
unittest is Broken:
Toward Composable, Shareable Test Framework Extensions

Collin Winter
Google, Inc

collinwinter@google.com

0. Abstract

In this paper I examine the shortcomings and core design flaws of JUnit and JUnit-derived test
frameworks, such as Python's PyUnit (aka unittest), focusing specifically on the programmer's ability to
extend the framework. I then discuss the requirements for an extensible testing framework and
introduce test_harness, an alternative framework designed from the ground up to address these
fundamental issues. Finally, examples drawn from real-world, PyUnit-based test suites are reformulated
using test_harness to demonstrate the power of the new framework.

1. Introduction

When writing test suites, it is often desirable to mix in additional functionality in order to augment the
tests themselves, e.g., the ability to mark certain tests as "expected to fail" or to indicate that a given
test should skipped in the presence of a given condition. While many testing frameworks exist that
allow the creation of such augmentations and extensions, the design of these frameworks greatly limits
the ability of the test writer to combine extensions in order to create the ideal testing environment for
the current project. This lowers the incentive to share such framework extensions with the wider
development community, thus both inhibiting software reuse and increasing the barriers to properly
testing certain kinds of code.

In this paper, I will explore the requirements for a testing framework that will allow extensions to be
easily shared and combined, in the process contrasting these principles with those found in existing
popular testing frameworks. In section 5, I introduce test_harness, an implementation in Python of
the ideas set forth in earlier sections. Finally, I discuss further ideas and future directions for
test_harness.

2. Terminology

For the purposes of this paper, the following terms and definitions will be used:

- A "test" is a piece of code that exercises some other code and verifies it performed as expected. In
JUnit terms, a "test" is a single test method on a test class [HT03].
- A "test suite" is any collection of tests.
- A "test runner" is any mechanism that iterates over a test suite, running each individual test and
collecting the results.
- "Combining" or "composing" framework extensions means any process by which multiple extensions
are applied to the same test suite.

3. What Has Come Before

The dominant family of testing frameworks is Kent Beck's SUnit framework for Smalltalk [Beck99] and
its many progeny: JUnit (for Java), PyUnit a.k.a. unittest (Python) [Pur03], RUnit (Ruby), Test::Unit
(Ruby), CPPUnit (C++), HUnit (Haskell), SchemeUnit (Scheme) [WSG02], etc., of which JUnit is the
most well-known and the basis for most of the other fooUnit frameworks. (I will use "xUnit" to refer to
these systems collectively.) I will restrict my focus to SUnit, JUnit and their derivatives; HUnit and
SchemeUnit are written in functional languages and so operate under a vastly different set of
assumptions and restrictions than do JUnit and co.

While xUnit systems allow test authors to extend the framework, most such extensions tend to be
exceedingly difficult to compose.

One area where this difficulty is prominent is in handling exceptions: in xUnit, one piece of code catches
and categorized the exception (e.g., runtime error, test failure, etc.) and then uses another piece of
code to record this categorization by calling, e.g., addPass(), addFailure(), addError(). In order to
extend this system, both the code that catches the exception and the code that records the category
must be kept in sync, and any effort to combine multiple extensions must be applied equally across
both systems, in addition to whatever test runner mechanism is provided. Ruby's Test::Unit framework
[Tal03] makes this somewhat easier using an observer pattern [GHJV95], though this is less than ideal
since it does not allow one extension to prevent other extensions from mishandling a given exception;
such control is necessary when implementing extensions that use exceptions to signal from one piece of
code to another (see section 5.IV for examples).

Another sticking point in xUnit comes when implementing extensions that run a single test multiple
times while only recording a single run (useful for shaking out nondeterministic tests). Because xUnit
uses a single method, run(), to execute the test, test-specific set-up and tear-down code as well as to
handle raised exceptions, writing an extension that desires to modify any part of the test life cycle is
required to reimplement a significant portion -- if not all -- of the run() method of one of the provided
TestCase classes. This leads to a system of extension composition that looks suspiciously like repetitive
extension rewriting.

4. Toward Composable Extensions

Having enumerated some of the problems with existing test frameworks, let's look at the requirements
for a framework that avoids these issues. The chief goal of such our new framework is to make it
possible to share and easily combine extensions to the framework.

