your
belief system, I hope you will leave this talk with your mind open to the possibility that enough of
those electrical switches turned on in the right way might enable you to learn more about eternity and
all other abstract concepts. Because if you do not believe that billions of electrical switches might
help you do abstract thinking then it is certain that they never will. Evidently most people either do
not believe that they can discover knowledge with these electrical switches or they do not know how
to do it.



Most computer programs consist of the computer programmer telling the computer

what to do. This is rule-driven programming. The programmer makes up the rules
and the computer follows them. This is also top down programming. The programmer makes up the
rules instead of finding a way for the data declare its structure and meta-data.

The world has only a few data-driven programs compared to the many rule-driven programs. Many of
the few data-driven programs are parsers. I will define a parser as something that
looks at information and gives it a structure. This structure often enables new understanding
or new ways of behavior. The most common use of a parser is to compile a computer program. In the
early ‘80’s I had a friend who had purchased an expensive database engine. He also owned one of the
largest commercial databases in the world and obsolete computers that had been accessing that
database much faster than humans but thousands of times slower than the database engine and his new
computers could have accessed that database. What he needed was a new and simpler language to
enable users to easily query that database and a parser to put those user queries into a structure so that
a code generator could generate instructions for his multi million setup. In other words he needed a

compiler. I took a compiler compiler and instructed it to generate a parser while I

instructed an assembly language programmer to write a code generator for the

structure I told him that I would produce. This is the way that computer languages are usually built
and delivered to programmers. We generally use rule-driven parsers for computer languages because
we are sure that we know all of the rules for the tiny invented languages necessary to do rule-driven

computer programming. Grammars are nothing more than rules. I will guarantee you

that your textbook and teacher for English grammar did not teach you all of the rules
of English.

(Graphic6 First example of the

importance of

discovering

\

rules.) Thisis a o

business example
of computers
discoveries
taking the lead to

gl‘eater pI'Of ltS « The computer has produced money machines. The inventors and

users go to the machines and pick and pick up more money. In reality this is only partially true



for a few companies and some of the world's governments because most of them do
not know all of the rules.

Some of the grammars that have been proposed for data-driven parsing are constraint grammars, link
grammars, memory based grammars(Kontos et al., 2003) and (Nivre, J., Hall, J. and Nilsson, J. 2004),
assumption grammars, semantic grammars, regular expression grammars, hand crafted grammars,
context-free grammars, finite state grammars, transformation-based grammars, logic grammars,
continuations and hidden accumulator grammars, metamorphosis grammars, extra position
grammars, free word grammars, datalog grammars, discontinuous grammars, discourse grammars,
experience-based grammars, and approaches that claim to be outside of grammar.

In the real world we do not know all of the rules. Is it enough to just go by the rules we do

understand? I will give two examples which I hope will convince you that it is not. Wal-mart, the

largest retail store chain in the world, has an elaborate computer network that enables it o be
the leader. They were getting data from some locations about some puzzling Friday night sales trends.
They saw that on Friday nights these stores sold more baby diapers and more beer than at other times.
So they moved baby diapers and beer to the front of these stores beside each other and ran sales on
these two items on Friday nights. Those stores became more profitable because sales of these two
items increased but also because they were also able to dramatically increase the sales of high cost
men's items such as power tools and men's suits. The discovery they made could have been made

with a data-driven parser. If you come to my sprint and help write a data-driven parser, |

will tell you how you can use the knowledge you will learn in the sprint to get a job
discovering the same kind of things for business.

(Graphic6b Ancther example of the
importance of
discovering rules.) This
shows the consequences
of the lack of data-driven
discoveries 1n education.

One of America’s very senior State Department Officials came to Indonesia and started his speech
like this. “I always remember three things when I come to Indonesia. Indonesia is very dangerous.

Indonesia is very important. And Indonesia is very very complex.” Much of the rest of the



speech and questions dealt with the complexity. Near the end, I gave an example of how complex
things become simple once you understand. Then I said Indonesia is complex because the
education system has been poor. If Indonesian education would help students understand how
to find the right direction for themselves, then they would simply be doing what is best instead of
being blown about by every rumor. So what are we going to do to help Indonesian education? The
head of US AID told me that question should have been a home run but he missed it. If you also
missed it, I will give you another three/quarters of an example about people who do not know how to
find the right direction. This example is very short and terse, so please pay close attention.

