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Abstract

PLASMAKIN [1] is a package to handle physical and chemical data used in plasma physics

modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss

rates, photon emission spectra and energy exchange rates. It has no limits on the number of chemical

species and reactions that can be handled, is independent of problem dimensions and can be used in

both steady-state and transient problems. A large number of species properties and reaction types

are supported, namely: gas or electron temperature dependent collision rate coe�cients, vibrational

and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-

body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate

coe�cient functions can be handled by a user-supplied shared library. The package includes a

shared library with data reading and computational functions and a Python module providing

Python function interfaces and classes.
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1



I. INTRODUCTION

A plasma is the state of ionized gases and is the most pervasive state of matter in Nature:

It is found anywhere from stars and interstellar gas clouds to semi-conductor processing

and �uorescent lamps. It encompasses a wide range of characteristic parameters: particle

densities (106 − 1021particles/m3); length scale (10−2 − 1016m); time scale (10−10 −∞ s);

electron temperature (10−1−105eV ); magnetic �eld (10−10−5T ) and involves the interaction

of di�erent types of particles � neutral atoms and molecules, excited species, electrons and

photons � between them and with electro-magnetic �elds [11].

Modeling of plasma physics problems requires the solution of conservation equations

(mass, momentum and sometimes, energy) for the species involved together with the �eld

equations, subject to appropriate boundary conditions. Source and sink terms in these

equations include the chemical interactions of these particles in a wide range of processes.

Thus, from electron kinetics studies to collisional-radiative models or large multi�uid and

time dependent models, whichever the numerical method used, simulation of plasma and

gas discharges invariably requires the reading, classi�cation, sorting and manipulation of

particles and reactions and, frequently, the evaluation of reaction rates and power transfer

rates.

The handling of these data frequently requires a signi�cant amount of code, development

time and e�ort. It is clearly advantageous to have a package able to deal with that data

regardless of the number or nature of the species and chemical reactions involved and of

the problem being solved or the method used. Such a package can be used as a �black box�

moving the description of particles and reactions from code to a data �le, thus allowing the

user to concentrate on the algorithm, and once the code is developed, to easily modify and

test di�erent chemical models.

The need for a �language� to write chemical reactions and to compute the kinetic terms

in a generic way is a subject with very broad application of which several approaches have

been developed. Several packages have been published that are directed to speci�c �elds

� plasma physics [2]; atmospheric chemistry [3, 4] � or to general purpose chemistry [5].

All of the above packages include ODE solvers. However, the �rst does not include surface

reactions, the atmospheric chemistry codes do not cover the needs of plasma physics and

the last, although quite complete, is a proprietary, commercial product. More recently, a
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Chemical Markup Language schema to describe reactions in XML has been �nalized [6].

The PLASMAKIN library is designed to provide a framework to handle species and

reactions in a way that is not dependent on a user's program, the number of space dimensions

or the nature of the problem being solved. At the same time, taking into account the rather

di�erent applications that can bene�t from PLASMAKIN and the continuous improvement

of numerical algorithms, an ODE solver was not included, leaving this choice to the user.

These design options allow PLASMAKIN to focus on the treatment of chemical kinetics

data and be useful in a large range of codes � Boltzmann equation solvers, collisional-

radiative codes, �uid and hybrid codes, Monte Carlo or PIC codes, etc.

The library has been extended �upwards� through a Python module � Plasmakin.py �

with higher level functions and classes and allowing the development of complete programs.

The library can also be extended �downwards� to support non-standard reaction rate laws

by a user-supplied library.

The development of a Python module allows integration with the broad range of services

provided in Python (numeric libraries; plotting services; testing frameworks; graphical user

interfaces) and a fast and e�cient development of applications.

Section I gives a description of the problems PLASMAKIN is able to address. However,

only a brief survey of the physics and chemistry bases is discussed. More detailed information

can be found in [1]. The following sections discuss the architectural design including the

library structure and the data model, the range of properties supported, the characteristics

of the Python module, concluding with a summary and discussion of future developments.

In the Appendix we present a sample data �le.

II. PLASMA PHYSICS PROBLEMS

Plasma processes occur in a wide range of conditions. To understand these phenomena,

the �rst set of information needed are � gas density or pressure; initial temperature; and

whether the process occurs at constant pressure or at constant volume.

