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Abstract 
With the evolution of computer  systems, software development has 
become  increasingly  more  complex.  One  way  to  deal  with  this 
increased complexity is through the use of software libraries.  Many 
object-oriented  languages,  such  as  C++,  Java,  and  C#,  provide 
special  constructs  such  as  abstract  classes  and  interfaces  which 
ensure  components  are  properly  extended  and  executed. 
Unfortunately,  the Python programming language is  devoid of  such 
features. 

In  this article,  we present  a library extension for  Python to include 
these features into the language and allow for explicit class interfaces 
and abstract classes. While it has been attempted before, our library 
provides a simple, elegant, and Pythonic solution to the problem via a 
pure-Python stand-alone library. By extending the Python language in 
this  manner,  we  allow  developers  to  define  concrete  models  for 
libraries  and  create  modular  code,  while  ensuring  software  system 
designs are enforced at  run time. We also argue this provides the 
Python  language  another  degree  of  flexibility  in  a  formalized 
mechanic,  as  opposed  to  error-prone  traditional  “hand-shake” 
contracts.  The  usability  of  our  proposed  Python  extension  is 
demonstrated in a case study of an original game engine framework.



1 Introduction

There are many modern languages today which allow the definition of a class which does 
not contain implementation, but only an interface towards an implementation.  This notion 
of an interface allows for software engineers to more easily utilize a preprogrammed library 
or abstract the utilization of their own library for others.  It allows for inherit communication 
between a variety of objects without the need for objects to know explicitly how the other 
object is defined, only there exists a protocol established on how it can be interacted with.

When interfacing with a set of code it is  desired to enforce specific rules on behavior.  This 
eliminates the possibility of error when the rules are followed correctly, or a mechanism for 
debugging when rules are broken.  It is through these interfaces libraries can easily be 
defined and extended in manners which allow them to be more flexible and easier  to 
understand for the person wishing to utilize their functionality.

Currently,  the Python language does not have such a construct.   Any sort of interface 
implementation used now relies on verbal,  error-prone,  “hand-shake”  contracts.   If  not 
properly documented or implemented frustrating errors can occur which have little to do 
with  actual  programming  and just  small  programmer  typos  or  misunderstandings.   By 
having  a  formal  interface  and  abstract  class  formalism,  these  frustrating  coding  and 
debugging issues are set aside with an initial performance overhead.
    
For nearly a decade now [6], there have been discussions for a formal method of  class 
interface support  in the Python Language.   In  our research,  we have found five other 
varying implementations of interfaces for Python.  While some may say this is plenty, and 
one of them must work, none of them have garnered enough attention to become a formal 
part of the Python language.  We feel the main reason for this has been lack of focus and 
lack of clear, concise documentation.

There have been strong arguments to the benefits of interfaces, especially with multiple 
inheritance [7].  Python supports multiple inheritance well and with our library can support 
interfaces as well.  While there have been concerns over typing changes interfaces can 
imply and the separation of interfaces from abstract classes [6], we can address these 
issues as well.

Many other high-level languages, such as Ada, C++, C#, Delphi, Eiffel, Java, PHP, and 
Smalltalk,  include support  for  interface constructs.   The notion of  interface is  not  new 
either, being a language feature in C++, Eiffel,  and Smalltalk back in the 1980s.  This 
plethora of languages spans over a decade, and from strong to dynamically typed.

This paper presents a stand-alone pure-Python library which allows for the verification of 
interfaces and abstract classes.  A description of the library, its features, and solutions 
follows.  Next, an evaluation section commenting on performance and the practicality of 
the library as implemented in a game engine case-study.   Finally,  the other  previously 
attempted solutions are addressed.



2 Pythonic Interface Library        

In  order  to  solve the  many issues  associated  with  interfaces,  a  complete  stand-alone 
library  solution  is  proposed  here.   With  it  is  provided  an  easy  concrete  solution 
implementing not only interfaces but the notion of abstract classes as well.  It can also 
enable type enforcement for arguments and return values of specified methods.  This is all 
accomplished with the inclusion of the library on top of the Python v2.5 language.  It has 
no other risks or side effects if not included.  It implements the functionality of interfaces 
through  the  use  of  function  decorators  which  provide  a  formal  and  familiar  point  of 
reference already utilized in the Python language.  This is all  accomplished in a single 
Python file as well, providing the simplest possible access and least amount of resistance 
for acceptance.
    