Extensions to our framework should be able to operate in concert with any number of other extensions
as well as they can alone, that is, as the sole extension. In order to achieve this, it is essential that
each extension need no information about its environment; each extension should be as self-contained
and independent as possible, responsible only for its own functionality and nothing more. What a given
extension doesn't handle, it should trust that some other part of the system will handle that.

In order to avoid the problems inherent in xUnit's single run() method, a new separation of concerns
must be devised. Examining the life cycle of a test suite and its components, we see the following
abstract structure (expressed in pseudo-Python):

 for test in test_suite:
 prepare_for(test)
 try:
 run_single_test(test)
 except Exception as e:
 handle_exception(e)
 finally:
 finished_with(test)

This is effectively the cycle seen in xUnit, where the body of the loop is subsumed into a single function
call. In order to maximize the flexibility and composability of framework extensions, these steps must
be as explict as possible, so that an extension has to override only the portions it is interested in and no
more.

These guidelines are fairly abstract and so encompass a number of more minor points. These will be
discussed in more depth in the next section.

5. Introducing test_harness

test_harness is a Python-language implementation of the above guidelines with some elaboration. The

current version is focused on running tests and reporting the results; some issues outside of this area
have received only light treatment, in particular test discovery and test aggregation. These issues will
be discussed in section 6.

A link to the test_harness source can be found in the References section [Win07].

5.I. High-level Overview

The test_harness framework consists of a single class, TestRunner, which is subclassed by extensions.
This class is responsible for all facets of the test lifecycle outlined above: iterating over the test suite,
setting up for a test, running the test, handling any exceptions, tearing down after the test, doing it all
over again.

TestRunner's primary purpose is to lay out an API for subclasses to follow; it implements only minimal
functionality. In particular, it is responsible for defining the two default exception categories, "error"
and "failure"; the former indicates a runtime exception, and the latter signals that an assertion did not
hold. The minimal nature of the core framework means that most functionality that is traditionally
considered "built-in" to other frameworks (e.g., terminal output of test results) is implemented here as
extensions to test_harness.

test_harness extensions are composed using cooperative multiple inheritance. For example, defining
an extension that logs test results to a console and to a database and supports TODO tests (see section
5.IV) is achieved like so:

 from test_runner import ConsoleRunner
 from test_runner import DBLogRunner
 from test_runner import TodoRunner

 class MyRunner(TodoRunner, DBLogRunner, ConsoleRunner):
 pass

Communication between the several extensions takes place through a chain of responsibility pattern
[GHJV95], implemented via superclass calls. This is most clearly evident in the mechanism for
classifying a raised exception: if an extension does not recognize the given exception, it is expected to
hand off the exception object to the next class in the method resolution order [Sim02]. For a further
example, see the RefcountRunner example in section 5.III.

5.II. Extension Isolation

One key aspect of making extensions as independent as possible is the exception handling facility.
test_harness allows each exception-consuming exception to handle only those exceptions it is
interested in, trusting that other parts of the system will take care of the rest.

Each extension defines a list of categories it will assign to exceptions. Each category is a string that will
be used by output extensions when labeling exceptions or when summarizing the results of a test run.

Taking an extension for TODO tests as an example, the relevant sections of code look something like
this:

 class TodoRunner(test_harness.TestRunner):
 categories = ['todo pass', 'todo fail']

 def handle_exception(self, test, exc_info):
 exc_type = exc_info[0]

 if issubclass(exc_type, TodoPassedException):
 self.log_exception('todo pass', test, exc_info)
 elif issubclass(exc_type, TodoFailedException):
 self.log_exception('todo fail', test, exc_info)
 else:
 super(TodoRunner, self).handle_exception(test, exc_info)

If a given test raises an exception, the runner's handle_exception() method will be invoked with the
test and the return value from Python's sys.exc_info() function [VRo06] as arguments. If the raised
exception was an instance of either TodoPassedException or TodoFailedException (both specific to
TodoRunner), the runner will use the log_exception() method to categorize the exception. If the
exception is of some other type, the runner passes it on, in the expectation that some other runner will
handle it. (The TestRunner base class handles all exceptions that reach it.)

