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Simulation bridges Theory and Experiment.
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Hadronization Detectors

&

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder
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Simulation bridges Theory and Experiment.

\ 4

Detectors Events

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

o MS Publi
ATLAS Preliminary Luyiic
o2 Ex

2022 Computing Model - CPU: 2031, Conservative R&D
24 Tot: 33.8 MHS06*%y

lic
IL-LHC (2031/No R&D Improvements) fractions.

U H

RECO: 35%

== Data Proc
- MC-Full(Sim) Analysis: 4%
= MC-Full(Rec)

" MC-Fast(Sim)
- MC-Fast(Rec)
EvGen
Heavy lons.
== Data Deriv
17% = MC Deriv
Analysis

8%
CERN-LHCC-2022-005 CMS-NOTE-2022-008
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Detector simulation is computationally expensive.
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Evaluating Generative Models is a hard task.

We want to know if Pgenerated = Ptraining data (= Pruth?)

o If we have access to p(x), we can compute f-divergences.

L Example: KL-divergence [ dx p(x)log %

o Alternatively, we could use Integral Probability Metrics.

L Example: Wasserstein distance
o In Computer Science, one uses the Frechét Inception Distance.

o In HEP, we usually look at histograms.

See also: Kansal et al. [arXiv:2211.10295]
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A Classifier provides the “ultimate metric”

According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish two samples.

o A powerful classifier trained to distinguish the samples should therefore learn
__ _Pdata_
w =
Pmodel *

o If this classifier is confused, we conclude = Pgata (%) = Pmodel (¥)

(something monotonically related to)

= This captures the full phase space incl. correlations. CK/D. Shih [2106.05285, PRD]

Failure modes of the model can now be seen in the w histogram:
Data manifold not

populated by model:
= missed feature

Data manifold over- .

populated by model: ~" 3

= missmodeled 105
feature

w(z) R. Das, CK, et al. [2305.16774, SciPost]
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Part: The CALOGAN Dataset

PartII: The CaloChallenge 2022
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I: We use the same calorimeter geometry as CALOGAN

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x96,12x 12, and 12 x 6

Geant4, Pb Absorber, IAr Gap, 10 GeV e~
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HIGH ENERGY PHYSICS.

I: We use the same calorimeter geometry as CALOGAN

The GEANT4 configuration of CALOGAN is available at
https:/ /github.com/hep-lbdl/CaloGAN

We produce our own dataset: available at [DOL: 10.5281/zenodo.5904188]

Showers of e™, v, and " (100k each)

All are centered and perpendicular

Einc uniform in [1,100] GeV and given in addition to the energy deposits per voxel:

Z mM‘
0 20 3

ncelll

o

Energy (MeV)
Energy (MeV)
Energy (MeV)

$ Cell ID

 Cell ID

$ Cell ID
CE8vovouvswnro

3
nCell D

75 6 7 8 91011
n Cell 1D

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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I: CALOFLOW uses a 2-step approach to learn p(Z|Ejxc).

Flow I learns P1 (Eo, Elr E2 |Einc)
= is a Masked Autoregressive Flow, optimized using the log-likelihood.

Flow II learns pz(% |Eo, E1, E2, Einc) of normalized showers
@ in CALOFLOW v1 (2106.05285 — called “teacher”):

@ Masked Autoregressive Flow trained with log-likelihood
= Slow in sampling (=~ 500 slower than CALOGAN)

@ in CALOFLOW v2 (2110.11377 — called “student”):

o Inverse Autoregressive Flow trained with Probability Density Distillation
from teacher (log-likelihood prohibitive), i.e. matching IAF parameters to
frozen MAF van den Oord et al.[1711.10433]

= Fast in sampling (~ 500x faster than CALOFLOW v1)

Claudius Krause (HEPHY Vienna) NFs for CaloSim March 28, 2024 9/24
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

\
7

student IAF

slow: density estimation, p(x)

fast: sample generation

\

Loss = MSE(z,2/) + MSE(x, x') + MSE(z;, 2}) + MSE(x;, x]) + MSE(6;,6.) + MSE(x, 6,)

Claudius Krause (HEPHY Vienna) NFs for CaloSim
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I: Probability Density Distillation passes the information from

the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student IAF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,2/) + MSE(x,x') + MSE(z;, 2}) + MSE(x;, x}) + MSE(6;,6.) + MSE(0x, 6,)

Claudius Krause (HEPHY Vienna) NFs for CaloSim March 28, 2024
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

b 4

/ \
LMSE(Z' z) student TAF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,2/) + MSE(x,x') + MSE(z;, 2}) + MSE(x;, x}) + MSE(6;,6.) + MSE(0x, 6,)
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student IAF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,2/) + MSE(x,x') + MSE(z;, 2}) + MSE(x;, x}) + MSE(6;,6.) + MSE(y, 6,)
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