2.1 Library Feature Overview
    

● Multiple Inheritance
Interface requirements checked through class hierarchy

● Extended Interfaces
Implemented interfaces can be interfaces themselves

● Multiple Interfaces
Class can inherit multiple interfaces

● Abstract Classes
Only  tagged  methods  are  required  for  interface,  others  can  implement 
specific functionality

● Multiple Behavior Models
Provides three simple method constructs to specify interface behavior

● Simple Syntax
A simple syntax which extends current basic language constructs

● Low Overhead
There is a slight memory overhead for each interface created, and the only 
performance overhead for the simplest interface construct is added only to 
the instantiation of the implementing class

● Single File
Everything  is  implemented  in  a  single  Python  module.   Nothing  else  is  
required besides the Python 2.5 base libraries.  This makes it incredibly trivial 
to add and does not convolute itself with excess baggage.

As  stated  above,  there  are  currently  many complicated,  fractured,  and  un-maintained 
solutions  for  this  issue.   None  of  them provide  a  simple  methodology or  appropriate 
documentation, or they focus on just the notion of interfaces without abstract classes.
    
In order to add interfaces to Python a simple unified front is needed.  Our library meets 
these requirements and provides a deep benefit the Python community has been seeking 
for nearly a decade [6].  



2.2 Simple Syntax

The library provides a very simple syntax.  The interface mechanism works off of common 
Python constructs and mechanisms.
   
To create a simple interface requires only three additional things to the normal creation of 
a class.
   
The first is the interface library import:
    

from interface import interface, abstractmethod

The second is to define a class as normal, except to extend the interface "class":
    

class MyInterface(interface):

        
Finally, for each method in an interface, one adds the @abstractmethod decorator, exactly 
as one would with a @classmethod:

@abstractmethod
def required_method(self, required_argument):

""" Interface method description or 'pass' """

                
To form the complete example:

from interface import interface, abstractmethod

class MyInterface(interface):
"""An Interface"""

            
@abstractmethod
def required_method(self, required_argument):

""" 'required_method' description """

    
To utilize this interface, one simply inherits it like any other normal class:
    

class MyImplementation(MyInterface):
def required_method(self, required_argument):

#...my implementation...
return True

If  a class inheriting an interface is  created without  a required  method an error  will  be 
thrown at instantiation.  This allows for easy verification of a set of requirements on objects 
which would like to be used.



In order to have "implemented" the interface it is required for the method signature to be 
identical to the one in the interface in terms of method name and argument names, any 
keyword argument values are allowed to differ.
    
This verification is accomplished at class instantiation imposing a small  overhead.  This 
overhead lessens on additional occurrences due to caching (see Performance below).
    

2.3 Multiple Inheritance
One of Python's strong points is its support for multiple inheritance.  By being able to 
extend a class with the properties of many other classes we can create new more powerful 
constructs from smaller individual pieces.  This is also one of the main proponents and 
reasonings behind interfaces.  Thusly, our interface library can make the most use out of 
Python's built-in support for multiple inheritance.  Described below are scenarios in which 
interfaces are inherited and how the library deals with such situations.

2.3.1     Class Hierarchy  
Interfaces are checked through the class hierarchy to ensure implementation.  A class may 
be overridden multiple times and have other interfaces inherited along the way.  When this 
occurs, only the implemented instantiated classes are checked for compliance with the 
underlying  interfaces.   If  a  class  in  between  is  missing  implementation  or  is  another 
interface, it does not matter as long as the final class has implemented all the required 
methods.

2.3.2     Extended Interfaces  
Interfaces can be not  only be inherited for  implementations,  but  they can be inherited 
themselves to become new interfaces.  This allows for basic constructs to be created and 
later extended within the form of an interface.  By allowing for more complex designs such 
as these, it allows a programmer to be more expressive in his design to further represent 
what should actually occur.

2.3.3     Multiple Interfaces  
One class can inherit from many interfaces.  This allows for one object to interact with 
many other  objects  in  a  well-defined manner.   By similar  ideology multiple  inheritance 
implies interfaces have been included in that extension.  The programmer now has a way 
of  creating  objects  which  can  implement  multiple  behaviors,  such  as  a  widget  which 
provides a view to some data [7].

In all the cases above, overriding methods becomes an issue.  Normal Python behavior is 
utilized in these cases.  Python doesn't support multiple signatures for classes and this 
behavior extends to the overriding of methods in classes as well.  Any concerns of method 
overloading and overriding in the library are therefore minimized.



2.4 Advanced Features
A very simple and effective form of interfaces has been presented.  Already with it, many 
possibilities exist to create well engineered software libraries and programs.  However, 
there are still even more extensions possible to provide even more functionality with very 
little added complexity.  Introduced next will be the two additional constructs provided in 
the formation of interfaces and the notion of abstract classes.