Depending on the problem being studied, the description of the plasma requires the

solution of some form of Maxwell's equations together with conservation equations. For the
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sake of clarity we will focus on the particle conservation equation [12]:

∂ni

∂t
+∇ · (ni ~ui) = Gi − niLi (1)

where ni is the density of particle i, ~ui the mean particle velocity, Gi and Li are gain and

loss terms by collisions. These have the general expression:

Gi=
∑

m6=i A
∗
minm +

∑
m,n6=i kmnnmnn +

∑
mnl kmnlnmnnnl

Li =
∑

m A∗
im +

∑
m6=i kimnm +

∑
mn kimnnmnn

(2)

A∗
mn are rates for unimolecular reactions (i.e. radiative processes) and kmn and kmnl rates

for bimolecular and termolecular reactions, respectively. These reaction rates are, in general,

functions of the electron or gas temperature.

To study the contribution of collisions to the energy balance in the plasma we are in-

terested in three quantities: The power lost (or gained) by the electrons (Pe), the power

converted to heat (PH), and the radiated power (Pr). The computation of each of these

terms is similar to the Gi and Li terms above but slightly more complex and in most cases

requires the use of the reaction enthalpy, Hr. As a simple example, the radiated power is

given by Pr =
∑

m,n εmnA
∗
mnnm where the sum is on all radiative transitions of all species

and εmn is the photon energy.

The reaction enthalpy is calculated as Hr(T ) =
∑

p Hp
f (T ) −∑

r Hr
f (T ), where Hf (T ) is

the enthalpy of formation of the reaction products and reactants, respectively. We assume a

simple linear dependency on temperature, Hf (T ) = H(T0)+Cp·∆T , where T0 is the standard

temperature (T0 = 25 oC) and Cp the speci�c heat, which is a reasonable approximation for

gases at low pressure.

Finally we may also be interested in knowing the relative contribution of each reaction

for the source and loss terms both in equation (1) and on the power loss terms.

The computation of the Gi and Li terms, the power loss terms, (Pe, PH , Pr) and the

relative contribution of each reaction for these terms, are the main tasks of the PLASMAKIN

library. For that purpose we need to consider the di�erent properties of the chemical species

and reactions involved.
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A. Chemical Species

In a plasma, di�erent types of species are present � atoms and molecules in di�erent

excited levels, positive and negative ions, electrons, and photons. In some applications (i.e.

dusty plasmas), it is also necessary to consider bigger particles.

As we are interested in processes leading to excitation of di�erent energy levels of the

same atom or molecule, atoms or molecules in di�erent excited levels are treated as di�erent

chemical species.

Some of the properties needed to characterize these species are common to any species �

name, energy, mass, charge, formation enthalpy � while others are meaningful only to some

species or needed only for some types of reactions.

Molecular species are a special case: In some problems it is important to consider the

vibrational levels of molecules. The density of these levels can be estimated from a modi�ed

Treanor distribution [6, 7] provided the vibrational frequency, vibrational temperature and

anharmonicity constant for those levels are known. This allows them to be considered as a

group and to leave the details of each level to be handled by the library.

The full range of species properties considered can be found in [1].

B. Chemical Reactions

A large range of reaction processes can be handled by the library:

Unimolecular processes include radiative process, radiation imprisonment and the treat-

ment of cascade levels.

Both forward and reverse bimolecular reactions are supported.

A large number of forward rate coe�cients have an Arrhenius temperature dependence,

ki = KiT
βi
g exp

(
− εi

kBTg

)
(3)

where Ki, βi and εi characterize the reaction.

Reactions in plasma, however, can have more complex temperature dependencies or,

as is the case for electron collision reactions, depend on the electron temperature. To

accommodate this, PLASMAKIN assumes a power series dependence on temperature in

the exponential term of the rate coe�cients:
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ki = α0
i T

β0
i exp

 5∑
j=1

αj
i

T βj
i

 (4)

where T is the electron temperature Te for electron collision reactions and Tg for other

cases. The rate coe�cients are characterized by a maximum of twelve parameters

(αj, βj, j = 0, ..., 5).

The rate coe�cient for forward and reverse reactions are related through the principle of

detailed balancing. Hence, once the forward rate, kf , is known, the reverse rate, kr (for a

two-body collision, A + B ⇀↽ C + D) is determined from

kf

kr

=

(
µr

µf

)3/2
gCgD

gAgB

exp

(
− εt

kBTg

)
(5)

where µf and µr are the reduced masses for particles in �forward� and �reverse� reactions, g

the degeneracies of the energy levels and εt the energy change.

