The MadNIS Reloaded Enhancing MadGraph with Neural Importance Sampling

 $\begin{aligned} \mathscr{L} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \\ &+ i \bar{\psi} \gamma^{\mu} D_{\mu} \psi \\ &+ \bar{\psi}_{L}^{i} y_{ij} \Phi \psi_{R}^{j} + \text{h.c.} \\ &+ |D_{\mu} \Phi|^{2} + V(\Phi) + \text{BSM} \end{aligned}$

UCLouvain

COMETA WG2 Meeting – March 2024 Ramon Winterhalder – UCLouvain

The LHC simulation chain

The LHC simulation chain + ML

Importance sampling

BDT [1707.00028], NN [1810.11509, 2009.07819] NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, 2311.01548, 2401.09069] Chili [2302.10449]

Surrogate regression

Full weight [2109.11964], Matrix element [1912.11055, 2002.07516, 2006.16273, 2106.09474, 2107.06625, 2109.11964, 2206.14831, 2301.13562, 2302.04005, 2306.07726]

The LHC simulation chain + ML

Importance sampling

BDT [1707.00028], NN [1810.11509, 2009.07819] NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, 2311.01548, 2401.09069] Chili [2302.10449]

Surrogate regression

Full weight [210 Matrix element [1912.11055, 200 2006.16273, 2106.09474, 2107.06625, 210 2206.14831, 2301.13562, 2302.04005, 230

ression 9.11964], 02.07516, 09.11964, 06.<u>07726</u>]

Event generation

Multi-channel: one map for each channel

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Event generation

 $\alpha_i(x) \frac{f(x)}{g_i(x)}$

 $I_{x \sim g_i(x)}$

 $I = \sum_{i=1}^{n}$

$$d\sigma = \frac{1}{flux} dx_a dx_b f(x_a) f(x_b)$$

Sum over channels

MadGraph: build channels from Feynman diagrams

Channel weights

MadGraph: $\alpha_i \sim |M_i|^2$ or $\alpha_i \sim \prod_k |p_k^2 - m_k^2 - im_k \Gamma_k|^{-2}$

rential) cross sections

 $\mathrm{d}\Phi_n\left\langle \left| M_{\lambda,c,\ldots}(p_a,p_b \mid p_1,\ldots,p_n) \right|^2 \right\rangle$

Integrand MadGraph: $d\sigma/dx$

Channel mappings

MadGraph: use amplitude structure, ... refine with VEGAS (factorized, histogram based importance sampling)

Neural Importance Sampling

MadNIS

Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW [2311.01548] Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [2212.06172]

MadNIS – Basic functionality

Normalizing flow to refine channel mappings

Update simultanously with variance as loss function

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

Use physics knowledge to construct channel and mappings

Fully connected network to refine channel weights

MadNIS – Overview

Improved training

Buffered Training Surrogate Integrand

MadNIS – Overview

Improved training

Buffered Training Surrogate Integrand

Neural importance sampling

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478] [Winterhalder et al, 2112.09145]

MadNIS – Overview

Improved training

Buffered Training Surrogate Integrand

Neural Channel Weights

Neural Channel Weights

Neural Channel Weights

$$\alpha_i^{\xi}(x) = -\frac{1}{2}$$

Learn correction only

MadNIS – Overview

Improved training

Buffered Training Surrogate Integrand

MadNIS — Basic functionality

Single channel *i*

MadNIS – Basic functionality $I = \left| \left\langle \alpha_1(x) \frac{f(x)}{g_1(x)} \right\rangle \right| + \left| \left\langle \alpha_2(x') \frac{f(x')}{g_2(x')} \right\rangle \right| + \cdots + \left| \left\langle \alpha_k(x'') \frac{f(x'')}{g_k(x'')} \frac{f(x'')}{g_k(x'')} \right\rangle \right|$ Learned channel weights $\overrightarrow{\alpha}(x)$ Analytic channel Analytic Channel Analytic channel mapping 1 mapping 2 mapping k**Combination of** Normalizing Normalizing Normalizing Flow 2 Flow 1 k channels Flow kConditional Splitting Latent space z

Loss function

Total variance depends on N_i affects optimal $\alpha_i(x)$ use stratified sampling $N_i = N \frac{\sigma_i}{\sum_k \sigma_k}$

$$\mathscr{L} = \sigma_{\mathrm{t}}$$

Loss function

Total variance depends on N_i affects optimal $\alpha_i(x)$ use stratified sampling $N_i = N \frac{\sigma_i}{\sum_k \sigma_k}$

MadNIS – Overview

Buffered Training Surrogate Integrand

Buffered training

Buffered training

Improved training

MadNIS – Overview

Buffered Training Surrogate Integrand

VEGAS initialization

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

VEGAS initialization

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

22

MadNIS – Overview

Buffered Training Surrogate Integrand

Improved multi-channeling

Use symmetries

Groups of channels only differ by permutations of final state momenta ↓ use common flow and combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

Reduced complexity Improved stability

Channel dropping

MadNIS often reduces contribution of some channels to total integral

remove these channels from the training completely

LHC processes

1. excellent results with all improvements

LHC processes

1. excellent results with all improvements 2. same performance with buffered training

LHC processes

1. excellent results with all improvements

- 2. same performance with buffered training
- 3. Larger improvements for processes with large interference terms

Learned channel weights

- In MadNIS many channels are zero droppig channels more efficient training and event generation

Scaling with multiplicity

gg → W⁺dūgg 384 channels, 108 symm. 7x better than VEGAS

Large improvements compared to VEGAS even for high multiplicities and many channels!

gg → ttggg 945 channels, 119 symm. 5x better than VEGAS

The MadNIS Reloaded

Large improvements, even for high multiplicites and complicated processes!

[2311.01548]

¥	HEP ML	Living F	Review			٩
Home	Recent	About	Contribute	Resources	Cite Us	

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as possible. Suggestions are most welcome.

	download	review	\mathbf{O}	GitHub
--	----------	--------	--------------	--------

Expand all sections

Collapse all sections

Reviews

	Modern reviews
	Specialized reviews
	Classical papers
	Datasets
8	Datasets

Outlook

Search

>
>
>

Reviews Modern reviews Specialized reviews **Classical papers** Datasets Classification

Table of contents

Parameterized classifiers Representations Targets

Learning strategies

Fast inference / deployment

Regression

Pileup

Calibration

Recasting

Matrix elements

Parameter estimation

Parton Distribution Functions (and related)

Lattice Gauge Theory

Function Approximation

Symbolic Regression

Equivariant networks.

Equivariant networks. Symbolic Regression

HEPML

Appendix

Importance sampling – VEGAS

Computationally cheap

→ High-dim and rich peaking functions
→ slow convergence

⊖ Peaks not aligned with grid axes
→ phantom peaks