Sl DA ( MSE(x, %) |

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,2/) + MSE(x,x') + MSE(z;, 2}) + MSE(x;, x}) + MSE(6;,6.) + MSE(y, 6,)
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample gdneration

—L MSE(z;, 2}) + MSE(6, 6.)

slow: density esti:l:ation, p(x)

fast: sample generation

Loss = MSE(z,2/) + MSE(x,x') + MSE(z;, 2}) + MSE(x;, }) + MSE(6s,6.) + MSE(8y, 6})
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation
h 4 h 4 h d '

—[ MSE(x;, x}) + MSE(6, 6.) J—

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,z') + MSE(x, x') + MSE(z;, z}) + MSE(x;, x}) + MSE(6;,6}) + MSE(6y, 6;)

NFs for CaloSim March 28, 2024 10/24
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I: CALOFLOW passes the “ultimate metric” test.

According to the Neyman-Pearson Lemma we have: pGeanta(X) = Pgenerated (¥) if a
classifier cannot distinguish data from generated samples.

GEANT4 vs. | GEANT4 vs. (teacher) | GEANT4 vs. (student)
AUC CALOGAN CALOFLOW v1 CALOFLOW v2

.| low-level 1.000(0) 0.870(2) 0.824(4)
‘ high-level 1.000(0) 0.795(1) 0.762(3)
low-level 1.000(0) 0.796(2) 0.760(3)

i high-level 1.000(0) 0.727(2) 0.739(2)
4 | low-level 1.000(0) 0.755(3) 0.807(1)
" high-level 1.000(0) 0.888(1) 0.893(2)

AUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused

Claudius Krause (HEPHY Vienna)

NFs for CaloSim
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I: Sampling Speed: The Student beats the Teacher!
CALOFLOW* CALOGAN* | GEaNT4®
teacher | student
| training [ 22+82 min | +480 min | 210 min | Omin |
generation time | 3., o | 008 ms 0.07ms | 1772 ms
per shower
*: on our TITAN V GPU, *: on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

107
100] — GEANT 4
—— CaloFlow v1 10°
10°§ —— CaloFlow v2 o
18] — CaloGAN
. 10'
£ 10 =
] 10° £
=108 -
10?
10°
10"
10*
10°
10° . . . . . .
10° 10 10° 100 107 108 100 100

Generated Showers
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I: CALOFLOW: Comparing Shower Averages: e*
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I: CALOFLOW: histograms: e*
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I: CALOFLOW: histograms: e*
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I: We don’t need a MAF / TAF: an INN is working well
CALOFLOW INN GeANT4!
teacher | student
training 22+82 min * | + 480 min * | O(400 —500)* min | O min |

tion ti
generation time 36.2 ms* 0.25 mst 0.21 ms¥ 1772 ms

per shower

*: on Rutgers TITAN V GPU, . in container (end-to-end) on Rutgers TITAN V GPU, #: on the machines in Heidelberg
t. on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

AUC et 07 et
low-level | 0.53 | 0.53 | 0.66
high-level | 0.66 | 0.67 | 0.79

Ernst/Favaro/CK/Plehn/Shih
[2312.09290]

AUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused

Claudius Krause (HEPHY Vienna) NFs for CaloSim



. A\,
........ QA

Normalizing Flows for Calorimeter Simulation

Part: The CALOGAN Dataset

PartII: The CaloChallenge 2022

ause (HEPHY Vienna) NFs for CaloSim



OAW e | = /fl\“ HEPHY

II: Going the next step: towards deployment in FastSlmulatlon.

[Have a rapidly evolving field: need a survey of current approaches on a common dataset!J

https://calochallenge.github.io/homepage/

= Fast Calorimeter Challenge 2022
Michele Faucci Giannelli, Gregor Kasieczka, CK, Ben Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

@ Dataset 1:  AtlFast3 trainig data  (y: 368, 7: 533 voxels) [2109.02551, Comput.SoftwBig Sci.]

o Dataset 2: simulated detector (e7: 6480 voxels)
(e™: 40500 voxels)

Number of contributions

@ Dataset 3: simulated detector

- VAE
—GAN
- Flow
= Diffusion

dslphotons dslpions  ds2

Submissions were presented at a workshop in Rome and at ML4Jets-22 / ML4Jets-23.

NFs for CaloSim

Claudius Krause (HEPHY Vienna)
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II: CaloChallenge datasets: Showers are centered.