(Graphic7 Churches and
Mosques with walls on all
sides of every one, mwoclains to

be the only solutions to bring peace in the world based

upon One Perfect Creator And Ruler are hopelessly >
divided because people interpret His simple Rules in

thousands of different and ridiculous ways.

More than half of the world believes that all of the rules, at least all of the spiritual rules, are
given in spiritual books. The two most popular collections of letters, rules, and prophecies are the two
most misunderstood and misapplied books in the world. The reason is becauseletters, rules, and
prophecies only have meaning in context. A computer can discover true context based upon the whole
but people interpret based upon the parts they know and in light of their own context. This results in

literally thousands of misinterpretations for each of the hundreds of simple rules.

So at this point I hope you are asking, “How can the computer help us find real world
rules?” In a nutshell, I think there is a multi fold answer. First computers can examine all of the
data in a variety of ways. In the spiritual example I just gave, most of the world is
looking at only part of the data and doing so from their limited perspective. My
experience leads me to believe that this is exactly what is happening in every aspect of human life.
Second computers can learn by association like little children. Third computers can
learn by logic like little children learn by logic. Every normal child from the
beginning of time until now learns the languages in which the parents talk to them.

They do this without grammars, dictionaries, or any modern technologies simply by making repeated
associations and using childish logic.

According to most of the literature data-driven parsing is a means whereby the computer



discovers rules. I like to define it differently. I say the computer is discovering associations just
like a little child discovers associations. A little child associates milk or any other object with
whatever words the parents use with that object. They associate run or very or any other verb, adverb,
adjective, preposition, or whatever with what the parents and other acquaintances associate it.

Anyone who has studied psychology knows you can put people or animals on different sides of the
same room then ring a bell, turn on a light, or do anything and then administer punishment to one side
of the room and reward to the other side. After you do this a few times, both sides of the room will
have a very different reaction every time the signal is given even before you administer the
punishment or reward. This is the way little children learn and it is the easiest way for us to enable the
computer to learn for us. Archaeologists looked at many Egyptian hieroglyphics without
understanding anything until the came across the Rosetta Stone. Just a small amount of hieroglyphics
with parallel translations to languages they did understand and they could almost immediately
understand those same words in other places.

But it was not long before they could understand many words which were not on the Rosetta
Stone by using logic and the associated context. Data-driven parsing can do
essentially the same thing. It can learn the easy part of data you give it, then learn more and
more difficult things from the same kind of data. One way that it can do this is by using

constraints to fill in the gaps where an association must be made but the parser has never before
seen any portion of the association that must be made. This is more exciting than the kinds of neural
networks which are limited to recognizing patterns that they have already been taught.

What data you give it to learn, especially in the beginning, is one of the most

important determinants of performance. This parallels what happens in little children. If you
teach a little child sign language and a spoken language at the same time they will be fluent in both.

They can use sign language as a tool to learn other languages rapidly. Most people are able to

think in all of the languages they learned as a little child and continue to use. But for
people who only learn one language as a child, the ability to think in other languages or even to learn
them is much more difficult. In my opinion, language acquisition is a tool to help the one who leams
a language to learn whatever else is available in that language. You could feed retail chain store sales
statistics to a data-driven parser and have it alert you to all kinds of associative information such as

increased sales of beer and diapers on Friday nights. But if the domain of knowledge is limited

to this pattern-matching type of learning would not enable that data-driven parser to use
the information just learned as a tool for learning how to change a diaper, explore the solar system, or

anything else completely unrelated to sales trends. But if language is learned first and learned
correctly, that learning can be used by the data-driven parser as a tool for learning anything that is
related to that language. Since most things in this world are related to language, I think it is the best
place to start. If you want to start computer assisted learning with language acquisition then you are
in luck because you are not likely to find in the literature other uses of data-driven parsing. As far as |
know, you have nothing other than my word and the experiences you will gain in writing a data-driven
parser to guide you in using a data-driven parser to learn associative information outside the realm of



language acquisition.

I have done my best to find the references to data-driven parsing and annotate them in order to save
you time in determining how you can implement a data-driven parser. But before I give those to you,
I want to make some observations.

