

Science and Technology Facilities Council

Thin Film Superconducting Cavities For Sustainable Accelerators

Daniel Seal daniel.seal@stfc.ac.uk

Agenda

1. Our Goal

2. Thin Film Development

3. Thin Film Testing

4. Future

1. Our Goal

Bulk Nb Dominates SRF

Bulk Nb •

Science and

Facilities Council

The Cockcroft Institute

Technology

- Highest T_{c} , B_{c1} , B_{sh} of any element
- Large Q₀ (10¹⁰- 10¹¹)
- CW operation

Bulk Nb has reached limits: $Q_0 > 10^{10}$ $E_{\rm acc} > 50 \, {\rm MV/m}$ (1.3 GHz, 2 K)

Lancaster 🔀

University

4

From Bulk Nb To Thin Films

Lancaster 🏼

University

Daniel Seal | PABG 2024 | 11th-12th June 2024

Courtesy of C. Antoine (CEA)

Superconductors Being Considered

Material	<i>T</i> _c (K)	<i>B</i> _{sh} (mT)@ 0 K
Pb	7.1	100
Nb	9.2	219
NbTiN	17.3	439
V ₃ Si	17.0	490
NbN	17.3	214
Nb₃Sn	18.3	425
Nb ₃ AI	18.5-19.1	
MgB ₂	39.0	170

High $B_{\rm sh} \rightarrow$ High $E_{\rm acc} \rightarrow$ fewer cavities

Why thin film on copper?

- Cheaper than Nb
- Higher thermal conductivity
- Easily machinable

High $T_c \rightarrow$ High $Q_0 \rightarrow$ less cooling

Courtesy of C. Antoine (CEA)

Science and Technology

Saving Energy For Future Accelerators

Moving from 2 K to 4.5 K reduces cryogenic power by factor 3!

2. Thin Film Development

Thin Film Pathway

Initial testing on planar samples

Aim: Produce a prototype, high performance 1.3 GHz thin film SRF elliptical cavity $Q_0 > 10^{10}$ @ 4.5 K

Surface Polishing

- At STFC:
 - Some mechanical polishing
 - Diamond turning (DT)
- IFAST Partners:
 - Mechanical polishing;
 - Tumbling
 - Metallographic (MP)
 - Chemical polishing
 - SUBU
 - Electropolishing (EP)

Lancaster 🔊

Universitv

 Plasma Electrolytic Polishing (PEP)

> UNIVERSITY OF LIVERPOOL

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024 C. Pira (INFN)

Thin Film Depositions - Planar Samples

Planar samples provide a cost-effective pathway for thin film R&D

Sample disks for mass parameter optimisation

QPR samples for high RF field analysis

UNIVERSITY OF LIVERPOOL

X-ray Photoelectron Spectroscopy

Scanning Electron Microscopy

Secondary Ion Mass Spectrometry

White Light Interferometry

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

Thin Film Depositions - Planar Samples

Can Nb₃Sn sputtering match or exceed performance of Sn vapour diffusion into bulk Nb?

Nb₃Sn on 50-100 mm substrates

- Theoretical $T_c = 18 \text{ K}$
- DC, HiPIMS
- Effect of magnetron power, deposition temperature

Effect of DC magnetron power

Φ

 $\overline{\Phi}$

100

Magnetron power (W)

17

16

0

ORF

△VSM (RAL)

♦VSM (IEE)

200

300

12

The Cockcroft Institute

Science and

Technology

Facilities Council

Solution States - Figure 3 Thin Film Depositions - Planar Samples

Is V₃Si a viable alternative material?

Effect of heater power on T_{c}

V₃Si on 10 mm substrates

- Theoretical $T_c = 17 \text{ K}$
- Initial steps to improve T_c and consistency of growth
- Post-annealing required furness, laser, flash lamp

The Cockcroft Institute

Science and

Facilities Council

Technology

Lancaster 😂 🧭 LIVERPOOL

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

Thin Film Depositions – 6 GHz Cavities

Are performances on flat geometries repeatable on curved geometries?

Closed Seamless Cavities

Deposition facility

Nb target with Ti wire

ms-Flash Lamp Annealing at HZDR

UNIVERSITY OF LIVERPOOL

Open Split Cavities Planar magnetron

Cylindrical magnetron

Nb, NbTiN, Nb₃Sn, V₃Si

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

Thin Film Depositions – 1.3 GHz Cavities

Can we achieve uniform coatings on larger cavity structures?

