

CARP

Development of a new tool for modelling medical radionuclide production

Duncan Mayhem 11th June 24 This work was partially undertaken within the SECURE project funded by the European Union under grant agreement No. 101061230.

"<mark>S</mark>trengthening the <mark>E</mark>uropean <mark>C</mark>hain of s<mark>U</mark>pply for the generation medical RadionuclidEs"

- Sustainability of medical isotope production
- Focus on irradiation target and production route developments

Strengthening the European Chain of sUpply for next generation medical RadionuclidEs

Presentation Contents

1. What is CARP?

- 2. How does CARP work? (ish)
- **3.** Example inputs and outputs
- 4. Verification & Validation work
- **5.** Intended uses and future work

What is CARP

Computational Assessment of Radionuclide Production

• New tool for modelling the nuclide composition of irradiated target materials

• Inputs:

- Target information (geometry, composition, mass etc.)
- Irradiation conditions

Outputs

- Stepwise evolution of the target nuclide inventory
- Inc. parameters of interest e.g per nuclide contributions to alpha, beta and gamma emissions
- Nuclide agnostic

Aims:

To produce a flexible, batch operable, and easy to use tool for the quick assessment and optimisation of radionuclide production routes by incident particle beams.

To produce simple, human readable and flexible outputs to advise on the pitfalls and benefits of production routes.

To produce a collaborative tool for research purposes to support the medical radionuclide production community, and accelerator system and research reactor beam communities.

How does CARP work?

- So what is FISPIN?
 - UK nuclear fuel inventory code used for validation of UK reactors, reprocessing facilities etc.
 - In development since the 70's, FISPIN 10 (90's/00's) was used for various reactor validation cases throughout Europe
 - New version FISPIN 11 acts as a calculation kernel not constrained to reactors – can model incident particle scenarios

0 dimensional...

How does CARP work? – MCNP -> CARP

- Uses recommended NJOY equations to emulate continuous neutron flux

 as in ORIGEN
- Translates beam and target information into a FISPIN usable format
- TENDL-2017, 2021, ENDFB-VIII
- Energy bin agnostic

How does CARP work? - Summary

- MCNP generates a beam specific particle spectrum across the target
- This particle spectrum is cross-referenced against a cross-section database to produce a FISPIN cross-section library containing the beam data
- The FISPIN kernel calculates the stepwise inventories of the target using this data, producing inventories at the user specified timesteps
- A number of behind the scenes calculations e.g. activity, mass
 - Visualised into a user friendly excel file

Example inputs/outputs - Input

Example inputs/outputs - Output

Time (s)			7.007E+05									
Inventory			target									
Nuclide	Z	ZAI	Mass	Moles	Atoms	Tot Activity	Alpha	Beta	Alpha Power	Beta Power	Gamma+X-Ray	Heat
fissile are shaded			kg			Bq	Bq	Bq	MeV/s	MeV/s	Power	w
*	-	-	*	-	-	*	*	*	*	*	MeV/s 👻	*
Eu160(0)	63	631600	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Gd151(0)	64	641510	4.019E-17	2.663E-16	1.604E+08	1.038E+01	1.038E-07	1.038E+01	2.772E-07	4.030E-01	7.306E-01	1.816E-13
Gd153(0)	64	641530	1.851E-12	1.210E-11	7.289E+12	2.416E+05	0.000E+00	2.416E+05	0.000E+00	1.057E+04	2.577E+04	5.821E-09
Gd159(0)	64	641590	1.074E-14	6.755E-14	4.068E+10	4.220E+05	0.000E+00	4.220E+05	0.000E+00	1.302E+05	2.397E+04	2.471E-08
Gd161(0)	64	641610	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Gd162(0)	64	641620	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Gd163(0)	64	641630	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Tb158(0)	65	651580	1.618E-23	1.025E-22	6.171E+01	7.504E-09	0.000E+00	7.504E-09	0.000E+00	8.384E-10	6.106E-09	1.113E-21
Tb159(0)	65	651590	1.525E-11	9.593E-11	5.777E+13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Tb160(0)	65	651600	1.911E-19	1.195E-18	7.194E+05	7.983E-02	0.000E+00	7.983E-02	0.000E+00	2.054E-02	9.019E-02	1.774E-14
Tb161(0)	65	651610	8.610E-13	5.350E-12	3.222E+12	3.741E+06	0.000E+00	3.741E+06	0.000E+00	7.509E+05	1.263E+05	1.405E-07
Tb162(0)	65	651620	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Th162/01	65	651620	0 0005-00	0 0005-00	0 0005-00	0 0005+00	0 0005-00	0 0005+00	0.000E+00	0.000E+00	0.000E+00	0.000E±00

Example inputs/outputs - Output

- Acquired V&V data from EK under the EU SECURE project:
 - EK run the Budapest Research Reactor (BRR)
 - Multiple beam lines
 - Irradiating samples for medical radionuclide production research
 - Gamma scan data and FISPACT modelled data made available

 Three target types irradiated in three beam lines for 30-60 mins, cooled for ~4-6 days

Gd diluted Al foil \rightarrow Tb-161

Lu diluted Al foil \rightarrow Lu-177

Pt diluted Al foil \rightarrow Au-199

Not protectively marked

 Two further target types irradiated in a single beam line for 20-30 mins, cooled for 8 and 41 days

Gd2O3 → Tb-161

Lu2O3 → Lu-177

Product nuclide	FISPACT (Bq)	Gamma spec (Bq)	CARP (Bq)
Tb-161	3.79E+06	2.87E+06	3.74E+06
Lu-177	7.26E+07	5.12E+07	6.87E+07

Verification & validation work

- We hope to receive further reactor beam validation data from other SECURE partners
- Verify against FISPACT
- Always on the search for more!
 - Accelerator beam scenarios
 - Alternative particle types (Where nuclear data is available...)

Intended uses and future work

- Future developments
 - Batch mode
 - User defined thresholds
 - Mid process separation
- Intention is to use CARP in collaborative work
 - Optimising existing experiments
 - Modelling novel and/or complex scenarios
- And to collaborate in understanding what CARP should do!

Strengthening the European Chain of sUpply for next generation medical RadionuclidEs

Thank you!

Duncan Mayhem Nuclear & Reactor Physics Team NNL duncan.mayhem@uknnl.com

This work was partially undertaken within the SECURE project funded by the European Union under grant agreement No. 101061230.