
ThanCad: a 2dimensional CAD for engineers

Thanasis Stamos

School of Civil Engineering, National Technical University of Athens, Zografou, Athens, Greece

Abstract
ThanCad is 2dimensional CAD aimed to meet the, ever growing, specific needs of civil and
surveying engineers. It is largely command compatible with the leading commercial CAD, but it
differentiates to a few concepts such as hierarchical layers, and lack of elements attributes, which is
the CAD equivalent to structured programming. ThanCad adds some productivity tools such as line
continuation, layer selection and cross-save/read undo mechanism. ThanCad harnesses the power
of Python to shrink the development time and the volume of code; to implement and test new ideas
in virtually no time; to make ThanCad programmable without the need of separate libraries, plug-
ins, special languages, or special OSes; to make 32bit/64bit processor, OS and OS version
irrelevant. ThanCad uses Tkinter, the defacto GUI/drawing standard for python, in order not to
reinvent the wheel and to achieve platform independence. Several concepts were addressed such as
compound elements, text in arbitrary directions, cursor/cross hair, zoom, image zoom, coordinate
systems tracking, image resolution, draw order, object snap, different element intersection, mouse
wheel windows/Linux differences, input from command window and/or GUI, hierarchical modal
windows. Finally, ThanCad uses Python's object oriented programming, but sometimes it follows
the Zen of Python and the Linux kernel's philosophy, practicality beats purity.

Introduction

Computer Aided Design (CAD) was introduced to the masses about a quarter century ago
with the advent of Personal Computer and the development of an initially small but usable CAD
system, AutoCADT. The CAD's strength was, and still is, the capability to make easy modifications
to the drawings, without destroying or uglying the original. The actual drawing "with the computer"
was sometimes more time consuming than drawing by the hand of an experienced draftsman.

Since then, CAD was come a long way, and it is now easier to draw with computer than by
hand, most notably with the introduction of application specific CAD, in areas such as topography,
photogrammetry, buildings' architecture, statics, highway design, hydraulics, electronic integration
etc. Application specific CAD may be developed from scratch, or it may be based on a general
purpose CAD, like AutoCADT, which has the capability to be programmable or scriptable. Indeed
AutoCADT could traditionally be scripted with AutoLispT, a dialect of the programming language
Lisp. Later, Visual BasicT for Applications was added, Python was contributed by the community
(Mischler Georg 2003), and APIs for C and other languages were made available.

The scripting capabilities, useful though they are, have the following disadvantages:

1

● They are either awkward to program, or expensive or incomplete.
● Some of the scripting languages are proprietary.
● They are limited to the WINDOWST OS.
● The general purpose CAD which is used as a base, is often very expensive.
● Some features, as hierarchical layers, can not be scripted; the code of the CAD itself has to

be changed.

For these reasons a new general purpose CAD, ThanCad, was developed from scratch. It will
provide more Than conventional CAD, since one of its goals is to be the base and the testbed for
other, more specialized CAD systems.

Python

Python (Rossum V. Guido et al 2007) was and still is the ideal computer language for
ThanCad. The syntax is clean and extremely readable. It is a fully object oriented language. It
provides essential data structures such as lists, sets, dictionaries as builtin objects. It has an
extensive and useful standard library (e.g. weak references, iterators, logging etc.). It is cross
platform with the true meaning of the word. It can be extended by writing code in C or other
compiled languages. The volume of code is an order of magnitude less than compiled languages.
On the negative side python is slow, but critical code can be written in C. All in all, python offers
rapid prototyping of applications and rapid application development. When ThanCad was
conceived, the thought was to prototype it with Python and then port it to C++. Several years later,
ThanCad is still in pure Python.

Tkinter

Clearly a graphics package is essential for a CAD. Initially wxWindows (Smart Julian et al
2007), later named wxWidgets, seemed the best solution. WxPython (Dunn R.P. et al 2007) is the
interface between Python and wsWidgets. WxPython provides a very reach set of widgets and a
method to draw lines, arcs etc. to any graphics window. However at that time, wxPython had some
bugs with the fonts, it was very hard to install in Linux Operating System, and the Linux version
was slower and less robust than the WINDOWST version. Since one of the goals of ThanCad was
to (at least) run well in Linux, wxPython was dropped for Tkinter (Rossum V. Guido et al 2007),
which is the python interface to the tk graphics toolkit (Ousterhout John et al 2006).