Thermolecular reactions are supported both as standard reactions and as pressure-

dependent reactions where di�erent 3rd-body species can have di�erent reaction e�ciencies.

Finally, to account for more complex type of reaction rate coe�cients, PLASMAKIN can

call a dynamic library or can be linked with a user's routine.

The full range of reactions, including surface reactions, can be found in [1].

III. PLASMAKIN ARCHITECTURE

The PLASMAKIN package is composed of three units: a Python module, a Fortran 95

module, and a dummy routine. The discussion of the Python module is postponed to section

V.

The development of the Fortran module was in�uenced by the application of Object

Oriented methodologies to Fortran [8, 9]. The programming paradigms of abstraction, in-

formation hiding, data encapsulation and function overloading guided the design of data

types and routines and have simpli�ed the future development of PLASMAKIN and of

bindings for other languages.

The main unit is a Fortran module with public and private data and procedures. This

module is a collection of subroutines organized in �ve groups of tasks:
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Data reading and processing: Parse the data�le, test the correctness of the data and

build species and reactions;

Inquiry routines: Allow the user to inquire about plasma, species or reaction properties

and to compute the source and loss terms for the conservation equations;

Setting routines: Allow the user to set some of the plasma, species or reaction properties

(i.e. the gas or electron temperatures. In this case all the temperature dependent rate

coe�cients are recomputed.)

Error processing and diagnostics: Depending on user's choice, errors are handled either

by returning an error code or printing an error message and stopping the program.

Interface routines: These routines allow the calling of module routines from C programs

solving calling conventions di�erences between C and Fortran such as the use of a null

character in C strings and the handling of assumed-shape arrays in the Fortran routine

interfaces.

All names of public procedures follow a simple convention: pk<action><subject>,

where pk is used to identify PLASMAKIN procedures, <action> is a verb or an

inquiry clause (Read, Get, Set, Clean, Is) and <subject> is the data acted on

by the procedure (Data, Value, Species, Reactions, ReverseReaction, Sources,

PhotonEmission, PowerLosses).

Details of the procedure interfaces can be found in [1].

The dummy routine is included to allow the computation of reaction rates through non-

standard expressions. The routine included in the package is just a template with the

proper calling convention that a user has to adopt whenever non-standard rate expressions

are needed. Ideally this routine should be compiled as a shared library. The arguments

passed from PLASMAKIN include the index of the reaction in the data�le, arrays with

the vibrational quantum number of reactant and product species, the gas and electron

temperatures and the densities of species involved in 3-body reactions.
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IV. PLASMAKIN DATA INPUT

Data input �les are ASCII �les using Fortran NAMELIST structures to take advantage of

Fortran native IO support. NAMELIST structures are annotated lists of values that provide

a simple and convenient mechanism of data input. Each record is speci�ed by a namelist

name preceded by an ampersand, followed by pairs of names and values separated by the

equals sign, and is terminated by a slash character. These records can appear anywhere and

in any number in the �le and can include comments started by a ' !' character.

PLASMAKIN recognizes three NAMELIST:

PLASMAKIN_DATA: used to read plasma initial values for gas density or pressure,

units and gas and electron temperatures. See the example below:

&PLASMAKIN_DATA Pressure=5,'mbar', Gas_n=,'cm -3', Gas_T =350,'K' /

In this case the gas density is computed from the pressure and temperature values and

the output will be speci�ed in cm−3;

CHEM_SPECIES: used to input individual species or groups of species in the case of

vibrational levels. The amount of data that has to be written is minimized as all

properties have default values and the parser is able to deduce missing values from the

information already available. Three examples are shown below:

&CHEM_SPECIES name='Ne', constant=T, mass =20.2, initial_conc =50,'%'/

&CHEM_SPECIES name='Ne[3P2]', energy =16.6 , g=5, data_file='trp.dat'/

&CHEM_SPECIES name = 'A2[X,v]', constant = T, mass = 70

v = 0,45, omega = 1580.19 ,'cm -1', vib_T = 1000,'K',

anharmonicity = 7.58e-3, initial_conc = 50.0,'%' /

In the �rst case the species Ne has a default value of zero for the energy . The second

species, Ne[3P2] inherit the mass value from its parent, Ne. Additional data can be

read from the �le trp.dat. In this case the library just passes the �le name to the

calling program. Finally in the last case we have a group of vibrational species. The

library converts the group into individual species from A2[X,v= 0] to A2[X,v=45]

and computes the initial concentrations as refered in section IIA;
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CHEM_REACTION: used to input individual reactions or reaction groups in the case

of reactions involving vibrational levels.