2.4.1     Abstract Classes  
Abstract  classes  provide  partial  implementation  and  interfaces  which  provide  no 
implementation are often separated; however, an interface is merely an abstract class with 
all abstract methods.  It is through this logic the notion of an abstract class need not be so 
different from an interface, and thusly neither should the syntax to create one.

As  with  initial  concerns  over  abstract  classes  [6],  as  well  as  in  other  implementation 
attempts (see previous endeavors), the implementation mechanisms between interfaces 
and  abstract  classes  were  poorly  defined.   In  order  to  be  acceptable  to  meet  these 
concerns, a definition would have to be clear, concise, and natural.  Our library provides 
such an implementation clearly marking what is to be implemented by the programmer.

To create an abstract class is very straight forward.  It is exactly the same as creating an 
interface above.  The only difference is  not to utilize the @abstractmethod decorator on 
the functions which are not part of the abstract set of the class:
    

class MyAbstractClass(interface):
"""An Abstract Class"""

            
@abstractmethod
def required_method(self):

"""Someone will have to implement this for us"""
           

# Here's our implemented method
def provided_method(self, required_argument):

#...fetch a shrubbery...
return 5

Now, it is a class which provides the child with the "provided_method"  method, but still 
requires them to provide implementation for the "required_method".

And due to multiple inheritance as described in the previous section, it is also possible for 
an abstract class to inherit an interface and implement a partial set (or the whole set) of 
required instructions and push the abstraction to another level.
    



2.4.2     Loose Methods  
This  lends  itself  to  the  notion  of  a  "loose"  method.   One  which  can  provide  its  own 
implementation, but if overridden, must follow the specified interface:
    

class MyAbstractClass(interface):
"""An Abstract Class"""

@abstractmethod
def required_method(self):

"""Someone will have to implement this for us"""

@loosemethod
def provided_method(self, required_argument):

#...fetch a shrubbery...
return 5

                
Now, the "provided_method" does not have to be implemented by the inheriting class, but 
if it is, the enforcement of its method signature will occur.

2.4.3     Type Checking and Strict Methods  
One main concern over the implementation of interfaces in Python was interfaces would 
bring about forced type checking [6].  However, this does not have to be the case.  The 
purpose of an interface is to help facilitate the proper utilization of an object.  Some objects 
inherently have strict type requirements, while others don't.  Our interface library is flexible 
enough to support either requirement.

The  @abstractmethod  construct  presented  earlier,  is  used  to  enforce  the  number  of 
arguments passed to functions within a class.  The only type checking here is done at 
instantiation with keyword arguments.  If your interface defines a keyword argument as an 
integer or specific value, any implementing class will have to respect the type (but not the 
value) for its overriding argument:

class MyKeywordInterface(interface):
@abstractmethod
def keyword_method(self, slogan, sugar=int, spice=8.11):

"""Your Ad Here"""

class MyKeywordImplementation(MyKeywordInterface):
def keyword_method(self, slogan, sugar=10, spice=9.2):

print "Slogan Power(" + str(sugar + spice) + "): " + slogan

key = MyKeywordImplementation()
key.keyword_method("Hello, World!", "Too Many Secrets", " aren't there?")



In the previous example, keyword arguments are overridden by different values, but are 
enforced  to  be  of  the  same  type  i.e.  sugar  could  not  default  to  a  string  in  the 
implementation.  However, at run-time like any other Python method, no enforced type 
checking occurs.

Therefore, our final construct is the "strict" method.  This construct provides concrete run-
time argument type checking and enforces return value types as well.

class MyStrictClass(interface):
"""Have very specific requirements here"""

            
@strictmethod
def precise_method(self, obj, number=int, protocol=str):

"""What crazy things will happen here, I wonder?"""
return bool

                
In the "precise_method" it is now required to pass three arguments to the  method, the 
second of which must be of type integer, and the last to be a string.  The implementer must 
also ensure their function returns a boolean value.  If any of these conditions are not met, 
an error will occur.  Of course, these additional checks add overhead on each function call 
compared to normal instantiation based checking; however, it is done transparently without 
disrupting documentation on the original method.
    