5.III. The Test Life Cycle

The test cycle is similar to the one described in section 4, though with some minor modifications.

 def run(self, test_suite):
 for test in test_suite:
 self.pre_test(test)
 try:
 self.run_test(test)
 except Exception as e:
 self.handle_exception(e)
 finally:
 self.post_test(test)

 def run_test(self, test):
 try:
 test.set_up()
 test.run()
 finally:
 test.tear_down()

This shows the two relevant methods from the TestRunner class, run() and run_test(). Notice that
we have separated test-specific set-up and tear-down code into their own steps in the sequence (the
set_up() and tear_down() calls in run_test()), distinct from per-test set-up and tear-down that is
specific to extensions (the pre_test() and post_test() calls in run()). This differentiation is
important when writing extensions that, e.g., rerun individual tests multiple times.

One extension that takes advantage of this is RefcountRunner, which helps to detect reference count-
related bugs in C-language Python extension modules by repeatedly running a single test. The relevant
method of the runner looks something like this:

 repeats = 7

 def run_test(self, test):
 ref_counts = [0] * repeats
 up = super(RefcountRunner, self)

 for r in range(7):
 up.run_test(test)
 run_garbage_collection()
 ref_counts[r] = get_total_refcount()

 for r in range(1, self.repeats):
 if ref_counts[r] != ref_counts[0]:
 raise RefcountFailed(ref_counts)

Here, test repetition is achieved by looping over a superclass call, which is expected to handle the work
of actually running the test. In xUnit, where no differentiation is made between test- and extension-
specific set-up/tear-down, such a strategy would result in each test being reported numerous times.
Separating these concerns leads to simpler, more comprehensible extensions.

5.IV. Comparison With PyUnit

5.IV.i. Conceptual Size

Compared to xUnit (in particular, PyUnit), there are fewer concepts and classes for an extension author
to keep track of in test_harness: test_harness has only one class, TestRunner, whereas PyUnit has
four: TestCase, TestRunner, TestSuite and TestResult. Their interaction is not especially complicated,
but it does add to the complexity involved in construction PyUnit extensions.

5.IV.ii. Ease of Composition

This is the true test of the test_harness design.

In examining the relative ease of combining multiple extensions, two user-defined extensions will be
considered: an extension to mark tests as "expected to fail" (hereafter, "TODO support"), and the
RefcountRunner example from section 5.III.

All code samples referred to below can be found in [Win07].

5.IV.ii.a. TODO Support

The desired functionality is the ability to mark certain tests as "expected to fail": if the test fails, report
it, but don't consider it a problem; on the other hand, if the test passes unexpectedly, alert the user.

Implementing this in terms of PyUnit requires 140 lines of Python, including five PyUnit classes and four
support functions and classes. The same functionality, implemented as a test_harness extension,
requires 61 lines of Python. The same four support functions and classes from the PyUnit
implementation are used, and only a single test_harness TestRunner subclass had to be defined.

5.IV.ii.b. RefcountRunner

The desired functionality is the ability to run an individual test multiple times, keeping track of the
Python interpreter's global reference count after every run. If the global reference count is not
consistent across every run, an exception should be raised; ideally, this exception will be counted as a
"refcount-failed" error, rather than a regular "assertion failure" exception.

Implementing this in terms of PyUnit requires 117 lines of Python, consisting of four PyUnit classes and
one support class. The same functionality, implemented as a test_harness extension, requires 36 lines

of Python. The same support class from the PyUnit implementation is used, and only a single
test_harness TestRunner subclass had to be defined.

5.IV.ii.c. Composition

Combining the functionality of the two PyUnit extensions proved difficult, requiring a significant amount
of new code to be written in order to achieve both sets of functionality. Of the 197 total lines of the
combined PyUnit extension, over half (105 lines) was new code. The primary trouble spot was in
catching and categorizing raised exception, an area necessitating almost a complete rewrite.

By contrast, composition of the two test_harness extensions looks like this:

 from test_harness.runner.refcounting import RefcountRunner
 from test_harness.runner.todo import TodoRunner

 class MyRunner(RefcountRunner, TodoRunner):
 pass

These four lines achieve the same functionality and level of composition that took 197 lines and
considerable frustration with PyUnit.

