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Simulation Chain

Cannot calculate testable predictions from first principles




Simulation Chain

Forward

Cannot calculate testable predictions from first principles

Theory and Experiment connected via
non-deterministic simulation

After simulation chain: compare measured and simulated
distributions

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder



Simulation Chain — Inversion

Forward

—

Inverse

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder



Why unfolding?

Forward

Inverse

Theory analyses don’t care about detectors

Comparing data from different experiments (Global Analysis)

For some analysis direct access to theory parameters

Resolution

Data preservation

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder



Unfolding — a toy example

Consider binned distributions at
gen and rec level

Describe detector effects by
response matrix R

Unfold by (pseudo-)inverting the
matrix

hi =RV}

rec gen




Unfolding — a toy example

1l —¢ € 0

Detector: local, linear smearing R = € 1 — ¢ €

0 € 1l —¢

h.,.. =Rh _ p-1
rec gen hgen — R hrec
1 1 -3¢ —e¢ e”
Inversion: non-local, non-linear R~ —€ 1 —2¢ —¢ (squared terms dropped when
1 — 4¢ linear term non zero)
€” —e¢ 1 -3¢

Example from Bellagente et al.: arXiv:2006.06685



Unfolding — classical methods

h en — R_l hl"@C

rec gen f

Classical unfolding methods: binned, one-dimensional

Using inverse matrix gives very high variance

In praxis: regularised methods are used




Unfolding — unchained

p(xrec) — J'p(xgen)R(xrec’ xgen) dxgen

p(Xrec ‘ Xgen)

p(xgen) — Jp(xrec)p(xgen ‘xrec) dxrec

target probability



Unfolding — unchained

Classical methods are restricted to
binned, one-dimensional
distributions

p(xrec) — J'p(xgen)R(xrec’ xgen) dxgen

p(Xrec ‘ Xgen)

We would like to learn high-
dimensional, unbinned unfolding
probability

p(xgen) — Jp(xrec)p(xgen ‘xrec) dxl"@C

target probability

10



Unfolding — generative methods

2

Xrec ~ P (xrec)

xgen ~P (xgen ‘ xrec)
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Unfolding — generative methods

Condition (folded event)

Gaussian Latent Space

xgen ~P (xgen ‘ xrec)
V\
Generative Network Target (unfolded event) -



Unfolding — generative methods

Goal: learn transformation latent = gen
phase space conditioned on rec event

During training, use paired events of forward | j\

simulation
SUPTYI  p—

<

Xrec ~ P (xrec)

After training, repeated sampling from latent
space with constant condition allows Xgen ~ PXgen | Xrec)
probabilistic single event unfolding
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Intermezzo — Generative Networks

An unfolding method based on

INN INN Conditional Invertible Neural
Networks (cINN) using iterative
Performance affine RQ splines 4— training
coupling Backes et al.
Which generative Network? GAN arxXiv:2212.08674
A
v

Returning CP - Observables to
the Frames they Belong

How to GAN away Detector
Effects

Ackerschott et al.

Invertible Networks or from arXiv:2308.00027
Partons to Detector and back
Bellagente et al. again
arxXiv:1912.00477
Bellagente et al. Event-by-event Comparison
arXiv:2006.06685 between Machine-Learning- and
Transfer-Matrix-based Unfolding
Methods
Backes et al.

arXiv:i2310.17037 14


https://arxiv.org/abs/2308.00027
https://arxiv.org/abs/2310.17037

Intermezzo — Generative Networks

Target probability p(x,,,, | x

I”€C)

Train on conditional likelihood loss

INN

Z = - <10gp9(xgen ‘ xrec)>x

gen Xrec™P (xgen’xrec)

a(_;6’(xgen ‘xrec) >
0x Xy o X

gen genrrec™ P (xgemxrec)

— = <10g (p latent <§6’(xgen ‘xrec)>> + lOg
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Z + |et example
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Data from arXiv:1911.09107, Figure from Huetsch et. al: arXiv:24xx.XxXxXxx 16
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Data from arXiv:1911.09107, Figure from Huetsch et. al: arXiv:24xx.XxXxXxx

Z + |et example — single event unfolding
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Z + Jet example — migration

Jet mass m |GeV] Jet mass m |GeV]

Reco

Data from arXiv:1911.09107, Figure from Huetsch et. al: arXiv:24xx.XxXxXxx



Parton Level Unfolding — Z + 2 jets

Forward

Inverse
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Figure top from A. Butter et al.: arXiv:2203.07460, R. Winterhalder, Figure bottom from Bellagente et al. arXiv:2006.06685
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What about model dependence?