If  one  wants  to  make a  "loose"  strict  method,  then  they can  add  our  @loosemethod 
decorator on top of our @strictmethod one:
    

class MySomewhatStrictClass(interface):
"""Have very specific requirements here"""

@loosemethod
@strictmethod
def precise_method(self, obj, number=10, protocol="standard"):

"""It will only be strict if someone overrides us, or
    doesn't provide us with nice arguments..."""
#...we'll provide some implementation here...
return bool_var
return bool

                
The implementer of our "MySomewhatStrictClass" interface can decide to utilize the built-
in "precise_method" or to create his own version of it  adhering to the guidelines defined 
within our interface.  Notice the extra return call at the end of the function.  This is provided 
to have the library adhere to the boolean type instead of an instance variable.  Due to the 
nature of implementations, a return call can occur anywhere within the function.  Rather 
than search and try and pick the most appropriate return call to choose, the last one is 
used for type inference.  Since Python doesn't care if we place a redundant return call 
afterwards, we can utilize this exploit to provide a convenient means for type checking.



2.4.4     Special Methods: isinterface and isimplemented  
In order to complete the library, two special methods have been provided for introspection 
purposes.   They are  “isimplemented”  to  check  for  interface  compliance  even on non-
interface objects, and “isinterface” which checks if an instance of a class is an interface.

class strictlooseTestInterface(interface):
"""An Interface to test loose and strict methods"""

        
@strictmethod
def method0(self):

            """method 0"""
            

@loosemethod
def method1(self, arg1):

"""method 1"""
print "1"

@loosemethod
@strictmethod
def method2(self, arg1=2, arg2=4):

"""method 2"""
return arg1+arg2
return int

        
@abstractmethod
def method3(self):

pass
            
class strictlooseTestImpl(strictlooseTestInterface):

def method0(self):
print "method0"

# We're not required to override this method here
#        def method2(self, arg1=5, arg2=0):
# return arg1-arg2

def method3(self):
pass

print isinterface(strictlooseTestInterface) # True
print isinterface(strictlooseTestImpl) # False
print isimplemented(strictlooseTestInterface, strictlooseTestImpl) # True
print strictlooseTestImpl.isimplemented(strictlooseTestInterface) # True
print isimplemented(strictlooseTestInterface, strictlooseTestImpl())# True
print isimplemented(strictlooseTestInterface, "spamandeggs") # False

The isimplemented function can work on the class object or instances of classes.  There 
are also two ways to call the isimplemented function.  If it is known the class is derived 
from an interface, the method based approach works well.  Otherwise, the more general 
isimplemented function call works best (and in any situation).



2.5 Error Messages
When working  with  interfaces,  there  are  a  variety  of  concerns.   To  address  these,  a 
detailed error message is provided in each failure case to provide a programmer with the 
most appropriate feedback.  Most error messages will occur on class instantiation when 
interfaces are actually checked.   If  a  strict  type  checked method is  requested,  further 
errors can occur whenever the method is called.

The library provides a set of six error messages to describe varying issues.  Each error 
message inherits from a base InterfaceException class which simple extends the built-in 
Exception class..

2.5.1     DirectInstantiationError  
This error  is thrown if  an interface or abstract  class is instantiated directly.   Since the 
implementation is incomplete, a child class must inherit from the interface and implement 
all the required methods which are described by the interface.

2.5.2     RequiredMethodMissingError  
The RequiredMethodMissingError is thrown on instantiation when the implementing class 
does  not  implement  a  required  method  defined  in  the  interface.   The  error  message 
includes information about which interface is not adhered to and which class was violating 
the interface.  It also provides the interface method's documentation string and signature 
for quick diagnosis of the problem.

2.5.3     MismatchedSignatureError  
Like the RequiredMethodMissingError above, the MismatchedSignatureError occurs if the 
implementing  class  did  not  adhere  to  the  interface's  definition.   Similarly,  the  error 
message includes a complete set of information for rectifying the issue.

2.5.4     IncorrectArgumentTypeError  
This error only occurs when the @strictmethod decorator is used.  It is thrown when an 
implemented strict method is called if one of the arguments passed to the method does not 
adhere  to  the  type  specified  in  the  interface  specification.   And  like  the  other  error 
messages, it provides a description of the offending method, the interface from which the 
error occurs, and the explanation of the passed argument type and what was expected.

2.5.5     IncorrectReturnTypeError  
The final error which can occur is also from the @strictmethod decorator.  It occurs when 
the method called returns a value which does not match the required specification.  This 
will  normally  be  the  fault  of  the  implementer  as  their  required  specification  is  their 
responsibility.   But,  in  the  case  it  does  occur  detailed  information  similar  to  the 
IncorrectArgumentTypeError is provided to ease debugging.



