Normalizing Flows
 - COMETA WG2 Meeting -

Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)
March 28, 2024

Normalizing Flows learn a coordinate transformation.

Function / Distribution in $z \in \mathcal{R}^{d}$	\Leftrightarrow	Normalizing Flow $\begin{array}{l}\text { f(z) }=x\end{array}$	\Leftrightarrow	$\begin{aligned} & \text { Function / Distribution } \\ & \text { in } x \in \mathcal{R}^{d} \end{aligned}$
		$f^{-1}(x)=z$		
Math	tica	peaking, this is a bij	ive	ction.

Training Normalizing Flows

Maximum Likelihood Estimation gives the best loss functions:

- Regression:

Mean Squared Error Loss

- Binary classification:

Binary Cross Entropy Loss

- ...

Normalizing Flows give us the log-likelihood (LL) explicitly!
\Rightarrow Maximize $\log p$ (the LL) over the given samples.
$\mathcal{L}=-\sum_{i} \log p\left(x_{i}\right)$
\Rightarrow If we don't have samples, but a target $f(x)$, we can use the KL-divergence.

$$
\mathcal{L}=D_{K L}[f, p]=\int d x f(x) \log \frac{f(x)}{p(x)}=\left\langle\frac{f(x)}{p(x)} \log \frac{f(x)}{p(x)}\right\rangle_{x \sim p(x)}
$$

Base distributions

$$
p(\vec{x}) \quad=\quad \pi(\vec{z})\left|\operatorname{det} \frac{\partial f(\vec{z})}{\partial \vec{z}}\right|^{-1}=\pi\left(f^{-1}(\vec{x})\right)\left|\operatorname{det} \frac{\partial f^{-1}(\vec{x})}{\partial \bar{x}}\right|
$$

- Can be any distribution with only 2 requirements:
- We can easily sample from it
- We have access to $\pi(x)$
- Sets the initial domain of the coordinates.
- Most common choices:
- uniform distribution (compact in $[a, b]$)
- Gaussian distribution (in \mathbb{R})

We need a trackable Jacobian and Inverse.

$$
p(\vec{x})=\pi(\vec{z})\left|\operatorname{det} \frac{\partial f(\vec{z})}{\partial \vec{z}}\right|-1=\pi\left(f^{-1}(\vec{x})\right)\left|\operatorname{det} \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}}\right|
$$

- First idea: making f a NN.
\times inverse does not always exist
\times Jacobian slow via autograd
$\times\left|\operatorname{det} \frac{\partial f}{\partial z}\right| \propto \mathcal{O}\left(n_{\text {dim }}^{3}\right)$

We need a trackable Jacobian and Inverse.

$$
p(\vec{x})=\pi(\vec{z})\left|\operatorname{det} \frac{\partial f(\vec{z})}{\partial \vec{z}}\right|-1=\pi\left(f^{-1}(\vec{x})\right)\left|\operatorname{det} \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}}\right|
$$

- First idea: making f a NN.
\times inverse does not always exist
\times Jacobian slow via autograd
$\times\left|\operatorname{det} \frac{\partial f}{\partial z}\right| \propto \mathcal{O}\left(n_{\text {dim }}^{3}\right)$
\Rightarrow Let a NN learn parameters θ of a pre-defined transformation!
- Each transformation is $1 \mathrm{~d} \&$ has an analytic Jacobian and inverse.

$$
\Rightarrow \vec{f}(\vec{x} ; \vec{\theta})=\left(C_{1}\left(x_{1} ; \theta_{1}\right), C_{2}\left(x_{2} ; \theta_{2}\right), \ldots, C_{n}\left(x_{n} ; \theta_{n}\right)\right)^{T}
$$

We need a trackable Jacobian and Inverse.

$$
p(\vec{x})=\pi(\vec{z})\left|\operatorname{det} \frac{\partial f(\vec{z})}{\partial \vec{z}}\right|-1=\pi\left(f^{-1}(\vec{x})\right)\left|\operatorname{det} \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}}\right|
$$

- First idea: making f a NN.
\times inverse does not always exist
\times Jacobian slow via autograd
$\times\left|\operatorname{det} \frac{\partial f}{\partial z}\right| \propto \mathcal{O}\left(n_{\text {dim }}^{3}\right)$
\Rightarrow Let a NN learn parameters θ of a pre-defined transformation!
- Each transformation is $1 \mathrm{~d} \&$ has an analytic Jacobian and inverse.

$$
\Rightarrow \vec{f}(\vec{x} ; \vec{\theta})=\left(C_{1}\left(x_{1} ; \theta_{1}\right), C_{2}\left(x_{2} ; \theta_{2}\right), \ldots, C_{n}\left(x_{n} ; \theta_{n}\right)\right)^{T}
$$

- Require a triangular Jacobian for faster evaluation.
\Rightarrow The parameters θ depend only on a subset of all other coordinates.

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

After layer 3

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Affine Transformations

The coupling function (transformation)

- must be invertible and expressive
- is chosen to factorize:
$\vec{f}(\vec{x} ; \vec{\theta})=\left(C_{1}\left(x_{1} ; \theta_{1}\right), C_{2}\left(x_{2} ; \theta_{2}\right), \ldots, C_{n}\left(x_{n} ; \theta_{n}\right)\right)^{T}$,
where \vec{x} are the variables to be transformed and $\vec{\theta}$ the parameters of the transformation.
historically first: the affine coupling function

$$
C(x ; s, t)=\exp (s) x+t
$$

where s and t are predicted by a NN.

- It requires $x \in \mathbb{R}$.
- Inverse and Jacobian are trivial.
- Its transformation powers are limited.

