# CLARA Dielectric Dechirper Performance Studied by Simulations

B. Higuera González, T. J. Overton, T. H. Pacey, Y. M. Saveliev, G. Xia



Science and Technology Facilities Council

**ASTeC** 



The University of Manchester



### **DECHIRPER CONCEPT**

#### Cherenkov radiation



- Cherenkov radiation is generated when the speed of the electron bunch is higher than the speed of light in the medium.
- The speed of light is reduced by the dielectric layer.
- The wakefield generated is synchronous with the electron bunch.



- Longitudinal decelerating wakefields strength increases towards the bunch tail.
- The decelerating field can compensate the extra energy towards the tail in a negatively chirped bunch.

#### **DECHIRPER DESIGN**



- Aim to optimise energy spread reduction without increasing emittance.
- H+V DLW design to compensate transverse wakefields and minimise emittance growth.
- Independently adjustable dielectric gap for better transverse wakefields compensation.

#### **DECHIRPER PERFORMANCE SIMULATIONS**



### **SIMULATIONS: Low Energy Spread**



- Emittance increases with longer bunches and smaller gaps.
- The optimal gap in DLW2 for emittance compensation is the same as in DLW1.
- Most of the emittance growth in DLW1 is compensated by DLW2 and equal in x and y planes.

- At optimal dielectric gap for each bunch length, energy spread is reduced from 3.5 MeV to ~0.3 MeV FWHM (~91%).
- The optimal gap for energy spread compensation, reduces as RMS bunch length increases.

| Bunch<br>length | DLW1<br>gap | DL<br>Norm<br>(µm            | W1<br>. Emit<br>1 rad) | DLW2<br>gap | DL\<br>Norm<br>(µm | N2<br>. Emit<br>rad) |
|-----------------|-------------|------------------------------|------------------------|-------------|--------------------|----------------------|
| (15)            | (mm)        | <b>E</b> <sub><i>x</i></sub> | ε                      | (mm)        | εχ                 | ε                    |
| 20              | 1.5         | 1.00                         | 1.00                   | 1.5         | 1.00               | 1.00                 |
| 50              | 1.4         | 1.01                         | 1.01                   | 1.4         | 1.00               | 1.00                 |
| 100             | 1.4         | 1.05                         | 1.05                   | 1.4         | 1.01               | 1.01                 |
| 300             | 1.1         | 1.57                         | 1.77                   | 1.1         | 1.28               | 1.28                 |

# **SIMULATIONS: High Energy Spread**



- Emittance increases with longer bunches and smaller gap as with low energy spread.
- The optimal gap in DLW2 for emittance compensation is the same as in DLW1 unless gap < 1.0mm.
- For bunch length ≤ 100fs the emittance is well compensated < and equal in x and y planes.</li>

- At optimal dielectric gap, energy spread is reduced from
  7.0 to ~0.4 MeV FWHM (~94%).
- The optimal gap for energy spread compensation, reduces as RMS bunch length increases.

|  | Bunch<br>length<br>(fs) | DLW1<br>gap<br>(mm) | DLW1 Norm.<br>Emit<br>(μm rad) |      | DLW2<br>gap | DLW2<br>Norm. Emit<br>(µm rad) |      |
|--|-------------------------|---------------------|--------------------------------|------|-------------|--------------------------------|------|
|  |                         |                     | εχ                             | ε    | ()          | εχ                             | ε    |
|  | 20                      | 1.1                 | 1.02                           | 1.02 | 1.1         | 1.00                           | 1.00 |
|  | 50                      | 1.0                 | 1.16                           | 1.18 | 1.0         | 1.04                           | 1.04 |
|  | 100                     | 1.0                 | 1.38                           | 1.47 | 1.0         | 1.15                           | 1.15 |
|  | 300                     | 0.6                 | 4.5                            | 10.7 | 1.1         | 5.0                            | 5.2  |

# SIMULATIONS: High Energy Spread in 300fs bunch





- *x*-emittance is increased within the DLW2 with no compensation observed.
- The bunch is overfocused in *x* plane, which is intensified in DLW2 due to the defocusing of the tail towards the dielectric.
- At smaller DLW2 gaps the final *y*-emittance is higher with respect to that at the exit of DLW1.
- This is due to the exponentially stronger vertical fields in DLW2 generated by a larger vertical beam size after DLW1 (~100 μm).

# SIMULATIONS: High Energy Spread 300fs bunch



- 300fs beam, DLW1 gap=1mm initial x-plane initial y-plane 3.5 DLW1 x-plane Emittance (µm rad) DLW1 y-plane 3 final x-plane final y-plane 2 .5 2 1.5 0.9 0.95 1.15 1.2 1.05 DLW2 gap (mm)
- By using a 1.0 mm gap, the emittance is well compensated, but the optimal dechirping is not achieved.
- The emittance is not effectively reduced at 0.6 mm gap.
- Within DLW1, the bunch is overfocused in x plane and extremely defocused in y plane at DLW1, which make the transverse fields stronger and asymmetrical in DLW2.

#### **CONCLUSION**

- The CLARA dechirper can reduce the energy spread by  $\geq$  90%.
- The H+V dechirper design is effective for transverse wakefields compensation in bunch lengths ≤ 100fs.
- For bunch lengths ≥ 100fs and high energy spread, the H+V design is less effective in compensating emittance growth.
- Optimal dechirping and emittance compensation may not be possible to achieve simultaneously for bunch lengths ≥ 100fs and high energy spread.



# **Any Questions?**

beatriz.higueragonzalez@postgrad.manchester.ac.uk

beatriz.higuera-gonzalez@cockcroft.ac.uk