HIGH ENERGY PHYSICS.

z
P segments :
po R slices
\i\\
N
N layers

Application to full detector: center coordinate system at shower.

https://g4fastsim.web.cern.ch/docs/ml_workflow/#dataset-description

Claudius Krause (HEPHY

NFs for CaloSim
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IT: Dataset 1 is small enough for CALOFLOW and INN.
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Dataset 1 — photons: 368 voxels in 5 layers
AUC low-level | high-level
CALOFLOW teacher [2210.14245] 0.701(3) 0.551(3)
CALOFLOW student [2210.14245] | 0.739(3) 0.556(3)
CaloINN [2312.09290] 0.626(4) 0.638(3)
Dataset 1 — pions: 533 voxels in 7 layers
AUC low-level | high-level
CALOFLOW teacher [2210.14245] | 0.827(3) | 0.692(2)
CALOFLOW student [2210.14245] | 0.866(2) | 0.706(4)
CaloINN [2312.09290] 0.784(2) | 0.732(2)

Ysics.

Claudius Krause (HEPHY Vienna)

NFs for CaloSim




AUSTRIAN
ACADEMY OF
SCIENCES

I: Targeting higher dimensionality via dimensionality reduct1on.

To combat the scaling, we reduce the dimensionality with a VAE.

) \'Z
i€ HEPHY

Ysics.

— data ———=
latent Decod
space ecoder
i NF Ernst/Favaro/CK/Plehn/Shih
[2312.09290]
see also Cresswell et al.

[2211.15380]
)

AUC low-level | high-level
dataset 1 — photons | 0.889(3) 0.966(1)
dataset 1 — pions 0.853(3) 0.921(2)
dataset 2 0.907(4) 0.999(0)
dataset 3 0.881(5) 1.000(0)

Claudius Krause (HEPHY Vienna) NFs for CaloSim
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IT: Targeting higher dimensions via autoregressive generation 1

L2LFlows: Split learning p(Z|Einc) into several steps, leveraging the detector geometry.
@ learns po(Eq,Ep, E3, ..., Ea5|Einc) — how energy is distributed among layers.

Q learns p;(Z;|Z1.i—1, E1.45, Einc) — how the shower in the ith layer looks like.

i HEPHY

HIGH ENERGY PHYSICS.

al

AUC low-level, {_ high-level

dataset 2 7 7 0.737(2) o -
dataset 3 4) 0.733(6) é %%" 5’ B g
- RIS = | |8

s oq

.« 7

Buss/Diefenbacher/Gaede /Kasieczka/CK/Shih [in preparation];
on a different dataset: Diefenbacher/Eren/Gaede/Kasieczka/CK/Shekhzadeh/Shih [2302.11594, JINST]

Claudius Krause (HEPHY Vienna) NFs for CaloSim
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II: Targeting higher dimensions via autoregressive generation 2

iCALOFLOW: Split learning p(Z|Ejy) into 3 steps, leveraging the detector geometry.
Q learns p1(E1, Ep, Es, ..., E45/Einc) — how energy is distributed among layers.

@ learns py(Z1|E1, Einc) — how the shower in the first layer looks like.

@ learns %3 (In |In—1/ n,En, Ey_q, Einc)
— how the shower in layer n looks like, given layer n — 1

Flow 1: p1(Ei| Bine)

AUC Tow-level | high-level B Bin- & B4
dataset 2 teacher | 0.797() | 0.798(3) P11 tt f
dataset 2 student | 0.840(3) 0.838(2) | . .
dataset 3 teacher | 0.911(3) 0.941(1) |
dataset 3 student | 0.910(8) 0.951(1) i Vo Vo |

I Zi-1ya Tia 1y

Flow 3: p3(Zial Bine, Bis Bic1, Zi—1)as i)

M. Buckley, CK, I. Pang, D. Shih [2305.11934, PRD]

Claudius Krause (HEPHY Vienna) NFs for CaloSim
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Normalizing Flows for Calorimeter Simulation

@ Normalizing Flows have shown great performance as surrogate models in
calorimeter simulation.

@ Especially models based on coupling-layers show good sample quality at high
generation speed.

Claudius Krause (HEPHY Vienna) NFs for CaloSim
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Normalizing Flows for Calorimeter Simulation

@ Normalizing Flows have shown great performance as surrogate models in
calorimeter simulation.

@ Especially models based on coupling-layers show good sample quality at high
generation speed.

o For low-dimensional datasets (S O(500)), flows are state-of-the-art in terms of
quality & speed.

e For higher dimensional datasets (= O(103)) we need to investigate modifications /
alternatives.

@ The CaloChallenge allowed us to study several of them in detail. In our studies
with VAEs and autoregressive models, we saw a trade-off in speed vs quality.

@ The final evaluation of the CaloChallenge will quantify those statements.

Claudius Krause (HEPHY Vienna) NFs for CaloSim March 28, 2024 24/24