&CHEM_REACTION ! Values from V.A. Ivanov J. Phys. B 31 [1998] 1765

reaction = 'e + Ne[3P2] -> e + Ne[3P1]'

value = 1.603e-6,-0.3,-6.0e2 ,1, units = 'cm3s -1' /

&CHEM_REACTION ! 2025 reactions

reaction = 'A2[X,v] + A2[X,w-1] -> A2[X,v-1] + A2[X,w]'

data_file = '',5 /

The �rst namelist describes a single reaction following an Arrhenius law: k =

1.603×10−6 ·T−0.3
g exp

(
+6.0×102

kBTg

)
. The second example represents a group of reactions

with reaction rates obtained from the 5th equation of a user's routine. Taking into

account the combinations of vibrational numbers in the example above, this reaction

group symbolizes 2025 reactions.

V. THE PYTHON MODULE

The most recent addition to the PLASMAKIN package is a Python wrapper based on

the ctypes foreign function library.

The development of a Python module serves several purposes:

1. It allows a broader audience to use the library since it does not require knowledge of

Fortran;

2. It integrates the library with the rich set of Python modules. Of special importance

to plasma modeling is the integration with other modules for scienti�c computing as

Scipy [10] or Matplotlib; and

3. It allows the use of Python development tools as doctest or unittest that have

proved useful to track errors in the library itself.

The module is organized into three levels:

1. The lower level comprises the loading of the PLASMAKIN dynamic link library and

function de�nitions to call the library C compatible routines. The arguments and
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return values of these functions are ctypes data types. While in Fortran the public

subroutines have overloaded interfaces that accept di�erent types of data, ctypes

do not include any mechanism to support a similar behavior. Thus the number of

functions de�ned had to be increased. These routines are not meant to be called

directly thus all the routines names start with two underscore characters;

2. The second level are functions that use only Python built-in types as function argu-

ments or as return values. These functions call the lower level functions to access the

PLASMAKIN library. The naming convention is similar to the equivalent library sub-

routines (<action><subject>). A closer similarity can even be obtained if the Python

module is imported as pk (making the function calls pk.<action><subject>). The

functions have the following characteristics:

(a) They accept di�erent type of data allowing the recovery of the level of abstraction

of the Fortran routines that had been lost with the �rst level functions;

(b) The argument list is simpli�ed. In the Fortran library most of the procedures

are subroutines, returning values in the argument list. Because in Python we

deal with functions, all the arguments in Fortran that are used only to return

values have been removed from the argument list or, when these arguments were

optional arguments, they have been transformed into logical �ags;

(c) They use as much as possible, arguments with default values which further sim-

plify the use of these functions;

(d) Have proper exception handling.

3. The higher level comprises class de�nitions. The following classes are de�ned:

PK � a class to keep the information on global properties. The values of the gas

temperature (GasTemp), electron temperature (eTemp) and gas density (GasN)

can be set. All the other properties are �xed. In this case, an attempt to assign

a new value raises an exception.

Species � a class representing the chemical species. The density (n) or concentration

can be changed by the user (changing also the values in the library) but all
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other properties have �xed values. An attempt to change these values raises an

exception;

Reaction � a class representing reactions. The value of the reaction coe�cient can

be changed. This class de�nes a method Update() to update the value of the

rate coe�cient. This is necessary because if the value of rate coe�cents in the

library are changed, i.e. due to a change in temperature, the only way to update

the corresponding values in the class instance is to call this function;

Phys_Property � a helper class to describe a physics property, containing a �oat

value and a string for the units;

Data_Column � a helper class to hold the string for a �lename and an integer index.

VI. A SAMPLE CASE

As an illustration of the usage of this package we study the passage of an electron swarm

through a gas.

The electrons have a Gaussian pro�le and along their passage, they excite and ionize the

gas, producing several chemical species. These species take part in several reactions among

themselves and with the electrons, and are transported either by di�usion of advection to

the walls where they are neutralized or de-excited.