Tkinter is the defacto graphics standard for Python and although it is spartan for a graphics
package, it is very robust, extensible and fast (for an interpreted language). It provides all the basic
widgets (menus, buttons,etc.) and a “canvas” which the drawing can be displayed on. The canvas
has many primitive capabilities which can be used to build the easy (alas programmatically
complex) CAD interface which the users take for granted. Although Tkinter is currently the only
graphic package used in ThanCad, a distinction is made between graphics dependent and graphics
independent code. Thus, it should be easier to port ThanCad to a different graphics package such as
wxWidgets, GTK or Qt in the future.

ThanCad Concepts

ThanCad has many of the usual capabilities of a general purpose CAD. It supports the basic
elements - lines, circles, arcs, points, text, images. Currently it has limited support for roads, in the

2

civil engineering sense. The elements may be moved, scaled, rotated, copied, broken to pieces,
joined, copied and pasted to clipboard. Elements can be selected with nearest, window, crossing,
layer, previous. Object snap is supported – currently endpoint, midpoint, center, node, quadrant,
intersection, tangent, nearest. Queries include distance, angle, list, point id and text find. The text
supports fonts, arbitrary direction, backwards, upside/down, vertical, width factor, oblique angle.
Various zoom and pan capabilities are implemented – window, all, factor, real time. True color is
used throughout ThanCad. User input is accepted through the GUI (mouse) or the command line
(keyboard). An unlimited do/undo/redo mechanism is partially implemented. The Save/Open (to an
internal format) operations are fast. ThanCad can import dxf files and export to dxf files and
various types of image files. There can be many opened drawings simultaneously. Finally a few
experimental engineering applications are integrated (grid drafting, map rectification and raster line
tracing), which they were really standalone external applications that were quickly embedded into
ThanCad.

ThanCad has also a few simple, but surprisingly missing from other CADs, conveniences
like previous line continuation, line continuation, angle inquiry, unlimited redo, persisting do/undo
mechanism, select that survives undo/redo and user defined image dimensions in export image.
These were easily implemented, given that the source code of ThanCad was available for inspection
and modification.

ThanCad has also some features that require closer attention as described below.

● Nested Layers: Each ThanCad drawing has one or more layers. A layer is an object which
contains set of elements elements. Thus the elements may be grouped by layer so that they
can be mass handled. Furthermore, the layers may be nested which leads to layer hierarchy,
much like the directory structure of a file system. This makes sense in big drawings, where
the number of elements and layers is big. If only one level of layers is allowed, like
conventional CADs, the number of layers is so big that the user loses control. The layer
hierarchy allows for a great number layers, but keeps the number of layers small at each
level.

● Layers' attributes: Each layer also has a set of attributes, such a color, visibility, draw order
etc, which are stored in a python dictionary as attribute-name attribute-value pair. Thus it is
particularly easy to add new attributes should an application need them. For example a
screen-color attribute might be defined, so that elements are drawn with this color on screen
but printed with a different color to a printer/plotter.

● Inherited attributes: Each child layer inherits the attributes of its parent when it is created.
The attributes are marked as “inherited” and change when the user changes the value of the
parent's attributes. On the other hand the user may override the inherited attributes and give
“personal” values to all or some of the child layer's attributes. Thus when the user changes
the value of an attribute, this value is propagated to its children and its children's children
attributes while they are marked as inherited. The propagation stops when a “personal”
value is encountered. Finally if an attribute is marked “inherited” and then it is marked
“personal”, ThanCad remembers the previous personal value and sets it by default.

● Forced attributes: Not all attributes obey the previous rule. For some attributes, which take
on/off values, such as the visibility attribute, it makes sense to unconditionally propagate the
off value, regardless of personal value or not. Thus a layer's visibility is on or off (according
to its personal value) when its parent's visibility is on. However, the layer's visibility is
unconditionally set to off when its parent's visibility is off. When the parent's visibility is set
on again, the layer's visibility retains its original value.

3

● Other attributes: A third category of attributes exist. These attributes which may not be
modified by the user. Instead, they can be modified by programs embedded in ThanCad.
Currently only one attribute belongs to this category. The “protected” attribute, if on,
prevents creation, deletion or modification of elements inside the layer. The intention is, that
if an embedded program depends on, for example, the existence of circle with certain
radius, to prevent the user to delete it by accident.