2.5.6     NotInterfaceError  
The NotInterfaceError  is used to prevent the usage of  the special  interface decorators 
(@abstractmethod, @loosemethod, and @strictmethod) when the class is not inheriting 
from the interface class.  This occurs on decorator execution when the class is read by the 
interpreter.  This prevents the breaking of the library be circumventing the checks in the 
base interface class.

2.6 Failure Cases
At  the  present  time  there  are  only  two  known  failure  cases  where  it  is  possible  to 
circumvent the enforcement of the interface mechanism.
    
Interfaces  are  registered  and  checked  through  the  Python  "__new__"  customization 
construct.   If  the  inheriting  class  of  an  interface  overrides  this  method  for  their  own 
purposes without calling the base class or interface's __new__ method then no interface 
check is performed.
    
However,  this  should  be  a  non-issue as  the  Python  documentation  itself  [5],  explicitly 
states it should be good form to call the parent class' __new__ method.  Otherwise, the 
__new__ method should not be used.  While, this is not strictly enforced by the language, 
it does provide the notion things are not likely to behave properly anyway if the convention 
is ignored.
    
Another  possibility  currently  exists,  which  would  be  caused  intentionally  on  the 
programmer's part.  It would be to forcibly overwrite methods in the implementing class at 
runtime  through  assignment.   This  would  circumvent  the  instantiation  based  interface 
checking, as the check will have already occurred.
    
It is possible to prevent this with Python customization methods; however,  re-performing 
the check each time an attribute or method is set adds too much of a performance cost.  It 
was decided for this reason to exclude the check, and make note of the possibility here.

There is also another current incompatibility with regards to the Python base types.  If an 
attempt is made to check any built-in methods of a base type (such as remove on a list or 
customization functions __getitem__), with an interface that requires such a method, an 
error will  occur.  This is due to the introspection library's inability to provide information 
about the built-in slot wrapper objects.  If this was not the case, then it would be possible 
to create base class templates similar to the proposal in PEP 3119 [1] for the rest of the 
Python 2 series.  This will be discussed further in section 4.2.

2.7 Overview
We have now not only provided a very simple, low overhead interface  structure, but a 
more concrete implementation with type checking which rivals implementations in other 
languages.  In fact, it provides more functionality as Python has multiple inheritance.  With 
our library, classes can have multiple interfaces, interfaces can be extended themselves, 
abstract classes are now possible, arguments and return values can be type checked with 
the  @strictmethod  construct,  and  override  checking  can  be  enforced  with  the 
@loosemethod construct.



3 Evaluation    
There are multiple  checks which can be performed on a library to test  its  usefulness. 
These  checks  go  beyond  the  stated  specifications  and  present  concrete  answers  to 
practical questions.

The first of these tests is on actual performance of the library.  While Python is not the 
speediest  language in  existence and is  focused more  on  rapid  development,  it  is  still 
important  to  have  an  idea  of  the  cost  of  using  an  additional  feature.   Secondly,  an 
implemented  case-study  will  be  discussed,  showing  the  benefits  gained  by  adding 
interfaces.

3.1 Performance
One final  question  remaining  is  how much does the  utilization  of  an interface cost  in 
performance to a program.  We cannot speak for the other solutions out there; however, 
they must do a similar amount of work in order to check the interface correctly.  Obviously, 
if it was built into the language it would be faster; however, after some careful tests, it was 
discovered there is not a significant performance cost for the use of interfaces in relation to 
the time which they save in programmer effort.

Testing was performed with the built-in timeit library using 50 trials of 100000 passes each. 
As each computer is different,  these results are used for a relational sense of cost as 
compared to an absolute.
    
First we tested normal class instantiation of a light dummy class.  The average cost on this 
test  was  0.9  usec/pass.   We then  created  another  simple  class  which  extended  the 
previous and tested the instantiation time of inheritance.  We found with the inherited class 
the time to be 1.54 usec/pass,  and for  a double inheritance (such as an implemented 
interface,  the  interface  description,  followed by the  base  interface)  the  time  was  2.11 
usec/pass.
    
Secondly,  an  interface  test  was  performed.   We  provided  a  simple  base  interface 
analogous  to  our  dummy  class  from  the  previous  tests.   And  we  created  a  simple 
implementation of that interface.  We first ran a test without any caching.  This would force 
the interface to be checked at every instantiation of the implementing class.  The time was 
about 60 usec/pass.  Not very promising; however, we then enabled our caching system, 
thus skipping the interface check on every subsequent iteration.  This yielded a substantial 
benefit,  cutting our time to 2.69 usec/pass.  Only a 1.15 usec/pass difference between 
interfaces and normal inheritance, or if  looking at the equivalent number of inheritance 
steps  a  0.58  usec/pass  difference.   The  difference  in  times  is  attributed  to  the  extra 
dictionary lookups needed to check if the interface has already been cached and to check 
for possible incorrect usage of the library.  Each dictionary lookup adds approximately 0.3 
usec/pass.  From this standpoint our library is doing a minimal amount of extra work.