Obviously, you must start with the easiest part of whatever language you want the data-driven parser

to learn. That varies from language to language. 1 will start with the easiest to learn well-known
language which could serve as a stepping stone to the acquisition of other languages. Prepositions,
inflections, adjectives, and adverbs that have an obvious and almost unvarying meaning are used
extensively in classical and koine Greek. In the koine period most educated people in the western and

middle eastern world spoke Greek because it was easy. It is possible to learn 18 prepositions,

100 adjectives, 50 adverbs, 250 inflections and 10,000 words. This results in 225,000,000,000

possible combinations. It is impossible for me and you to learn a million words much less 225
thousand times a million words. But when thousands of millions of natural meaning combinations are
available in a language that has been the basis for many modern languages, it is tempting to use them.
This is why most discoveries in medicine or science are given Greek or Latin names in their patents.

Since no person alive speaks classical or koine Greek as their native language, this is something that a
data-driven parser could learn in order to make discoveries available to people who
want to know but don't have the educational background.

Only 5% of the world speaks English as their first language. But more than half of the world wants to
speak English as a second language. The system of going from a word written in English to
the correct pronunciation of that word is a horrible mess. A data-driven parser could
be used in a number of playful learning ways in order to help these people who want
to learn to speak English as a second language.

No child learns everything about their first language in a waterfall manner. Language must be
learned a little at a time with unknown chunks all along the way. I think the best way to let a
data-driven parser go though the same process is for it to put XML markings on everything the parser
thinks it understands. Making multiple passes on the same material with previous XML markings
enables the data-driven parser to concentrate on only one type of learning each time the
material is parsed. This is much less complex than trying to develop a waterfall type parser that
would attempt to learn everything in one pass. The XML tags can be embellished with many other
principles leamed from artificial intelligence. One such principle is to put a confidence level on
everything that is conjectured.

I hope at this point that you are asking, “What is the best way to do this?” It has been proved that



anything that can be computed can in theory be computed using a Turing machine. But with the
abundance of computing power and different computer language possibilities available today; it is
wise to use the very best that is available. That is why I am giving this talk at a Python conference
instead of at a meeting for BASIC users. When I give you my comments on the best publicly
available data-driven parsing literature I could find, you will notice that many of the most successful
projects that have been done use functional or declarative computer languages. The more abstract,
complex, and systematic the problem is to be solved the greater the benefit will be from using this
type of language. Simple imperative languages are best for solving simple rule-driven problems. We

must be thankful that Python has this ability. I use it daily. But Python also has the functional

language capability to solve problems arising from complex self-interpreting data that
people usually misinterpret.

Python has some parsers developed with the express purpose of letting users expand them. The PyPy
compiler is designed output multiple languages. This parser can already expand the C programming
language by adding badly needed security features not available in other C environments. PyPy has
already reached version 1.0 with the help of many volunteers sprinting at previous conferences such as
this. In fact after all the conference talks are finished, anyone who wants to can join in sprints
to provide data-driven educational software, improve PyPy, or any of several sprints that
suits your interest. The ZestyPython compiler is still in the early stages of development but it has
been designed with the objective to allow users to expand it in any manner they desire. You may
download PyPy or ZestyPhython, or many other good free open source Python compilers at
http://cheeseshop.python.org.

As always, a Google search will enable you to click and read thousands of articles conceming almost
any aspect of either of these compiler-compilers.

The data-driven parser with the longest history of success in the areas where I searched is Maltparser.
Versions of this parser require that words be input with tags for different types of attributes. A word is
an element with a subset of the six attributes:
1. id = Unique id within the sentence.
form = Word form (string).
postag = Part-of-speech tag.
head = Syntactic head (word id).
deprel = Dependency relation to head.

A

chunk = Chunk category.

Maltparser considers a valid input to be a treebank. A treebank is asequence of sentences. A
sentence is a sequence of words.