● Elements' attributes: The attributes of an element are the attributes of the layer it belongs to.
Different attributes for every element are not supported by ThanCad, because it is the
analogous of spaghetti programming in a drawing. It is far better to group related elements
into a layer and then set the color of this layer once, than setting the color of each element
one by one. Should one element be an exception, a new child layer may be created which
will have all the attributes automatically inherited except the color.

● Draw order: In ThanCad it is possible to explicitly define the order with which the elements
(or rather the layers) are drawn, by setting a draw order number. This is useful with raster
image because a raster image may easily hide lines, circles etc. The layers with the smaller
numbers are drawn first (they are “back”), and the layers with the bigger numbers are drawn
after (they are “front”). It is not necessary to define which object is “front” and which is
“back”. Draw order takes cares of it.

● Platform independence: ThanCad executes unchanged in Linux and Windows, since it
depends only on Python and Tkinter, which are cross platform with the true meaning of the
word. In fact it should run, though not tested, in any flavor of UNIX or any other OS that
supports Python and Tkinter. This includes practically all processors, architectures and Oses,
and lets them compete for their features, not the amount of software that runs on them.

ThanCad structure

The structure of ThanCad is roughly described in the following:

● Opened drawing: It is actually Python tuple of 3 values: Name, Drawing, Window.

● Drawing object: It represents the abstract drawing, but it does not show it on screen. It
contains all the elements of the drawing (lines, arcs, circles etc.), its layers, and provides the
mechanism to manipulate them, such as element deletion. However the object is passive; it
does not do something by itself, something else must call it to do the job. The Drawing
object is largely graphics (or gui) independent, or at least gui dependent in a controlled way,
as described below.

● Layer hierarchy: Each Drawing object has one or more layer objects organized in hierarchy.
A layer object contains set of elements elements which are saved in a Python set and is
responsible for the attributes of the layer and elements it contains (for example to propagate
the attributes to all its layer children and its elements).

● Element object: Each ThanCad element is defined by a class. All manipulations and queries
done on the element are, of course, implemented as methods in these classes. In addition all
gui dependent code or code dependent on any external object (for example dxf export or
image export) is also implemented as methods. Such methods receive the external object

4

(e.g. Tkinter object decorated with some attributes) and draw the element on to it. The
caller of the method does not know the type of the external object it passes to the method or
how to handle it. Thus the dependent code is transparent to the Drawing object.

● Window object: Currently a Tkinter gui window, window object displays the drawing, gets
user input and uses the Drawing object to perform the user request. For example if the users
scales a circle, it locates the element and calls its scale method. After that, a redraw on the
window will reflect the change to the screen. However this is a slow operation. So,
ThanCad also scales the drawn object, that is the actual circle in a Tkinter Canvas. Clearly
the operation done on the abstract element must be synchronized with the operation on the
drawn element.

● Dialogs: Some times the user has to enter complex information to ThanCad, such as color
definition, which is best done through a graphics dialog. Currently all the dialogs are done
with the Tkinter gui.

● Commands: All the written ThanCad commands (for example BREAK) correspond to a
function responsible to carry on the command. This is an intermediate layer between
Window object and Drawing object in order to reduce the dependence of the command
processing to the gui.

● Various: There are of course many details which are not covered by the above, such as
intersection of line segments, logging objects, coordinate transformation, options
persistence etc.

Python Implementation

ThanCad naturally makes heavy use of Python's builtin objects and Python's object oriented
capabilities. In fact, most of the code is inside definitions of classes. Thus, as in almost all python
programs, it is relatively easy to make additions and modifications to the code. For example the
layer attributes are stored in a python dictionary, and thus the addition of an attribute is the addition
to a python dictionary (and some code of what it does). Another example is the Window object,
currently Tkinter Window object, which can be replaced by a different one, like Qt Window object.

Although ThanCad uses object oriented programming, and because Python gives the
capability, everything is free to call everything else, and sometimes it does. For example the
<MouseWheel> event in WindowsT OS, for some unknown reason, can not be intercepted by the
Tkinter canvas widget. Instead, its parent TopLevel window receives the event, so the canvas must
intercept its parent's event with one of its own methods. Here, practicality beats purity.