Of course, when looking at the strict type checking methods times increase dramatically as 
much more work is needed to ensure compliance and there is more overhead when calling 
the method itself as well.

Percentage wise these numbers are substantial.  However, the main draw to Python is the 
ease and speed of development time, not run time.  We believe this slight increase in 
instantiation time is a small price to pay for the added benefit our library provides.



3.2 Case-Study

To show the benefits of an interface library,  a case-study will  now be presented which 
shows the tribulations of working without interfaces juxtaposed with how interfaces solve 
simple issues.  This case-study will be in the form of a game engine.  In order to show the 
benefit of interfaces, presented here is a component to a game engine shown in both its 
non-interfaced original form, and the new interfaced form.

There are many types of libraries produced in today's age.  They provide many functions 
from simple  networking  to  complex  graphical  user  interfaces.   In  each  case  a  library 
implements  a specific  set  of  methods to  accomplish  a certain  set  of  tasks.   To make 
accomplishing  these  tasks  easier,  having  a  standardized  method  of  handling  data  is 
helpful.  Normally, the programmer is required to utilize library structures and objects to 
accomplish  this  task;  however,  with  the  power  of  interfaces  it  is  possible  for  the 
programmer to provide their own implementation and for the library to act upon it.

3.2.1     The Game Engine  
Game  engines  are  becoming  increasingly  more  popular  as  computational  systems 
become more complex and as innovative games become scarce.  The need to focus on 
design over programmer  implementation  is  strong,  especially when time pressure  and 
failed mechanics force design changes at the last minute.  By having a layer of abstraction 
creating games becomes a much simpler task.  Having a library to complete the mundane 
tasks of game creations furthers creativity by allowing focus to stay on the game instead of 
nitpicky details.

One design for a game engine is to break apart the complex structure of a game into 
discrete elements.   The following example makes use of a system of separated game 
“modes” such as menus and game parts.  Each mode is registered with a base manager 
which controls the flow of input and the rendering stream.  These system events are then 
passed  to  the  active  mode.   In  this  regard,  it  is  similar  to  the  familiar  methodology 
implemented in the new XNA platform [8].

Our case-study will utilize the “mode” class as an example to the benefits of interfaces and 
abstract  classes.   The  mode class  is  registered  with  a  base  manager  class  which  is 
responsible for delegating the game control.  A mode is responsible for receiving various 
types of input, responding to music functionality, and updating the screen.  Initially, before 
interfaces a basic mode had the following implementation:



3.2.2     Basic “Hand-shake” Protocol Based Mode  

class Basic:
def __init__(self, manager):

self._manager = manager
        

def activated(self, activator):
pass

    
def key_down(self, key):

pass

def key_up(self, key):
pass

def mouse_down(self, pos, button):
pass

    
def mouse_up(self, pos, button):

pass

def mouse_move(self, pos, buttons):
pass

def music_end(self):
pass

This class was used as a basis for implementation to allow a mode to not be forced into 
providing calls to functions it may not need (e.g. if there is no mouse movement in the 
game then the mouse_down and mouse_up methods would not need to be implemented.), 
but which the game manager would attempt to call.  The programmer was required also to 
implement a run(self, screen) method called by the manager to tell the mode to draw itself 
to the screen object.  However, from the above implementation, it is hard to verify if the 
programmer has accomplished any of these tasks, especially if he does not know of them.

By utilizing the power of  interfaces and abstract  classes,  not  only can a more flexible 
system be created, but something which is inherently more readable too.  If this simple 
class is broken down into a few parts, the user of the library will only make use of what 
they need.

In  this  manner  a  clear  and  concise  structure  can  be  formulated  which  will  allow 
programmers to take and implement only what they need and allow whatever other part of 
the  application  they  construct  to  determine  if  it  can  interact  with  their  object  or  not. 
Following is the example of how this could be achieved with the basic construct which was 
laid out above.