This is accroding to http://w3.msi.vxu.se/~nivre/research/MaltParser.html retrieved several times in 2007. It
also says,
MaltParser 0.4 was used in the CONLL-X Shared Task on multi-lingual dependency parsing in

the system that obtained the second best overall score, not significantly worse than the best score, and


http://cheeseshop.python.org/
http://nextens.uvt.nl/~conll/
http://nextens.uvt.nl/~conll/
http://nextens.uvt.nl/~conll/
http://cheeseshop.python.org/
http://cheeseshop.python.org/

that achieved top results for nine languages out of thirteen (with results significantly better than any
other system for Japanese, Swedish and Turkish). In this system, MaltParser was combined with
pseudo-projective parsing, which requires preprocessing of training data and post-processing of parser
output (Nivre and Nilsson 2005). The complete system is described in Nivre et al. (2006). More
information is available at:

CoNLL-X Shared Task: Multi-lingual Dependency Parsing (home page of the shared task with
all the official results)

MaltParser in the CoNLIL-X Shared Task (local page with complete information about feature

models, options, etc.)
Pseudo-Projective Parsing (pre- and post-processing tools necessary to reproduce the
MaltParser results in the shared task)

Maltparser allows multiple configurations for testing the performance of various types of grammars.
Many non-linguists think of grammar as only parts of speech put together in a prescribed order. This
author has always personally defined grammar as everything that could be known about a language or
anything else that could be expressed to convey meaning. This is the most general case. There are
many different ways to derive a subset and declare it as a new type of grammar.

Many of the computer programs that continue to defeat the world's grand master chess players are
based upon the artificial intelligence concept of tree pruning which is the same as the parsing or
grammar concept of constraints. Using a constraint based grammar or adding one to an
already viable grammar is likely to cut processing time. I have already told you that the
grammar I want is the one that covers every rule for the domain. The only way to build a grammar
that covers every rule is through data-driven discovery methods. So these are the kinds of grammars
that we will build in a series of sprints. If you want to pronounce English correctly and help others to
do so also, it would be very helpful to know all of the rules for English pronunciation. There is a
CMU free and open dictionary of traditional spelling and correct pronunciation for the Spinx CMU
speech recognition system to discover the rules for English pronunciation for this domain. There are
many other domains which are structured so much like this that you can use the core of the same kind
of program to learn them. I also can point you to Free and Open Source XML databases of
natural languages with parallel translations. The XML will greatly assist you to develop a data-
driven parser whose core looks very similar to the core for going from traditional spelling to
pronunciation. You can sprint from anywhere in the world and at any time. All you have to do is send

e-mail to oouc @yahoo.DELETECAPS.com until you get past the spam filter and I reply. Please put

Data Driven? at the beginning of the subject. If there is sufficient interest then write down your

questions or eMail them to me and we will have an open space discussion.

If you only want quick and dirty partial knowledge, perhaps any grammar any parser will be beneficial
for you. A leader's greatest satisfaction is when they say something which causes someone to discover

something which will help them keep on getting what is the best for them. I am going to close


mailto:oouc@yahoo.DELETETHIS.com
mailto:oouc@yahoo.DELETETHIS.com
mailto:oouc@yahoo.DELETETHIS.com
http://www.vxu.se/msi/users/nivre/research/proj/0.2/doc/Proj.html
http://www.vxu.se/msi/users/nivre/research/proj/0.2/doc/Proj.html
http://www.vxu.se/msi/users/nivre/research/proj/0.2/doc/Proj.html
http://www.vxu.se/msi/users/jha/conllx
http://www.vxu.se/msi/users/jha/conllx
http://www.vxu.se/msi/users/jha/conllx
http://nextens.uvt.nl/~conll/
http://nextens.uvt.nl/~conll/
http://nextens.uvt.nl/~conll/

with a story that illustrates how this has worked for someone else and how this talk can do the same
for you. When I met him in the early 1980's, Charlie spent much of his time writing BASIC language
programming tutorials for computer magazines. Every time I encouraged him to move up to modular
programming in Pascal, Charlie reminded me that anything that can be computed could be computed
on a Turing Machine. Since he already knew BASIC, he said it was not worth his time to learn
another computer language. Charlie eventually enrolled in one of my Pascal classes. Before the
course ended he was telling everyone, “Even if you never program in anything except BASIC you
should learn Pascal. Learning Pascal will enable you to think in a modular manner and solve
problems you could not have otherwise solved.” Charlie was a genius but he did not realize that

immature BASIC interpreters were a lid holding him back. Many geniuses have always
developed rule-driven software which is very valuable but limited to the genius of the developer.
Data-driven software can enable you to develop software beyond your own abilities however great
those abilities are. Python not Haskell, Java, C++, Pascal or BASIC or any other language is the

obvious best choice for doing this. These other languages all have the strength of doing one
thing very well. Python has the strength of doing almost all of the things all of them
do as good or better than they do it.

