

AUSTRIAN ACADEMY OF SCIENCES

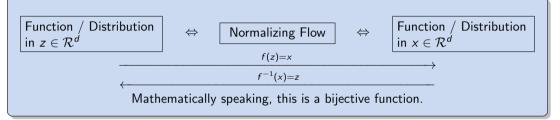
Normalizing Flows

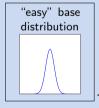
Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

March 28, 2024

Normalizing Flows learn a coordinate transformation.





 \Leftrightarrow

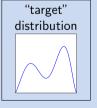
bijective transformation

 $p(x) = \pi(f^{-1}(x)) \left| \det \frac{\partial f^{-1}(x)}{\partial x} \right|$

 \Leftarrow density estimation, p(x)

 \Leftrightarrow

 \Rightarrow sample generation



Training Normalizing Flows

Maximum Likelihood Estimation gives the best loss functions:

Regression:
 Mean Squared Error Loss

Binary classification:
 Binary Cross Entropy Loss

• . . .

Normalizing Flows give us the log-likelihood (LL) explicitly!

 \Rightarrow Maximize log p (the LL) over the given samples.

$$\mathcal{L} = -\sum_{i} \log p(x_i)$$

 \Rightarrow If we don't have samples, but a target f(x), we can use the KL-divergence.

$$\mathcal{L} = D_{KL}[f, p] = \int dx \ f(x) \ \log \frac{f(x)}{p(x)} = \left\langle \frac{f(x)}{p(x)} \log \frac{f(x)}{p(x)} \right\rangle_{x \sim p(x)}$$

Base distributions

$$p(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|$$

- Can be any distribution with only 2 requirements:
 - We can easily sample from it
 - We have access to $\pi(x)$
- Sets the initial domain of the coordinates.
- Most common choices:
 - uniform distribution (compact in [a, b])
 - ▶ Gaussian distribution (in ℝ)

We need a trackable Jacobian and Inverse.

$$p(\vec{x})$$
 = $\pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|$

- First idea: making f a NN.
 - × inverse does not always exist
 - × Jacobian slow via autograd
 - imes $\left|\det rac{\partial f}{\partial z}
 ight| \propto \mathcal{O}(n_{dim}^3)$

 $Dinh\ et\ al.\ [arXiv:1410.8516],\ Rezende/Mohamed\ [arXiv:1505.05770]$

We need a trackable Jacobian and Inverse.

$$\rho(\vec{x}) \qquad = \qquad \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} \quad = \quad \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|$$

- First idea: making f a NN.
 - × inverse does not always exist
 - × Jacobian slow via autograd
 - $imes \left| \det \frac{\partial f}{\partial z} \right| \propto \mathcal{O}(n_{dim}^3)$
- \Rightarrow Let a NN learn parameters θ of a pre-defined transformation!
 - Each transformation is 1d & has an analytic Jacobian and inverse.

$$\Rightarrow \vec{f}(\vec{x}; \vec{\theta}) = (C_1(x_1; \theta_1), C_2(x_2; \theta_2), \dots, C_n(x_n; \theta_n))^T$$

 $Dinh\ et\ al.\ [arXiv:1410.8516],\ Rezende/Mohamed\ [arXiv:1505.05770]$

We need a trackable Jacobian and Inverse.

$$p(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|$$

- First idea: making f a NN.
 - × inverse does not always exist
 - × Jacobian slow via autograd
 - $\times \left| \det \frac{\partial f}{\partial z} \right| \propto \mathcal{O}(n_{dim}^3)$
- \Rightarrow Let a NN learn parameters θ of a pre-defined transformation!
 - Each transformation is 1d & has an analytic Jacobian and inverse.

$$\Rightarrow \vec{f}(\vec{x}; \vec{\theta}) = (C_1(x_1; \theta_1), C_2(x_2; \theta_2), \dots, C_n(x_n; \theta_n))^T$$

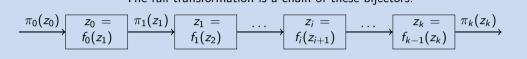
- Require a triangular Jacobian for faster evaluation.
 - \Rightarrow The parameters θ depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

AUSTRIAN ACADEMY OF SCIENCES

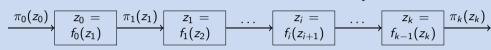
A chain of bijectors is also a bijector

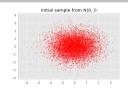
The full transformation is a chain of these bijectors.