One of the most interesting python implementation aspects is the intersection of two
arbitrary python elements. If there are n classes of elements then that n2 intersection functions are
needed, since each element class may be intersected with any other element class, itself included.
Furthermore double dispatch (Horstman Cay 1995) is needed to make the computation of
intersection automatic (object oriented). But, with python, there can be many improvements:

1. A python dictionary is created with:
key: 2dimensional Python tuple with element class 1 and element class 2
value: The Python function of the intersection of these 2 element classes
For example:
thanIntPair = { (ThanArc, ThanArc) : thanArcArc,

5

(ThanArc, ThanCircle) : thanArcCircle,
 }

Thus the call of the appropriate function is done with a single statement:
thanIntPair[e1.__class__, e2.__class__](e1, e2)

2. The intersection operation is commutative, that is the intersection a line and an arc is the

same as the intersection of an arc and a line. Thus only n2

2
functions are needed. In order

to achieve a method of actually inversing the arguments of a function is needed:
class __Inv:

“Calls a function with inverted arguments.”
def __init__(self, func):

self.func = func
def __call__(self, e1, e2):

return self.func(e2, e1)
thanIntPair[ThanCircle, ThanArc] = __Inv(thanArcCircle)

3. Python's polymorphism can be used to reduce the intersection functions. For example
ThanCad's image element has a rectangle as boundary. This rectangle behaves (on purpose)
like a line element. Thus the functions of line intersection may also be used for the image
element (“if it quacks like a duck and ducks like a duck then it is duck enough”).

4. Finally if an element does not support intersection like points and texts, a do nothing
function completes the dictionary.

Tkinter implementation

The gui interface is the heart of any CAD, as well as ThanCad. With Tkinter it was possible build a
modern, alas programmatically complex, interface, because although Tkinter is spartan, it gives the
necessary building blocks to make almost anything. According to the author this was, and still is,
one of the most interesting fields of ThanCad. In the following several problems and their solutions
will be presented.

Croshair cursor
ThanCad uses a croshair as mouse cursor. It is a horizontal and a vertical line that span the window
and intersect at the mouse point. Unfortunately Tkinter does not have such a mouse cursor, so it is
created as two Tkinter Canvas lines. The length of each line is determined by Canvas
winfo_width() and winfo_height() functions which return the window dimensions. These function
are called when the window is created and any time the window changes dimensions, via the
<configure> event interception. Sometimes these functions return zero. In order to prevent that, it
was empirically found that the Canvas update_idletasks() must be preceded. For WindowsT OS the
more dangerous function update() must be called, which may lead to race conditions (Lundh
Fredrik 1999). Even so, the first time that the window is created, winfo_*() will not work. In this
the Tkinter system must be left some time to stabilize, so the call to the cursor resize() function
must be delayed with the Canvas after() function:

canvas.after(DT, crosHair.resize)
DT may be 200 ms for Python and this millennium' s hardware.

Object real time moving
When the users want to transfer some objects from one position to another, they expect to see the

6

objects actually moving as they move the cursor. This can be done by intercepting the event
<motion> which is triggered when the mouse moves. Then the objects are deleted and they are
redrawn in the new mouse position, giving the illusion of moving. This can be quite slow if the
Tkinter canvas contains a very big amount of elements. A little faster way is to use the canvas
move() function for the chosen elements.

Yet, the fastest way is to actually alter the coordinates of the object with the canvas coords()
function. Of course the computation of the new coordinates must be also fast (for example via a list
comprehension) and the old coordinates must be known without a second call. Otherwise the gain is
neutralized or even negated.

Real time panning
This is really like moving all the objects in the opposite direction. However, Tkinter provides the
xview() and yview() functions which pan the canvas in the x or y direction, and do this a little
faster than the move() function.

Object real time scaling
When the users want to scale some objects, they expect to see the objects actually growing as they
move the cursor. This can be done by intercepting the event <motion> which is triggered when the
mouse moves. Then the objects are deleted and they are redrawn with bigger (or smaller) size. This
can be quite slow if the Tkinter canvas contains a very big amount of elements. A little faster way is
to use the canvas scale() function for the chosen elements.

Yet, the fastest way is to actually alter the coordinates of the element with the canvas
coords() function. Of course the computation of the new coordinates must be also fast (for example
via a list comprehension) and the old coordinates must be known without a second call. Otherwise
the gain is neutralized or even negated.

