

Phase Shifters in Free-Electron Lasers

Dr Alan Mak Daresbury Laboratory 11th June 2024

Free-Electron Laser (FEL)

Distinctive properties

- Good spatial and temporal coherence
- High power (> GW, potentially TW)
- Short pulse duration (< ps, potentially zs)
- Narrow bandwidth $(\Delta \lambda / \lambda \approx 0.1\%)$
- Tuneable wavelength
- Brightest laboratory x-ray source to date

Free-Electron Laser (FEL)

SACLA (Japan) PAL XFEL (South Korea) Free-Electron Lasers LCLS (USA) (solid lines) Swiss FEL (Switzerland) FERMI (Italy)

> **Electron Synchrotrons** (dash lines)

Spectral brightness = number of photons emitted

- per unit time
- per unit cross-sectional area
- per unit solid angle
- per 0.1% of the relative bandwidth

Phase Shifters

Without Phase Shifters

• Electron pulse traversing the break section

$$L_{\text{drift}} = v \Delta t$$

• Photon pulse within the same time interval

$$L'_{\text{drift}} = c \, \Delta t = \frac{c}{v} L_{\text{drift}}$$

• Slippage across the break section

$$L_{\text{slip}} = L'_{\text{drift}} - L_{\text{drift}} = \left(\frac{c}{v} - 1\right) L_{\text{drift}}$$

• In terms of electron energy

$$\gamma = 1/\sqrt{1 - v^2/c^2}$$

Without Phase Shifters

Taylor expansion

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \Rightarrow \frac{c}{v} = \left(1 - \frac{1}{\gamma^2}\right)^{-\frac{1}{2}} \approx 1 + \frac{1}{2\gamma^2}$$

Result

$$L_{\text{slip}} = \left(\frac{c}{v} - 1\right) L_{\text{drift}} \approx \frac{L_{\text{drift}}}{2\gamma^2}$$

- For **effective** energy transfer from electrons to photons, we want $L_{\text{slip}} = n\lambda$ (for some $n \in \mathbb{Z}$).
- However, L_{drift} and γ are generally **fixed**.
- A **knob** for L_{slip} in each break section is desirable.

With Phase Shifters

• Without a phase shifter

$$L_{\text{slip}} = \frac{L_{\text{drift}}}{2v^2}$$

• With a phase shifter

$$L_{\text{slip}} = \frac{L_{\text{drift}}}{2\gamma^2} + \Delta L$$

• Electron-photon path difference

$$\Delta L = S_1 + S_2 + S_3 - 3l$$

$$= R\theta + \frac{R}{2} \times 2\theta + R\theta - 3l$$

$$= 3R\theta - 3l = 3R \sin^{-1}\left(\frac{l}{R}\right) - 3l$$

With Phase Shifters

Taylor expansion

$$\Delta L = 3R \sin^{-1} \left(\frac{l}{R} \right) - 3l \approx 3R \left(\frac{l}{R} + \frac{l^3}{6R^3} \right) - 3l = \frac{l^3}{2R^2}$$

Recall

$$\frac{1}{R} = \frac{eB_0}{p}, \qquad p = m_e c \sqrt{\gamma^2 - 1}$$

• Result

$$L_{\text{slip}}(B_0) = \frac{L_{\text{drift}}}{2\gamma^2} + \Delta L \approx \frac{L_{\text{drift}}}{2\gamma^2} + \frac{e^2 l^3 B_0^2}{8m_e c^2 (\gamma^2 - 1)}$$

- B_0 serves as an **independent knob** for L_{slip} .
- Phase correction: $L_{\text{slip}} = n\lambda$ (for some $n \in \mathbb{Z}$).

Advanced Operation Modes

Selected Applications of Phase Shifters

Power Enhancement

References

- Daniel Ratner et al., Proceedings of FEL 2007, Novosibirsk, Russia, 69–72 (2007).
- Alan Mak et al., Physical Review Accelerator and Beams 20, 060703 (2017).

Harmonic Lasing

- Brian W. J. McNeil *et al.*, *Physical Review Letters* **96**, 084801 (2006).
- Evgeny A. Schneidmiller et al., Physical Review Accelerator and Beams 24, 030701 (2021).

2. Phase shift $L_{\rm slip} = \lambda/3$

3. Undulator

 $\Delta\theta = 2\pi/3$

Zeptosecond Light $(1 zs = 10^{-21} s)$

References

- David Dunning et al., Physical Review Letters 110, 104801 (2013).
- Alan Mak et al., Reports on Progress in Physics 82, 025901 (2019).

Summary

Phase shifters in FELs

- **Purpose:** to control phase angle between electron and photon pulses
- Principle: delaying electrons with respect to photons, thus increasing slippage

Examples of applications

- Enhancing FEL power beyond saturation
- Lasing at harmonic whilst suppressing fundamental
- Generating trains of zeptosecond FEL pulses
- ⇒ Under consideration for the proposed UKXFEL

Not covered in this talk

- Harmonic-lasing self-seeding (HLSS)
- High-brightness self-amplified spontaneous emission (HB SASE)
- Recent experiments at PAL on two-colour lasing using phase shifters