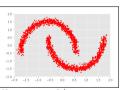


A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

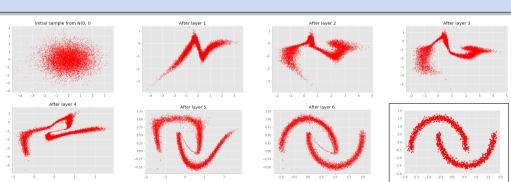






A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.



7/13

Affine Transformations

The coupling function (transformation)

- must be invertible and expressive
- is chosen to factorize:

$$\vec{f}(\vec{x}; \vec{\theta}) = (C_1(x_1; \theta_1), C_2(x_2; \theta_2), \dots, C_n(x_n; \theta_n))^T$$
, where \vec{x} are the variables to be transformed and $\vec{\theta}$ the parameters of the transformation.

historically first: the affine coupling function

$$C(x; s, t) = \exp(s) x + t$$

where s and t are predicted by a NN.

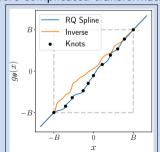
- It requires $x \in \mathbb{R}$.
- Inverse and Jacobian are trivial.
- Its transformation powers are limited.

Any monotonic function can be used.

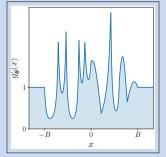
Changing coordinates from \vec{z} to \vec{x} with a map $\vec{x} = f(\vec{z})$ changes the distribution according to

$$p(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|$$

A more complicated transformation then leads to a more complicated transformed distribution.



figures taken from Durkan et al. [arXiv:1906.04032]



Piecewise Transformations (Splines) in a finite domain

piecewise linear coupling function:

The NN predicts the pdf bin heights Q_i .

Müller et al. [arXiv:1808.03856]

AUSTRIAN ACADEMY OF

Piecewise Transformations (Splines) in a finite domain

piecewise linear coupling function:

Müller et al. [arXiv:1808.03856]

$$C = \sum_{k=1}^{b-1} Q_k + \alpha Q_b \qquad \alpha = \frac{x - (b-1)w}{w}$$

$$\left| \frac{\partial C}{\partial x_B} \right| = \prod_i \frac{Q_b}{w}$$

The NN predicts the pdf bin heights Q_i .

Piecewise Transformations (Splines) in a finite domain

piecewise linear coupling function:

Müller et al. [arXiv:1808.03856]

$$C = \sum_{k=1}^{b-1} Q_k + \alpha Q_b \qquad \alpha = \frac{x - (b-1)w}{w}$$

$$\left|\frac{\partial C}{\partial x_B}\right| = \prod_i \frac{Q_{b_i}}{w}$$

The NN predicts the pdf bin heights Q_i .

rational quadratic spline coupling function:

$$C = \frac{a_2 \alpha^2 + a_1 \alpha + a_0}{b_2 \alpha^2 + b_1 \alpha + b_0}$$

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

more flexible

The NN predicts the cdf bin widths, heights, and derivatives that go in $a_i \& b_i$.

