Electron beam jitter suppression and diagnostic using terahertz-induced modulation

Joseph T. Bradbury

3rd year PhD student

joseph.bradbury-2@manchester.ac.uk

Terahertz Acceleration Group @ The Cockcroft Institute <u>www.THzAG.uk</u>

The University of Manchester

THz Acceleration Group @ www.THzAG.uk

Our research group

- Novel terahertz (THz)based techniques for electron beam acceleration and manipulation.
- Higher driving frequency compared with conventional RF accelerators.
- THz source development.

Relativistic acceleration

M. T. Hibberd et al. "Acceleration of relativistic beams using laser-generated terahertz pulses" Nature Photonics 14,755-759 (2020)

Sub-relativistic acceleration Poster by me on this topic **Recent publication** Fused Silica Lining Width Copper Channel Width w 2.4mm 0.6mm 10mm 11mm 25mm

L. J. R. Nix et al. "Terahertz-driven acceleration of subrelativistic electron beams using tapered rectangular dielectric-lined waveguides" Phys. Rev. Accel. Beams 27 041302 (2024)

Editors' Suggestion

1/10

About this talk

Coming up...

I will present experimental results and supporting simulations showing how <u>THz</u> <u>energy modulation can be used to</u> <u>diagnose and suppress jitter from other</u> <u>accelerator systems.</u>

Motivation

- Diagnosing and suppressing jitter in electron beams using THz is an active research area.
- Using ultra-short fs duration bunches requires excellent timing stability.
- Laser-synchronised bunches with fsscale jitter are key for
 - Pump-probe experiments.
 - Time-resolved electron diffraction imaging.
 - External injection into e.g. PWFA and FELs.

Content

- Longitudinal phase space diagnostic using THz energy modulation
- Compression and bunching
- Jitter modelling and extraction using THz energy modulation
- Jitter suppression

L. Zhao *et al.* "Femotosecond Relativistic Electron Beam with Reduced Timing Jitter from THz Driven Beam Compression" *Phys. Rev. Letters* **124**, 054802 (2020)

Y. Song *et al.* "MeV electron bunch compression and timing jitter suppression using a THz driven resonator" *Nucl. Instrum. Methods Phys. Res. Sect. A*, **1047**, 167774 (2023)

E. C. Snively *et al.* "Femtosecond Compression Dynamics and Timing Jitter Suppression in a THz-driven Electron Bunch Compressor" *Phys. Rev. Letters* **124**, 054801 (2020)

Introduction to the experiment

<image>

Stack of PPLN wafers for producing laser-generated THz radiation.

DLW installed in the vacuum chamber.

Electron energy measurement using dipole spectrometer

Introduction to the experiment

Laser and THz optics outside the vacuum chamber

THz-electron interaction point inside the vacuum chamber

Beam Area 1

Accupates disorgitudinal phase space reconstruction

Sources of jitter

Jitter modelling and extraction

Each source of jitter produces a unique effect in the energy spectrum, and can therefore be extracted independently.

Jitter modelling and extraction

(Units chosen for convenient simulation)

By converting the units, we find the extracted jitter compares well with previous work on CLARA.

< M. A. Johnson, J. K. Jones, P. H. Williams, 'Jitter Tolerance for the FEBE Beamline on CLARA', IPAC 2023, JaCoW Publishing

0.05%

X-band cavity

0.3°

Jitter suppression

- 50 shots
- Base beam from CLARA (black) 144 fs rms jitter
- Corresponding compressed bunch trains with THz on (red) 30 fs rms jitter
- R₅₆ 3.46 ps/MeV

The compressed bunch train becomes
locked to the laser.Timing jitter relative to the laser
is reduced by a factor of up to 5.

Long bunches for diagnostics, shorter bunches for compression...

- 1.5 ps FHWM
- Lower chirp
- 1.5 x higher THz field
- R₅₆ 2.44 ps/MeV

Jitter relative to the laser is reduced by a factor of $\underline{13 x}$.

Summary

THz modulation experiments using CLARA

LPS diagnostic using THz modulation

Jitter from upstream accelerator components can be diagnosed using THz modulation.

THz-modulated / chirped bunches can be compressed into micro-bunch trains or ultra-short single bunches.

The compressed bunches can be locked to the THz drive laser, with rms jitter of 11 - 30 fs.

A directly scalable technique...

Jitter suppression can be readily improved be increasing the THz field and using a lower value of R_{56} , bringing bunches with fs-scale duration and synchronisation within reach.

Thank you for listening!

Thanks for listening! Any questions?

Thanks to all the people involved

Morgan T. Hibberd^{1,2}, Christopher T. Shaw^{1,2}, Daniel S. Lake^{1,3}, Connor D.W. Mosley^{1,3}, Sergey Siaber^{1,3}, Beatriz Higuera Gonzalez^{1,2}, Thomas H. Pacey^{1,4}, James K. Jones^{1,4}, David A. Walsh^{1,4}, Robert B. Appleby^{1,2}, Graeme Burt^{1,3}, Darren M. Graham^{1,2}, and Steven P. Jamison^{1,3}

joseph.bradbury-2@manchester.ac.uk

Terahertz Acceleration Group @ The Cockcroft Institute - www.THzAG.uk