Here we consider an hypothetical gas with di�usion coe�cients and rate coe�cients ad-

justed for this example.

The species density is obtained from the solution of a system of ordinary di�erential

equations.

The listing of the program can be found in Appendix A. To solve this problem plasmakin

is used together with scipy and pylab for computational and plotting services, respectively.

The calls to plasmakin are limited to a few lines:

• In line 27 the data�le with the description of species and reaction (shown in Appendix

B) is read;

• In lines 29 � 31 we de�ne instances of the classes PK and Species; and

• In line 52 all the �magic� is done when the Gi and Li terms are computed.
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Figure 1: Time dependency of species formed during the passage of an electron swarm through a

gas.

Changing the values in the data�le and running the again the program allows a quick

study of the in�uence of several parameters � gas density, reactions included in the model,

values of the rate coe�cients. The result of one simulation is shown in Figure 1.

VII. CONCLUSIONS

A Python extension module has been developed to access the PLASMAKIN chemical

kinetics library.

The Python module, however, is not just a wrapper around the library and adds a

�Pythonistic� way of problem solving to the analysis of plasma physics problems.

Taking advantage of other Python modules for debugging, numerical computation and

data analysis and representation is possible to build programs quickly and reliably.
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Further work will continue both on the extension of the PLASMAKIN library and the

plasmakin.py module. Future plans include the simulation of photon emission spectra

taking into account line broadening; the introduction of a database for species properties

and reactions, and the migration of the data�le format to XML.
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Appendix A: SAMPLE CODE

1 #!/ usr / b in /env python

2

3 """Example showing the use o f Plasmakin . py : E lec t ron pu l s e in a gas .

4

5 Desc r ip t i on :

6 This program eva lua t e s the i n t e r a c t i o n o f a shor t e l e c t on pu l s e in an i d e a l

7 gas .

8 The d i s t r i b u t i o n o f the e l e c t r o n pu l s e in time has a Gaussian p r o f i l e with

9 tMax=5.e−5 s and Std Dev= 1 . e−5 s .

10 The e l e c t r o n pu l s e e x c i t e s and i o n i z e s the gas producing s e v e r a l s p e c i e s .

11 These s p e c i e s r e a c t through s e v e r a l p r o c e s s e s and d r i f t or d i f u s e to the

12 wal l s , where they are n eu t r a l i z e d or deexc i t ed . The va lue s o f r a t e c o e f f i c i e n t s

13 are not r e a l i s t i c as sometimes they are too high or too low comparing with the

14 range o f va lue s found in r e a l gase s but s e rve the purpose o f t e s t i n g the

15 Plasmakin module .

16 Changing the va lue s in t h i s f i l e or in the d a t a f i l e the user can qu i ck ly see

17 the r e s u l t s . In t h i s way t h i s programs s e r v e s a pedagogic purpose .

18

19 Owner : N. Pinhao , ITN − Phys ics Dept . − PORTUGAL

20 Date : June 2007"""

21

22 import plasmakin as pk

23 from s c ipy import ∗

24 from pylab import ∗

25

26 pk . ReadData ( ' t e s t . dat ' )

27

28 gas = pk .PK( )

29 gas . eTemp = 10 . # mean e l e c t r on energy = 10 eV

14



30 sp = [ pk . Spec i e s ( i ) for i in range ( gas .NnC, gas .NnTV+gas .NnC) ]

31

32 # Time

33 dt = 5 . e−6; t = arange ( 0 . 0 , 4 . e−4, dt )

34

35 # I n i t i a l d en s i t y f o r non−cons tant spec i e s , excep t e l e c t r o n s

36 n0 = array ( [ sp [ i ] . n for i in range ( gas .NnTV−1) ])

37

38 # Elec t ron den s i t y

39 ne = s t a t s . norm . pdf ( t , 5 . e−5 ,1. e−5)

40 norm = max( ne )∗1 . e3

41 ne = where ( ne>1e−20,ne/norm , 0 )

42

43 # A r t i f i c i a l d i f u s i o n / advec t ion f o r conserva t ion equa t ions

44 Dv = array ( [ 5 . e+3 ,5. e+3 ,5. e+3 ,5. e+3 ,4. e+4 ,2. e+4])

45

46 def dndt (y , x ) :

47 net = gas .GasN∗ s t a t s . norm . pdf (x , 5 . e−5 ,1. e−5)/norm

48 net = net>1e−20 and net or 0

49 t t = l i s t ( y )