Zooming
Unfortunately Tkinter does not provide functions to zoom itself. The zoom is done scaling all the
objects, bigger if zooming in, or smaller if zooming out. This creates the problem that the actually
drawn canvas object has no longer the same coordinates as the abstract ThanCad element. Thus
ThanCad has to cope with 2 coordinate systems. Worse, the canvas coordinates are different to the
pixel coordinates by a constant dx, dy. Thus ThanCad hat to keep track of 3 coordinate systems.

Dragging
The pan and the zoom is done while the user is dragging the mouse, which means that the user has
to move the mouse with the button pressed in order to pan or zoom. Each mouse drag event zooms
the drawing by a specified factor and ThanCad used to track these events in order to find the overall
zoom factor. But, rarely, some events are lost, and thus ThanCad did not compute the correct
overall factor, which meant that the 3 coordinate system were no longer synchronized. The solution
to this problem is to create 2 small lines at defined positions, well outside the visible window.
These lines, which are not visible, are zoomed with every other object. Then it is possible to
compute the real overall scale factor examining the new positions of these small lines. After that the
lines are not needed and they are deleted.

Sequential input in environment with threads
ThanCad has a small number of basic functions which get user input from the Tkinter Window,
such as getpoint() which waits for the user to press click and returns the coordinates of the cursor,
and getline() which does the same job and also displays a line from the previous point to the cursor.
These functions may be called by other code to get complex input. For example to get a line
segment, first getpoint() is called to get the first point of the segment and then getline() is called to
get the last point of the segment.

The problem is that between getpoint() and getline() the program must yield control to the

7

Tkinter graphics mechanism and when the user clicks, the program must execute sequentially the
next function, getline(). If getpoint() yields control to Tkinter, i.e. it terminates, how can the
sequential flow continue? If getpoint() does not terminate, it will not be possible to even use the
mouse.

The, dirty, solution ThanCad uses, is that the get*() functions continuously call the canvas
update() function, while a state variable is not None. The canvas update() function completes any
pending Tkinter jobs such as mouse move or mouse click, and then returns. When the user clicks,
the <Button-1> event is triggered, ThanCad intercepts it, records the coordinates of the mouse, and
sets the state variable to None. The get*() function notices that the state variable is None, gets the
recorded coordinates and returns them to the caller.

Text
Unfortunately Tkinter does not allow arbitrary direction of text. In order to work around this
problem, ThanCad creates characters as set of lines. The movement, rotation and scaling of the
character lines to their correct location are done in python and tends to be slow for a large number
of characters. Worse, each line is separate Tkinter object which slows Tkinter operations such as
pan. Thus, ThanCad, represents text with height less than 4 pixel, with a rectangle. Zoom in and
regeneration of the drawing will make text readable again.

Compound elements
ThanCad text is made of many Tkinter objects and it is called compound. Compound elements are
also point (represented by cross, or triangle etc.) and image (which is the image and rectangle as the
boundary of the image). The Tkinter objects of a compound element must be treated the same way.
Tkinter allows this to be done by assigning the same “attribute”, which is just a text, to all the
objects of the compound element. Using this attribute, the objects may be moved, scaled or deleted
with a single Tkinter call.

Compound elements need special treatment in ThanCad's select crossing command. This
command is implemented calling Tkinter find_overlapping() function, which finds all Tkinter
objects in, or partially in, a given rectangle. If a found Tkinter object is part of a compound
element, then ThanCad manually adds alls the objects with the same attribute to the selection.

Compound elements also need special treatment in ThanCad's select window command.
This command is implemented calling Tkinter find_enclosing() function, which finds all Tkinter
objects in a given rectangle. If a found Tkinter object is part of a compound element, then ThanCad
checks if the set of all objects with the same attribute is a subset of the selection. If it is not, the set
is subtracted from the selection.

Mouse wheel handling
ThanCad zooms the drawing in or out if the user rotates the mouse wheel. In Linux the mouse
wheel rotation triggers the <Button-4> or <Button-5> according to rotation spin. In WindowsT the
<MouseWheel> event is triggered with the variable event.delta set to a value less or greater than
zero according to rotation spin. It is not difficult to factor out the common code for Linux and
WindowsT, it is just a minor inconvenience.