INSTITUTE OF
HIGH ENERGY PHYSICS

Any monotonic function can be used.

Changing coordinates from \vec{z} to \vec{x} with a map $\vec{x}=f(\vec{z})$ changes the distribution according to

$$
p(\vec{x})=\pi(\vec{z})\left|\operatorname{det} \frac{\partial f(\vec{z})}{\partial \vec{z}}\right|^{-1}=\pi\left(f^{-1}(\vec{x})\right)\left|\operatorname{det} \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}}\right|
$$

A more complicated transformation then leads to a more complicated transformed distribution.

[^0]

INSTITUTE OF
HIGH ENERGY PHYSICS

Piecewise Transformations (Splines) in a finite domain

piecewise linear coupling function:

The NN predicts the pdf bin heights Q_{i}.

INSTITUTE OF
HIGH ENERGY PHYSICS

Piecewise Transformations (Splines) in a finite domain

piecewise linear coupling function:

Müller et al. [arXiv:1808.03856]

$$
\begin{aligned}
C=\sum_{k=1}^{b-1} Q_{k}+\alpha Q_{b} \quad \alpha & =\frac{x-(b-1) w}{w} \\
\left|\frac{\partial C}{\partial x_{B}}\right| & =\prod_{i} \frac{Q_{b_{i}}}{w}
\end{aligned}
$$

The NN predicts the pdf bin heights Q_{i}.

Piecewise Transformations (Splines) in a finite domain

piecewise linear coupling function:

Müller et al. [arXiv:1808.03856]

$$
\begin{aligned}
C=\sum_{k=1}^{b-1} Q_{k}+\alpha Q_{b} \quad \alpha & =\frac{x-(b-1) w}{w} \\
\left|\frac{\partial C}{\partial x_{B}}\right| & =\prod_{i} \frac{Q_{b_{i}}}{w}
\end{aligned}
$$

The NN predicts the pdf bin heights Q_{i}.
rational quadratic spline coupling function:
Durkan et al. [arXiv:1906.04032]

$$
C=\frac{a_{2} \alpha^{2}+a_{1} \alpha+a_{0}}{b_{2} \alpha^{2}+b_{1} \alpha+b_{0}}
$$

- still rather easy
- more flexible

The NN predicts the cdf bin widths, heights, and derivatives that go in $a_{i} \& b_{i}$.

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.
Autoregressive models solve this by $\vec{\theta}_{i}=\vec{\theta}_{i}\left(x_{j<i}\right)$

$$
\begin{array}{c|c|c|c|c}
\vec{\theta}_{1}=\text { const. } & \vec{\theta}_{2}=\vec{\theta}_{2}\left(z_{1}\right) & \vec{\theta}_{3}=\vec{\theta}_{3}\left(z_{1}, z_{2}\right) \\
\downarrow & \downarrow & \downarrow & & \vec{\theta}_{i}=\vec{\theta}_{i}\left(z_{1}, \ldots, z_{i-1}\right) \\
p\left(x_{1}\right) & p\left(x_{2} \mid x_{1}\right) & p\left(x_{3} \mid x_{1}, x_{2}\right) & \ldots & p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) \\
\hline
\end{array}
$$

Jacobian : $\underbrace{\left|\left(\bigwedge^{0}\right)\right|}_{\mathcal{O}(d)}=\prod_{i=1}^{d} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=p(\vec{x})$

Autoregressive NNs: MADE Blocks

$$
\vec{\theta}_{i}=\vec{\theta}_{i}\left(x_{1}, x_{2}, \ldots, x_{j<i}\right)
$$

Implementation via masking:

- a single "forward" pass gives all
$\vec{\theta}_{i}\left(x_{1}, \ldots, x_{i-1}\right)$.
\Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
\Rightarrow very slow

Autoregressive NNs: MADE Blocks

$$
\vec{\theta}_{i}=\vec{\theta}_{i}\left(x_{1}, x_{2}, \ldots, x_{j<i}\right)
$$

Implementation via masking:

- a single "forward" pass gives all
$\vec{\theta}_{i}\left(x_{1}, \ldots, x_{i-1}\right)$.
\Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
\Rightarrow very slow

Autoregressive NNs: MADE Blocks

$$
\vec{\theta}_{i}=\vec{\theta}_{i}\left(x_{1}, x_{2}, \ldots, x_{j<i}\right)
$$

Implementation via masking:

- a single "forward" pass gives all
$\vec{\theta}_{i}\left(x_{1}, \ldots, x_{i-1}\right)$.
\Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
\Rightarrow very slow

Taming Jacobians 2: Bipartite Flows ("INNs")

$$
\theta_{x \in A}(x \in B) \quad \& \quad \theta_{x \in B}(x \in A)
$$

\Rightarrow Coordinates are split in 2 sets, transforming each other.
forward:

$$
\begin{aligned}
y_{A} & =x_{A} \\
y_{B, i} & =C\left(x_{B, i} ; \theta\left(x_{A}\right)\right)
\end{aligned}
$$ inverse:

$$
\begin{aligned}
x_{A} & =y_{A} \\
x_{B, i} & =C^{-1}\left(y_{B, i} ; \theta\left(x_{A}\right)\right)
\end{aligned}
$$

Jacobian:

$$
\left|\begin{array}{cc}
1 & \frac{\partial C}{\partial x_{A}} \\
0 & \frac{\partial C}{\partial x_{B}}
\end{array}\right|=\prod_{i} \frac{\partial C\left(x_{B, i ;} ; \theta\left(x_{A}\right)\right)}{\partial x_{B, i}}
$$

Applications of Normalizing Flows: An Outline

Applications of Normalizing Flows: An Outline

[^0]: figures taken from Durkan et al. [arXiv:1906.04032]