You have already seen that there are many types of grammars or systems for discovering rules. I once
wrote a computer program to grade students ability to write an essay just like what they had read. I
used only a complicated statistical formula which I invented but understood very. Another team of
programmers had already developed a highly trade secret program that had analyzed thousands of
interviews and open conversations to accurately predict the behavior of jurors, consumers, and many
other people by making psychological profiles. I was not allowed to know anything about their
program. But we both did a data-driven analysis of every word written by 112 students who were
attempting to reproduce the same essay. There was no significant difference between our rankings.
Since you have seen Maltparser and others use so many types of grammars, my advice is use whatever
you understand the best in order to get started.

The best data to use to get started is data that has been reviewed by many scholars. Find places where
you are more than extremely confident that you understand and there is a great amount of repetition
and some unique data. The easiest natural language text that I have found is Matthew Chapter 1
verses 1-14. You should be able to pick out the word that means “had a descendant” without any
problem. Then you can see how names are rendered differently. You can use this information to
quickly learn other things. With a little thought you can develop a Python program that uses the same
techniques you used without actualy giving the program any answers. If you have done a good job of
programming this then your Python program can go to several other places and use the same
techniques to learn more. You can use this knowledge to have the computer to help you learn more
difficult things. The best way to write this program is to have Python reporting pack to you all of the
information that it used to make each decision. As more and more difficult information is learned, the
computer will eventually be teaching you almost everything and you will only be giving an okay to
approve or else trying new learning techniques or other data to prove that it is right.

http://cheeseshop.python.org

Kontos, J., Malagardi, I., Peros, J. (2003). “The AROMA System for Intelligent Text Mining”


http://cheeseshop.python.org/

HERMIS International Journal of Computers mathematics and its Applications. Vol. 4. pp.163-173.
LEA.

Nivre, J. (2003) An Efficient Algorithm for Projective Dependency Parsing. In Proceedings of the 8th
International Workshop on Parsing Technologies (IWPT 03), Nancy, France, 23-25 April 2003, pp.
149-160.

Nivre, J., Hall, J. and Nilsson, J. (2004) Memory-Based Dependency Parsing. In Ng, H. T. and Riloff,
E. (eds.) Proceedings of the Eighth Conference on Computational Natural Language Learning
(CoNLL), May 6-7, 2004, Boston, Massachusetts, pp. 49-56.

Nivre, J. and Nilsson, J. (2005) Pseudo-Projective Dependency Parsing. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 99-106.

Nivre, J., Hall, J., Nilsson, J., Eryigit, G. and Marinov, S. (2006) Labeled Pseudo-Projective
Dependency Parsing with Support Vector Machines. In Proceedings of the Tenth Conference on

Computational Natural Language Learning (CoNLL).


http://www.vxu.se/msi/users/nivre/papers/malt_shared.pdf
http://www.vxu.se/msi/users/nivre/papers/malt_shared.pdf
http://www.vxu.se/msi/users/nivre/papers/malt_shared.pdf
http://www.vxu.se/msi/users/nivre/papers/malt_shared.pdf
http://www.vxu.se/msi/users/nivre/papers/malt_shared.pdf
http://www.vxu.se/msi/users/nivre/papers/malt_shared.pdf
http://www.vxu.se/msi/users/nivre/papers/acl05.pdf
http://www.vxu.se/msi/users/nivre/papers/acl05.pdf
http://www.vxu.se/msi/users/nivre/papers/acl05.pdf
http://www.vxu.se/msi/~nivre/papers/mbdp.ps
http://www.vxu.se/msi/~nivre/papers/mbdp.ps
http://www.vxu.se/msi/~nivre/papers/mbdp.ps
http://www.vxu.se/msi/~nivre/papers/iwpt03.ps
http://www.vxu.se/msi/~nivre/papers/iwpt03.ps
http://www.vxu.se/msi/~nivre/papers/iwpt03.ps