Optimising thin film deposition parameters

- Mainly Nb thin films so far ٠
- Comparing deposition techniques • (DCMS, HiPIMS)
- Plasma diagnostic studies •

The Cockcroft Institute

Facilities Council

S. Simon et al. Tailoring the production of Nb superconducting films for SRF cavities: mass/energy spectroscopy and film characterisation, IPAC 24 Science and Lancaster 🐸 UNIVERSITY OF IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024 Technology University **JVERPOOL**

3. Thin Film Testing

DC Superconducting Properties

Rapid sample tests with multiprobe inserts

Is the sample superconducting? •

University

- What is its T_c ? ٠
- What is its behaviour under high magnetic fields? •

The Cockcroft Institute

Technology

Facilities Council

UNIVERSITY OF

JVERPOOL

Magnetic Field Penetration

20 tests per

Week!

Four-point probe measurements with alternative materials

 B_1 (mT)

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

17

DC Magnetic Field Penetration

UNIVERSITY OF LIVERPOOL

Cavity-like DC fields applied:

- Parallel
- From one side (unlike SQUID VSM)
- *B* < 600 mT

Recently upgraded facility:

- Test 10 cm samples size and 6 GHz split cavities
- Magnetic shields

The Cockcroft Institute

Science and

Technology

Facilities Council

• Minimal damage to films

Lancaster 🍱

Jniversity

$$R = 1 - \frac{B_2}{B_1}$$

V₃Si/Nb/Cu Sample

Meissner state when R = 1

3 tests per

Week!

Effect of deposition temperature on Nb/Cu

RF Test With Choke Cavity

Most importantly, how does the thin film perform under RF conditions? \widehat{g}_{60}^{70}

7.8 GHz Choke Cavity

Low field measurements:

- R_s vs B_{sample, pk}
- $R_{\rm s}$ vs $T_{\rm sample}$
- Penetration depth vs T_{sample}

Mass parameter optimisation prior to:

- High field/low frequency tests with QPR
- Cavity tests

The Cockcroft Institute

Science and

Technology

Facilities Council

3 tests per week!

Lancaster 🍱

Jniversity

UNIVERSITY OF

LIVERPOOI

Low Power Cavity Testing

UNIVERSITY OF LIVERPOOL

First tests autumn 2024!

Cryocooler based facility

- *P* < 2.5 W, *T* > 4 K (est.)
- Quick first cavity test
- Good cavities will have high power test in LHe

4 types of cavity

- 1.3 GHz closed
- 1.3 GHz split (in development)

Lancaster 🍱

Jniversity

• 6 GHz closed

The Cockcroft Institute

• 6 GHz split

Science and Technology

Facilities Council

iFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

High Power Cavity Testing

First tests summer 2024!

- Full Q_0 vs E_{acc} test with LHe
- Testing with existing STFC/DL LHe infrastructure mainly used for ESS & PIP-II cavity tests
- Upgrades now allow for:
 - A RF single system for 650 MHz, 700 MHz and 1.3 GHz
 - $P \le 200 \text{ W}, T = 2 \text{ K} \& 4.2 \text{ K}$
 - Capability for 9-cell tests

Existing SRF Test Facilities at Daresbury Laboratory

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

Technology Facilities Council

4. Future

The Future of Thin Film SRF in the UK

Reduce capital and running costs of accelerators!

Continuing R&D

- Thin film coatings
- Post-processing
- Quick sample testing
- Split cavities
- Multi cells
- Cavity testing

The Cockcroft Institute

ISIS II

Science and Technology Facilities Council Loaded

test in

CLARA

UNIVERSITY OF LIVERPOOL

IFAST Daniel Seal | PABG 2024 | 11th-12th June 2024

Acknowledgements

STFC/CI: O. B. Malyshev, R. Valizadeh, C. Benjamin, O. Poynton, J. Rigby, A. Akintola, T. Sian, L. Smith, J. Conlon, C. Benjamin, S. Pattalwar, G. Miller, A. Blackett-May, A. Vick, C. Hill, M. Pendleton, M. Jones, P. Smith, A. Wheelhouse, D. Mason

Lancaster University/CI: G. Burt, N. Leicester, H. Marks, A. Mogheyseh

UNIVERSITY OF LIVERPOOL

University of Liverpool/CI: S. Simon, J. Bradley

INFN: C. Pira, E. Chyhyrynets, D. Ford, A. Salmaso

IJCLAB: D. Longuevergne, O. Hryhorenko

Lancaster 🤒 University

CEA: C. Antoine

Science and Technology

IEE: E. Seiler, R. Ries

Science and Technology Facilities Council

Thank you

Science and Technology Facilities Council

@STFC_matters

Science and Technology Facilities Council