Prior

Unfolding probability is Bayesian posterior =
we have a prior

Prior is gen level distribution in training data
(MC simulation)

<
P (xrec | xgen)p (‘xgen)
P (xgen | xrec) =
Problematic for large MC-data differences P (xrec)

20



lterative Bayesian Unfolding (IBU)

D) = Jp(xm»p(xgm ) dx,,

Unfolding probability is Bayesian posterior =
we have a prior

Prior is gen level distribution in training data
(MC simulation)

Problematic for large MC-data differences
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lterative Bayesian Unfolding (IBU)

\\V\\L“‘N“
p(‘xgen) — p(xrec p(‘xgen |‘x7‘ec dxl’ec

Unfolding probability is Bayesian posterior =

we have a prior Using Bayes’ Theorem Prior
Prior is gen level distribution in training data |
(MC simulation) A
( ) J ( ) p(xrec ‘ xgen)p(xgen) d
Problematic for large MC-data differences P\WXgen) = | P\Wrec ~ ~ ~ Arec
J J P (xrec ‘ xgen)p (xgen)dxgen
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lterative Bayesian Unfolding (IBU)

\\V\\L“‘N“
p(‘xgen) — p(xrec p(‘xgen |‘x7‘ec dxl’ec

Using Bayes’ Theorem

Unfolding probability is Bayesian posterior =
we have a prior

Prior is gen level distribution in training data
(MC simulation)
p(xrec ‘ xgen)p(xgen)

Problematic for large MC-data differences p (xgen) — Jp (Xrec) ~ ~ ~ dxrec
° J P (xrec ‘ xgen)p (xgen)dxgen

Start from prior and use iterative approach

IBU idea: Update your prior after each
iteration

P (xrec ‘ xgen)p n_l(xgen)
pn(xgen) — p(xrec) ~ 1= ~ dxrec
Ip (xrec ‘ X gen)p " (.X gen)dxgen 23




lterative Bayesian Unfolding (IBU)

P (xrec‘x en)p -l X en)
P ) = [Pl e,
Jp(xrec ‘xgen)pn (xgen)dxgen

Unfolding probability is Bayesian posterior =
we have a prior

Prior is gen level distribution in training data

(MC simulation) In the past for LHC-like phase spaces

no access to those quantities

Problematic for large MC-data differences

v
J
JJ _ hi Rij hgen n—1
gen,n Z rec Z R. hk
IBU idea: Update your prior after each ; i k ik Tgen,n—1
iteration \

One dimensional & binned
24



lterative generative unfolding

Simulation Experiment

Detector MC Reco A A A | Measured
Level

1. Train C‘NN ——- 2 Predict

‘ \Ic‘NN / ,
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Particle MC Truth w w Unfolded
Level :

New MC Truth Q) -—

Figure from Backes et al.: arXiv:2212.08674 25



lterative generative unfolding
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Figures from Backes et al.: arXiv:2212.08674



Generative Unfolding in experimental praxis

Failure modes in model dependency

All necessary information to unfold could be
lost

ion ?
Background subtraction * Currently, working together with

experimentalist bridging gap

Finite detector efficiency between theory and praxis

Sideband studies

Combinatorics




And now what?

Generative machine learning allows for unbinned,
high dimensional unfolding

Stay tuned!

Methods to unbias unfolding networks exists and
are currently tested to match experimental
requirements

In parallel, there is an on going project comparing
different ML based unfolding methods
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