50 t t . append ( net )

51 SrC , SrP = pk . GetSources ( t t )

52 return array (SrC [ : gas .NnTV−1]) − y∗( array (SrP [ : gas .NnTV−1]+Dv) )

53

54 # In t e g r a t i on o f the ode system

55 z = i n t e g r a t e . ode int ( dndt , n0 , t , h0=1.e−10)

56

57 # Plot the r e s u l t s

58 l i n e s = [ ' k+' , ' k : ' , ' k−. ' , ' k . ' , ' k−− ' , ' k− ' , ' ko−− ' ]

59 for i in range ( gas .NnTV−1):
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60 semi logy ( t , z [ : , i ] / gas .GasN , l i n e s [ i ] , l a b e l=sp [ i ] . name , lw=2)

61

62 # . . . add the e l e c t r o n s s ca l e d by 1e−6

63 semi logy ( t , ne /1 . e6 , l i n e s [ gas .NnTV−1] , l a b e l=sp [ gas .NnTV−1] .name , lw=2)

64 ylim ( ( 1 . e−25 ,1. e−8))

65 x l ab e l ( 'Time / s ' , s i z e =16); x t i c k s ( s i z e =12)

66 y l ab e l ( ' Re l a t i v e concent ra t i on ' , s i z e =16); y t i c k s ( s i z e =12)

67 l egend ( )

68 s a v e f i g ( ' t e s t . eps ' )

69 #show ()
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Appendix B: SAMPLE DATAFILE

! ****************************************************************************

! test.dat

! Datafile for the Python example program

! ****************************************************************************

&PLASMAKIN_DATA Pressure=10.,'mbar', Gas_n=,'cm-3', Gas_T=350,'K'/

! 1. Gas species

&CHEM_SPECIES name='Ne', constant=T, mass=20.18, initial_conc=100,'%'/

&CHEM_SPECIES name='Ne[3P2]', energy=16.61, g=5, data_file='NeTransp.txt'/

&CHEM_SPECIES name='Ne[3P1]', energy=16.67, g=3/

&CHEM_SPECIES name='Ne[3P0]', energy=16.71, g=1/

&CHEM_SPECIES name='Ne[1P1]', energy=16.85, g=3/

&CHEM_SPECIES name='Ne[3p]', energy=18.38, cascade=T/

&CHEM_SPECIES name='Ne[3pM]', energy=18.97, cascade=T/

&CHEM_SPECIES name='Ne[4s]', energy=19.66, cascade=T/

&CHEM_SPECIES name='Ne+', energy=21.56, charge=+1/

&CHEM_SPECIES name='Ne2+', mass=40.36, charge=+1/

&CHEM_SPECIES name='photon', v=1,13/

&CHEM_SPECIES name='e', charge=-1 /

! 2. Electron excitation and ionization

! 2.1. Excitation of 3s levels

&CHEM_REACTION reaction='e + Ne -> e + Ne[3P2]', value=5.e-4, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne -> e + Ne[3P1]', value=3.e-5, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne -> e + Ne[3P0]', value=5.e-6, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne -> e + Ne[1P1]', value=1.e-6, units='cm3s-1'/
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! 2.2. Excitation of 3p and 4s+upper levels

&CHEM_REACTION reaction='e + Ne -> e + Ne[3p]', value=5.e-7, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne -> e + Ne[3pM]', value=3.e-7, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne -> e + Ne[4s]', value=1.e-7, units='cm3s-1'/

! 2.5. Ionization

&CHEM_REACTION reaction='e + Ne -> 2*e + Ne+', value=1.e-8, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P2] -> 2*e + Ne+', value=1.e-7, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P1] -> 2*e + Ne+', value=1.e-7, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P0] -> 2*e + Ne+', value=1.e-7, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[1P1] -> 2*e + Ne+', value=1.e-7, units='cm3s-1'/

! 2.3. s_j-s_i transitions

&CHEM_REACTION reaction='e + Ne[3P2] -> e + Ne[3P1]'

value=1.603e-6,-0.3,-6.0e2,1, units='cm3s-1'/ [coeff in K]