But it seems that the <MouseWheel> event is triggered only by the parent TopLevel window
of the Tkinter canvas, and not by the Tkinter canvas itself. Which means that TopLevel's
<MouseWheel> must be intercepted by a method of canvas (inelegant). Also, the pixel coordinates
of the cursor must be translated from the coordinate system of the TopLevel window to the
coordinate system of the canvas. This is done by subtracting the pixel coordinates of the top-left
corner of the canvas from the pixel coordinates of the cursor returned by the event.

Object snap
Object snap is the the capability of ThanCad to snap on a specific point of an element (endpoint,
midpoint, center etc), when the user places the cursor near it. When object snap is on, and the

8

mouse moves, the <Motion> event is triggered, and ThanCad calls find_overlapping() to locate an
element near the cursor. If a near element is found, and the element supports the specific object
snap (for example a circle has no endpoints), the specific point is highlighted (with a rectange,
cross, circle etc) and the coordinates of this point are saved. If the user clicks, then the saved
coordinates are returned, not the coordinates of the cursor (where the mouse is).

Hierarchical modal windows
A modal window is a window that disables the input capabilities of all the windows except itself.
Modal windows are created by calling their grab_set() method. When the modal window dies, the
grab_release() function is called and the other windows may accept input.

In ThanCad it is usual to display a modal window which disables the input of the canvas,
then a second modal window which disables the input of the first modal window and the canvas
and so on. However when the second modal window dies, the input of all windows are
automatically enabled, so the first modal window is no loner modal.

ThanCad provides a mechanism that supports hierarchical modal windows, which
automatically retain the modal feature. In the above example, when the second modal window dies,
the grab_set() function is automatically called for the first one, and thus it becomes modal once
again.

As usual, the Python implementation is simple and brief. In fact it so brief that the actual
code is given below. A list of weak references to all modal windows is kept (in a module). When
the most recent modal window dies, its weak reference is invalidated. The Python weak reference
mechanism automatically calls a housekeeping function, which deletes the dead window from the
list, and calls grab_set() for the previous modal window found in the list.

The only complication is that any window may be deleted by the window manager (for
example pressing the cross button of the window), an action which should only be allowed for the
most recent modal window. So the WM_DELETE_WINDOW event is intercepted and it is
disabled for all modal windows except for the most recent. When a modal window is activated
again the WM_DELETE_WINDOW event is re-enabled. Here it is assumed that the modal
windows will have a cancel() method which be called when the user deletes the window via the
window manager.
__grabWins = []
def thanGrabSet(win):
 "Perform a nested grab_set."
 if len(__grabWins) > 0:
 win1 = __grabWins[-1]

 win1().grab_release()
 win1().protocol("WM_DELETE_WINDOW", lambda: "break")
 win.update()
 win.grab_set()
 win1 = weakref.ref(win, __grabWinDied)
 __grabWins.append(win1)

def __grabWinDied(weakwin):
 "This is called when the window which has the grab dies."
 assert len(__grabWins) > 0 and __grabWins[-1] == weakwin, "How
did this happen?"
 del __grabWins[-1]

9

 if len(__grabWins) <= 0: return
 win1 = __grabWins[-1]
 win1().protocol("WM_DELETE_WINDOW", win1().cancel)
 win1().lift()
 win1().focus_set()
 win1().grab_set()

Ideas for the future

Fuse file system
The layer hierarchy closely resembles a file system, where the layers are directories and elements
are files. Indeed it is possible to create such a virtual file system with help of FUSE – File system in
USEr space (Szeredi Miklos et al 2007). FUSE has python bindings so it should be relatively easy
to implement it. The contents of each file will be the geometric properties of the element it
represents. For example a circle will have the coordinates of its center and its radius, plus some
comments to make the file readable. Each directory, which will correspond to a layer, will have a
special file which will contain the attributes the layer. The virtual file system will make it trivial for
any external application to create new drawings or modify existing. This may even be done in real
time by utilizing the Linux kernel's inotify subsystem (Martini Sebastien et al 2007). FUSE is
available for Linux, FreeBsd, OpenSolaris, MACOS-X. Alternatively libfrerris (Martin Ben et al
2007) may be used for the same result.

Client server approach
It is usual for big civil engineer drawings to demand several hours for editing. In order to save time,
the drawing is given to more than one user, who make changes to separate parts of the drawings.
After that all the changes are merged by hand. This many times is awkward and error prone. If each
user holds backup history of the drawing, then the whole operation is a maintenance nightmare.
What is needed, is a way for many users to edit the same drawing.