5.V. Comparison With Decorators

Several reviewers of early drafts of this work have pointed out that the basic functionality of several
examples cited above, specifically TODO tests and RefcountRunner, can be trivially implemented as
Python decorators. While this is certainly true, a framework-based implementation offers several
advantages over decorators:

1. Decorators must be manually added to each test they should be applied to, whereas
test_harness extensions can be swapped in and out behind the tests (as it were), with only
minimal changes to the test suite as a whole. In contrast, removing, e.g., decorator-based TODO
support from a test suite would require deleting every single occurrence of the decorator across
the entire suite, whereas removing that support from test_harness-based testing infrastructure
would require deleting a single import and removing a base class from a class definition.

2. Decorator-based implementations do not interact well with code that reports the results of a
testing run. These decorators must work within the exception categories established by the
reporter code, whereas a proper test_harness extension is able to define custom exception
categories that will be picked up by reporter extensions.

6. Future Direction

An alpha release of test_harness has already been made available to the public [Win07], and the
response has generally been positive. Several users have submitted feedback based on their experience
using test_harness in their own projects, and a follow-up release is planned that will incorporate their
comments.

One high-priority item for future releases of test_harness is some measure of compatibility with
PyUnit. This would most likely take the form of a TestCase-alike class that would provide the expected
assertion methods. Because of the number of components in PyUnit (TestRunner, TestCase,
TestResult, TestSuite, etc), full compatibility is prohibitively difficult, though the minimal solution
should be sufficiently comprehensive to enable relatively easy migration from PyUnit to test_harness.

Another important facet that has thus far been omitted from test_harness is a comprehensive test
discovery strategy. Test discovery is an orthogonal process to test execution and so has fallen outside
the purview of my active interest. There are several Python-language test discovery systems such as
nose [XXX] and py.test [XXX], and these will be consulted for any future work on test discovery in

test_harness.

The ideal endpoint would be to have test_harness replace PyUnit in the Python standard library.
PyUnit compatibility is obviously a prerequisite for this. Several core Python developers have
communicated that they are interested in seeing test_harness folded into the standard library, and it
is my hope that a gentle PR campaign -- of which this paper is a part -- will win over the general Python
community.

7. Conclusion

test_harness offers considerable advantages to test engineers when compared to xUnit frameworks.
The ability to trivially composed any number of extensions encourages authors to make their extensions
available to a wider developer community, creating a larger pool of extensions to choose from when it
comes time to create just the right testing environment for a given project.

While advanced framework users will receive a significant benefit from using test_harness over, e.g.,
PyUnit, the impact on more basic test environments is probably insufficient to motivate a migration. It
is hoped that future work, such a PyUnit compatibility layer and inclusion in the Python standard library
will make it possible to bring test_harness's advantages to a wider audience.

8. References

[Beck99]. Kent Beck. Kent Beck's Guide to Better Smalltalk chapter 21. SIGS Reference Library.
Cambridge University Press, 1999. http://www.xprogramming.com/testfram.htm

[GHJV95] - Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[HT03] - Andrew Hunt and David Thomas. Pragmatic Unit Testing In Java with JUnit. The Pragmatic
Programmers, 2003.

[Pur03] - Steve Purcell. PyUnit. In the Python standard library, version 2.5. http://www.python.org

[Sim02] - Michele Simionato. The Python 2.3 Method Resolution Order.
http://www.python.org/download/releases/2.3/mro/

[Tal03] - Nathaniel Talbott. Test::Unit - Ruby Unit Testing Framework. In the Ruby standard library,
version 1.8.6. http://www.ruby-lang.org/

[VRo06] - Guido van Rossum. sys -- System-specific Parameters and Functions.
http://docs.python.org/lib/module-sys.html

[Win07] - Collin Winter. test_harness -- Next-gen Testing Infrastructure for Python.
http://oakwinter.com/code/test_harness/

[WSG02] - Noel Welsh, Francisco Solsona and Ian Glover. SchemeUnit and SchemeQL: Two Little
Languages. In Third Workshop on Scheme and Functional Programming, Pittsburg, Pennsylvania, USA,
October 2002.