3.2.3     Basic Interface Based Mode  

from interface import interface, abstractmethod, loosemethod

class KeyboardHandlerInterface(interface):
"""Interface for Modes requiring Keyboard input"""

@abstractmethod
def key_down(self, key):

"""Handle Key Down Event"""

@abstractmethod
def key_up(self, key):

"""Handle Key Up Event"""

class MouseHandlerInterface(interface):
"""Interface for Modes requiring Mouse input"""

@abstractmethod
def mouse_down(self, pos, button):

"""Handle Mouse Down Event"""

@abstractmethod
def mouse_up(self, pos, button):

"""Handle Mouse Up Event"""

@abstractmethod
def mouse_move(self, pos, buttons):

"""Handle Mouse Move Event"""

class MusicNotificationInterface(interface):
"""Interface for Modes requiring Music end notification"""

@abstractmethod
def music_end(self):

"""Handle Music End Event"""

class Basic(interface):
"""A Basic Abstract Class For a General Game Mode"""

@loosemethod
def __init__(self, manager):

self._manager = manager

@abstractmethod
def activated(self, activator):

"""Handle When our Mode is activated"""

@abstractmethod
def run(self, screen):

"""Handle Updating Drawing Screen"""



The programmer is now required by the interface to implement the required methods.  The 
time was also taken to split  the varying protocols into separate sections to facilitate  a 
better hierarchy [7].  With the prior layout, the implementer is only required to implement 
the interfaces he requires for input recognition.  If  the mode does not need to receive 
mouse data, then it won't implement the MouseInterfaceHandler and no data will be sent. 
Below is an outline for a completed Mode class which is interested in keyboard input only:

class MyBasicMode(Basic, KeyboardInterfaceHandler):
def activated(self, activator):

self._my_activator = activator

def run(self, screen):
# draw the Flying Circus

def key_down(self, key):
# handle input

def key_up(self, key):
pass

3.2.4     Using an Interface Based Approach  
Now, a structure is in place which provides a concrete model to follow.  With the library's 
simple  isinterface or  isimplemented functions,  power  is  provided to not  only verify the 
interfaces  on  instantiation,  but  allowing  for  an  easier  migration  from a  non-interfaced 
framework to an interfaced one.  Follows is how this migration can occur in our on-going 
game engine example.

Due to the special isimplemented function, the base library manager class can inspect the 
modes it  receives and determine if  they implement the correct  Basic mode handler  to 
accept the delegation of the varying game events.

The  other  advantage  of  utilizing  the  isimplemented  function,  is  that  it  is  checking  for 
interface compatibility and not the actual class hierarchy.  In this manner it  is easier to 
convert existing projects to leverage the power of interfaces.  If present classes already 
make use of the methods provided in the interface, they can be called and checked as if 
they had already implemented the interface, without actively specifying the relation.  The 
benefit allows larger projects using protocol “hand-shake” methods to slowly convert to the 
use of  interfaces without  breaking compatibility.   Therefore  in the above example,  if  a 
mode implements  the  mouse_down,  mouse_up,  and  mouse_move methods  it  will  still 
receive those events from the game manager.

This provided flexibility extends Python's dynamic nature by not rigidly enforcing rules, but 
by allowing for a way to check existing classes for compatibility in a proper fashion.

While Python's dynamic nature can leverage the power of a custom built loop for each 
Mode based on its needs, provided next is the naïve manager loop as a final example of 
the game engine case-study:



Naïve Game Manager Main Loop

if not isimplemented(Basic, mode): raise TypeError(repr(mode) + 
               " must inherit from Basic Mode")

for event in event_queue():
if event.type == QUIT:

self._quit = True
break

elif self._active_mode.isimplemented(KeyboardHandlerInterface):
if event.type == KEYDOWN:

self._active_mode.key_own(event.key)
continue

elif event.type == KEYUP:
self._active_mode.key_up(event.key)
continue

if self._active_mode.isimplemented(MouseHandlerInterface):
if event.type == MOUSEBUTTONDOWN:

self._active_mode.mouse_down(event.pos, event.button)
continue

elif event.type == MOUSEBUTTONUP:
self._active_mode.mouse_up(event.pos, event.button) 
continue

elif event.type == MOUSEMOTION:
self._active_mode.mouse_move(event.pos, event.buttons)
continue

if event.type == MUSICEND and \
   self._music_mgr != None and \
   self._active_mode.isimplemented(MusicNotificationInterface):

self._active_mode.music_end()
        
self._active_mode.run(self._screen)

4 Related Work

Since the initial discussions of the addition of interfaces to Python [6], much work has been 
done to create an interface implementation for Python.  There have been many of these 
works, but not any one of them has succeeded in becoming a standard part of the Python 
language.  Most other solutions have been very broad and lost focus on the simplicity of 
interfaces, where others are lacking proper documentation, or are using complex language 
constructs.  Afterwards, the latest Python interface proposal will be discussed.