ThanCad code may be split to a server which holds the elements of a drawing and a client
which displays the drawing and takes input from the user. The idea is to have one common server
and many clients to the same drawing. When a user modifies a set of elements, the elements will be
locked, preventing other users from accessing them. When the first user completes the changes,
they are immediately displayed on all clients. The save operation will be handled by the server.
However the do/undo mechanism will be much more complicated.

Other GUIs - Web
It should not be prohibitably difficult to add another GUI like Qt in ThanCad, to see if the result is
better or faster. In particular, it might be a good idea to use Firefox as a GUI and see if ThanCad
can be transformed to a web application, like GoogleT Docs and Spreadsheets (Google 2007), and
see if whether this is beneficial or not.

Embedded application support
Many engineering applications handle essentially CAD elements without a CAD. An example is the
computation of the coordinate transformation parameters between two sets of coordinates, which
both correspond to the same points on earth, but each set corresponds to a different coordinate
systems. The computation is strictly mathematical and does not relate to CAD at all, but the error
messages could be better understood, if the points with errors were graphically shown and were
highlighted with an attached error explanation. These little conveniences should be collected into an
API, to ease existing applications' embedding.

10

Typical use improvement
In order to improve the aspects of ThanCad most users use, at first these aspects must be found out.
So it might be possible to record, after asking politely the users for permission, typical user
behavior (users click a lot or type a lot, which capabilities they use most, which elements, how
many times do they save, what OS they use, where is most of the user time spent, where is the most
processor time spent, and so on) and typical drawing complexity (what kind of elements it has, how
many elements, how much memory it consumes, etc). This information will be used to focus
development to the features the users want, to improve algorithms of frequently used operations, to
add conveniences and generally improve the user experience with ThanCad. This information will
also be of immense value to the academia.

11

Trademarks
AutoCadT is a trademark of AutoDesk Corporation
AutoLispT is a trademark of AutoDesk Corporation
WINDOWST is a trademark of Microsoft Corporation
GoogleT is a trademark of Google Corporation

References

Dunn R.P. et al 2007, wxPython a Python extension module that wraps wxWidgets,
http://www.wxpython.org/, Last Update: 14/05/2007

Google 2007, Google web applications, http://www.google.com/a/, Last Update 2007

Martin Ben et al 2007, Libferris is a virtual file system (VFS) that runs in user space,
http://witme.sourceforge.net/libferris.web/, Last Update 13/06/2007

Martini Sebastien et al 2007, Pyinotify is a Python module for watching filesystems changes,
http://pyinotify.sourceforge.net/, Last Update 17/02/2007

Rossum V. Guido et al 2007, Python Programming Language, http://www.python.org/,
Last Update: 2/07/2007

Smart Julian et al 2007, wxWidgets project, http://www.wxwidgets.org/, Last Update: 4/04/2007

Szeredi Miklos et al 2007, Filesystem in Userspace (FUSE), http://fuse.sourceforge.net,
Last Update: 5/02/2007

Ousterhout John et al 2006, Tk an open source cross-platform widget, http://www.tcl.tk,
Last Update: 19/10/2006

Mischler Georg 2003, Autocad/Intellicad Extension for Python, http://pyacad.sourceforge.net/,
Last Update: 10/07/2003

Lundh Fredrik 1999, An introduction to Tkinter, electronic book,
http://www.pythonware.com/library/tkinter/introduction/, Last Update 1999

Horstman Cay 1995, Mastering Object-Oriented Design in C++, John Wiley & Sons Inc.,
ISBN 0-471-59484-9

12

http://wxwidgets.org/
http://www.pythonware.com/library/tkinter/introduction/
http://pyacad.sourceforge.net/
http://www.tcl.tk/
http://fuse.sourceforge.net/
http://www.wxwidgets.org/
http://www.python.org/
http://pyinotify.sourceforge.net/
http://witme.sourceforge.net/libferris.web/
http://www.google.com/a/
http://www.wxwidgets.org/

object snap (interesction is a little bit different)
How location of inbtersection is done (dictionary and inverted dictionay) n(n-1)/2 for functions
save:pickle and gzip
image PIL
do/undo/redo: each command defines 3 functions factoring out some common codee.g. rotate
-angle, and restore previous selection

13