Taming Jacobians 1: Autoregressive Models

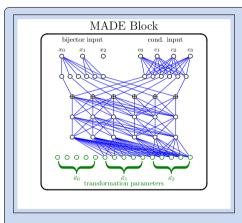
Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by $\vec{\theta}_i = \vec{\theta}_i(x_{j < i})$

$$\vec{\theta_1} = \text{const.} \quad \begin{vmatrix} \vec{\theta_2} = \vec{\theta_2}(z_1) & \vec{\theta_3} = \vec{\theta_3}(z_1, z_2) \\ \downarrow & \downarrow & \downarrow \\ p(x_1) & p(x_2|x_1) & p(x_3|x_1, x_2) \end{vmatrix} \dots \begin{vmatrix} \vec{\theta_i} = \vec{\theta_i}(z_1, \dots, z_{i-1}) \\ \downarrow & \downarrow \\ p(x_i|x_1, \dots, x_{i-1}) \end{vmatrix}$$

Jacobian:
$$\underbrace{\left|\left(\begin{array}{c} 0 \\ \end{array}\right)\right|}_{\mathcal{O}(d)} = \prod_{i=1}^{d} p(x_i|x_1,\ldots,x_{i-1}) = p(\vec{x})$$

Autoregressive NNs: MADE Blocks



$$\vec{\theta_i} = \vec{\theta_i}(x_1, x_2, \dots, x_{j < i})$$

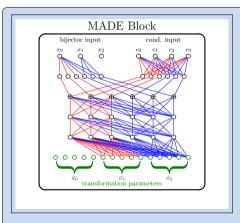
Implementation via masking:

- a single "forward" pass gives all $\vec{\theta}_i(x_1,\ldots,x_{i-1}).$ \Rightarrow very fast
- its "inverse" needs to loop through all dimensions.

 \Rightarrow very slow

Germain et al. [arXiv:1502.03509]

Autoregressive NNs: MADE Blocks



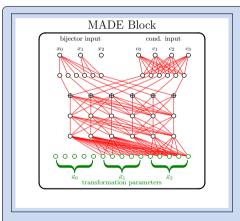
$$\vec{\theta_i} = \vec{\theta_i}(x_1, x_2, \dots, x_{j < i})$$

Implementation via masking:

- a single "forward" pass gives all $\vec{\theta}_i(x_1, \dots, x_{i-1})$. \Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
 - \Rightarrow very slow

Germain et al. [arXiv:1502.03509]

Autoregressive NNs: MADE Blocks



$$\vec{\theta_i} = \vec{\theta_i}(x_1, x_2, \dots, x_{j < i})$$

Implementation via masking:

- a single "forward" pass gives all $\vec{\theta}_i(x_1, \dots, x_{i-1})$. \Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
 ⇒ very slow

Germain et al. [arXiv:1502.03509]

Taming Jacobians 2: Bipartite Flows ("INNs")

$$\theta_{x \in A}(x \in B)$$
 & $\theta_{x \in B}(x \in A)$

⇒ Coordinates are split in 2 sets, transforming each other. forward:

$$y_A = x_A$$

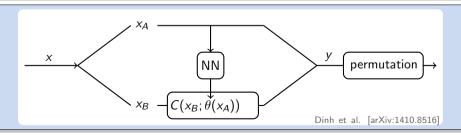
$$y_{B,i} = C(x_{B,i}; \theta(x_A))$$

$$x_A = y_A$$

$$x_{B,i} = C^{-1}(y_{B,i}; \theta(x_A))$$

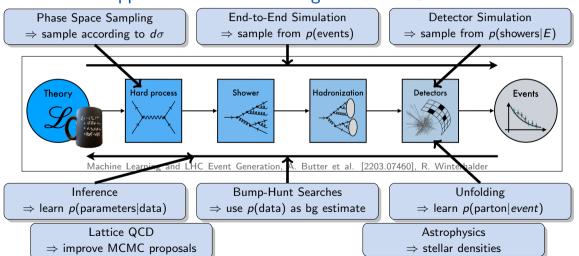
Jacobian:

$$\begin{vmatrix} 1 & \frac{\partial C}{\partial x_A} \\ 0 & \frac{\partial C}{\partial x_B} \end{vmatrix} = \prod_i \frac{\partial C(x_{B,i}; \theta(x_A))}{\partial x_{B,i}}$$



13 / 13

Applications of Normalizing Flows: An Outline



Applications of Normalizing Flows: An Outline