4.1 Previous Endeavors
Following each other interface attempt will be discussed, and an explanation of why it was 
unsuccessful and how our library improves upon it.  In most cases these other libraries 
focus purely on interfaces or some complex abstraction of them.



4.1.1     PEP 245  
One of the oldest solutions presented to the Python group was a Python Enhancement 
Proposal  (PEP).   PEP 245  [2]  proposed  an actual  semantic  change  to  the  language. 
While the proposal was well formed, it involved much work and risk to implement and thus 
never moved forward in the approval process.
    
Our solution is an already built and tested stand-alone library, which by doing so removes 
all  risk  from its  proposal.   Anyone not  wanting interfaces simply does not  include the 
module.  If they do, then they accept the additional functions the library adds like any other 
module.  They are then free to utilize the power of interfaces without disrupting anything 
else.  Also, as their interfaces will be hidden within their own module, anyone utilizing their 
code will not gain any additional side effects from their inclusion of the interface module 
(outside of the enforcement of the interfaces utilized).

4.1.2     Metaclasses  
Two other  "solutions"  have appeared on the ASPN:  Python Cookbook  which  are  very 
similar.  Both involve the use of metaclasses.  These implementations actually do work, 
but are very specific about only defining interfaces, are utilizing a complex Python feature 
with a complex syntax, and don't verify the complete implementation of the interface.
    
Our solution not only provides a very simple syntax which extends a simple notion already 
in  Python,  but  also  enforces the correct  implementation  with  feedback,  and allows for 
partial implementations such as abstract classes.

4.1.3     The Zope Project  
The Zope Project  later  defined  its  own interface  implementation  [3].   The  age  of  this 
implementation  is  very  hard  to  judge  based  on  the  available  information;  however,  it 
definitely seems to have been conceived in thought for the longest period of time.  But like 
most of the solutions here, an "unpythonic" method of execution is provided which also 
specifically focuses on interfaces alone without abstract classes.
    
Our solution is not part of a larger package, and provides a concise set  of constructs to 
allow for the implementation of interfaces.  There is nothing fancy or convoluted to impede 
the actual process of implementing an interface.

4.1.4     PyProtocols      
There has also been yet another more recent endeavor called PyProtocols [4].  In concept 
it is the closest to our vision; however, like all the other implementations mentioned here, it 
lacks a clear focus and strong documentation.  The PyProtocols project seems abandoned 
and with lack of examples, getting the out dated library to work seems impossible.
    
Our solution has been tested extensively on the Python 2.5 platform.  It  not only works 
well, but is very simple to understand.  It is also very clear and applies a basic principle 
which allows for the enforcement of an entire interface or just a partial part for an abstract 
class.
        



4.2 Relation to PEP 3119
Recently, PEP 3119 [1] was released as a discussion about abstract base classes for the 
built-in types in Python 3000 (sets, lists, dictionaries).  While the notion of built-in abstract 
base classes does relate to our work on interfaces (and the abstract classes it can create 
as well),  our work applies to Python as it  is now, and is more focused on the general 
software engineers  requiring  this  functionality as  opposed to  the  future change to  the 
language discussed within PEP 3119.
    
PEP 3119 is also very closely related to our idealized notion of interfaces presented here. 
However, we have circumvented the need for metaclasses as proposed for usage within 
PEP 3119, making it even simpler for a programmer to implement.  We have also provided 
other constructs for the enforcement of argument and return value type checking and for 
the allowance of methods which are only enforced when overridden (something which is 
truly unique).  Our library is also geared more to general classes for complete abstracted 
library implementations, as opposed to the core classes of Python itself.

There has also been some discussion on PEP 3119 [9] on whether or not implementing 
abstract base classes would add too much “weight.”  And if basic interfaces should be 
provided  which  can  be  checked  against  the  basic  type  instead  of  the  type  being  an 
abstract class itself.  Our library presented above is capable of emulating the interface of 
the base classes as proposed in PEP 3119 as well.  However, an issue with the inspection 
library prevents the retrieval of detailed method information about the built-in classes, and 
therefore isimplemented cannot be used for sanity checks against a base class.  Hopefully, 
in the future it would be possible to fix this issue, and be able to provide a solution in the 
Python 2 series for what is being proposed as a language change in Python 3000.
    
Ideally, our library would be incorporated into the rest of the Python v2 series and merged 
into any further work which develops on PEP 3119 for Python 3000.
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