&CHEM_REACTION reaction= 'e + Ne[3P1] <-> e + Ne[3P0]'

value=3.1e-8,,-5.176e3,1 units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P2] <-> e + Ne[3P0]'

value=8.2e-9,,-1.118e3,1, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P2] <-> e + Ne[1P1]'

value=5.e-9,,2.658e3,1, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P1] <-> e + Ne[1P1]'

value=5.e-9,,2.054e3,1, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne[3P0] <-> e + Ne[1P1]'

value=2.3e-7,,1.543e3,1, units='cm3s-1'/

! 3. Radiative transitions

! 3.1. 3s radiative levels

&CHEM_REACTION reaction='Ne[3P1] -> Ne + photon1', value=0.486e8/

&CHEM_REACTION reaction='Ne[1P1] -> Ne + photon2', value=6.11e8/

! 3.2 4s radiative levels
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&CHEM_REACTION reaction='Ne[4s] -> Ne + photon11', value=1.21e8/

! 3.3. Radiation imprisonment

&CHEM_REACTION reaction='Ne + photon1 -> Ne[3P1]', value=1.539e-3/

&CHEM_REACTION reaction='Ne + photon2 -> Ne[1P1]', value=1.746e-3/

&CHEM_REACTION reaction='Ne + photon11 -> Ne[4s]', value=1.0e-3/

! 3.4. Cascade reactions

&CHEM_REACTION reaction='Ne[3p] -> Ne[3P2] + photon3', value=9.24e7/

&CHEM_REACTION reaction='Ne[3pM] -> Ne[3P2] + photon4', value=6.128e7/

&CHEM_REACTION reaction='Ne[3p] -> Ne[3P1] + photon5', value=6.722e7/

&CHEM_REACTION reaction='Ne[3pM] -> Ne[3P1] + photon6', value=9.397e7/

&CHEM_REACTION reaction='Ne[3p] -> Ne[3P0] + photon7', value=1.691e7/

&CHEM_REACTION reaction='Ne[3pM] -> Ne[3P0] + photon8', value=2.49e7/

&CHEM_REACTION reaction='Ne[3p] -> Ne[1P1] + photon9', value=6.689e7/

&CHEM_REACTION reaction='Ne[3pM] -> Ne[1P1] + photon10', value=9.208e7/

&CHEM_REACTION reaction='Ne[4s] -> Ne[3p] + photon12', value=1.034e7/

&CHEM_REACTION reaction='Ne[4s] -> Ne[3pM] + photon13', value=1.434e7/

! 3. Heavy species kinetics

! 3.1 Pooling reactions

&CHEM_REACTION reaction='2*Ne[3P2] -> Ne + Ne+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P2] + Ne[3P1] -> Ne + Ne+ + e'

value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P2] + Ne[3P0] -> Ne + Ne+ + e'

value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P2] + Ne[1P1] -> Ne + Ne+ + e'

value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[3P1] -> Ne + Ne+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P1] + Ne[3P0] -> Ne + Ne+ + e'

value=3.2e-10, units='cm3s-1'/
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&CHEM_REACTION reaction='Ne[3P1] + Ne[1P1] -> Ne + Ne+ + e'

value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[3P0] -> Ne + Ne+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P0] + Ne[1P1] -> Ne + Ne+ + e'

value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[1P1] -> Ne + Ne+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[3P2] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P2] + Ne[3P1] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P2] + Ne[3P0] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P2] + Ne[1P1] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[3P1] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P1] + Ne[3P0] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P1] + Ne[1P1] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[3P0] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='Ne[3P0] + Ne[1P1] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

&CHEM_REACTION reaction='2*Ne[1P1] -> Ne2+ + e', value=3.2e-10, units='cm3s-1'/

! 3.2. Molecular ion formation

&CHEM_REACTION reaction='Ne+ + Ne + M -> Ne2+ + M' value=3.5e-31, units='cm6s-1'/

! 4. electron-ion recombination

&CHEM_REACTION reaction='e + Ne2+ -> Ne[3p] + Ne', value=1.338e-6,-0.67, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne2+ -> Ne[3pM] + Ne', value=1.338e-6,-0.67, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne2+ -> Ne[3P2] + Ne', value=6.693e-7,-0.67, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne2+ -> Ne[3P1] + Ne', value=6.693e-7,-0.67, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne2+ -> Ne[3P0] + Ne', value=6.693e-7,-0.67, units='cm3s-1'/

&CHEM_REACTION reaction='e + Ne2+ -> Ne[1P1] + Ne', value=6.693e-7,-0.67, units='cm3s-1'/
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