IMPERIAL
2P iR

Compact Muon Solenoid

SCHMIDT FUTURES

~ Anomaly detection for new physics
~searches in dijet events at CMS

CMS-EXO-22-026

Mar 20, 2024
Benedikt Maier, Imperial College London



michaelgstrauss.com

Many open questions in cosmology
and particle physics

Experiment-driven:

10,000,000,001 10,000,000,000

Theory-driven:

Hierarchy problems (weakness of gravity, fine
tuning at level 10'%)

Why 3 generations of fermions?

— New physics within LHC reach?

quantumdiaries.org



CMS established rich search program for new physics

Overview of CMS EXO results

DarkMatter

Extra imensions
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Are we searching for the wrong signatures?

Maybe looking in the wrong spots or
for the wrong models?

— Need safeguard against missing("& J:
signs of new physics

I,
=



Are we searching for the wrong signatures?

e — == "% Re-formulate the question

“Does this event look like BSM theory XYZ?”

“Does this event look like the Standard Model?”

— Anomaly detection

Maybe looking in the wrong spots or

for the wrong models?

| &

— Need safeguard against missing ™ w» Focus of this talk:
signs of new physics ; Dijet events



Outline

1. What are jets at CMS

2. Anomaly hunting

3. Expected performance

4. Actual look into data



Characterizing jets
B hadrons long-lived

quark, gluon — displaced “secondary” vertex within jet
— Exploit flavor content
® (e.g., multivariate B tagging algorithms)

nggs, W, Z tOp quark —7% tracks b jet

L’ —————— b hadron \

% -———— 1> impact
parameter
28 secondary

vertex

Different particles — different substructure

\ ‘70 - prlmary vertex
— Exploit substructure \

(e.g., N-subjettiness z,,, grooming algorithms)



Anomalous jets
e No assumption on how exotic jets look like, but

they could have:
o long decay chains of SM resonances
o completely exotic particles & weird radiation
t yA patterns

t e Want our algorithm as model-independent as
possible

p Model independence:

¢ < — 1.) Not assuming specific signal model
2.) Not relying on imperfect background model (—
?! QCD Monte Carlo) either

— Train directly on data!



Searching in dijet topology

Target narrow resonance A — BC, B & C decay hadronically

Goal is to be sensitive to broad range of possible A,B,C

Anomalous
Assumption: m, >>m., m. Jet
o Results in highly boosted B, C
o Decay products contained in large-radius jets

— Anomalous large-radius jet on either side

Anomalous
Jet

Select events with at least two AKS8 jets
o p;>300GeV, 5| <2.5

Dijet invariant mass m; > 1455 GeV
o Dictated by trigger turn -on

An. < 1.3 (to target s-channel resonance)
ii



Developing and testing with a suite of BSM signals

Jet

JetC
substructure

™ JetB
Jet substructure
1 prong 2 prong 3 prong 4 prong 5 prong 6 prong
Q* - qW
1 prong ma* = [2,3,5] TeV
w = [25,80,170,400] GeV
X =YY’ S
Wik = RW = WWW G
mx = [2,3,5] TeV B 1
2 prong my = [25,80,170,400] GeV HTW_KK[ 1‘75 fda Tc?;/v Ch O
my' = [25,80,170,400] GeV S Ob
S
W’ - tB’ Sy U
3 prong mw = [2,3,5] TeV 9/7 / e’\:O /
me' = [25,80,170,400] GeV O
X = YH - WWWW
- mx = [2,3,5] TeV
4 prong EXxpect sensitivity my = [170,400] GeV
e mi = [170,400] GeV
to many additional
: . Z-TT > t2tz
spong| | Kinds of signals! mz ~(2331 oY
mr = e
Y = HH - tttt
6 prong my = [2,3,5] TeV
W = [400] GeV

10



Outline

2. Anomaly hunting

11



Analysis Strategy

five different strategies

T

O.0.0,0
| => 8888 => ->.->->

Preselected Data Trained Model ~ Anomaly Metric Bump Hunt
/S
selectioy
\
—~> —>

" 4

12



.

Preselected Data rained Model  Anomaly Metric




How do you identify
anomalous jets?

b
N
\\

o J\\ 1 \

Increasing Model Dependence

14



How do you identify
anomalous jets?

7

 Learn QCD jets,
| look for outliers

\

’Variational Autoencoder |

Increasing Model Dependence

15



Autoencoder Fundamentals
training examples
“Autoencoder”

W -
B -

e Train on non-anomalous examples,
learns to reconstruct input

e Force information through a bottleneck
o Focus on core features of normal
examples

Illustrations: J Gonski, A Kahn

16



Autoencoder Fundamentals
training examples
“Autoencoder”

o 5% -
W -
M- 5% - it

e Train on non-anomalous examples,
learns to reconstruct input

unknown examples

Anomaly Score

e Force information through a bottleneck

o Focus on core features of normal
examples

/

0 reconstruction loss 1

— Fails at reconstructing exotic examples lustrations: J Gonski AKahn 17



Variational Autoencoder (VAE)

Input Jet Reconstructed Jet
(100x3) (100x3)

Encoder Decoder
Latent Space

| - :|‘ Z —>  p(x|=) —
Zix

Standard Devaition

T Reconstruction Loss + KL Divergence ‘

e VAE encouraging (through additional
loss term) latent space to be
Gaussian

Trained on jets from signal-depleted

Anjj sideband
o Amﬁ>14

Jet represented by 100 highest-p_.
constituents: p, P, P,

Constituents sorted by clustering

sequence
O More expressive in terms of
substructure

100 x 3 matrix processed with 2D
and 1D convolutional layers,
bottleneck dimension = 12

Anomaly metric: min(loss j1, loss j2)
18



Variational Autoencoder: Decorrelation from dijet mass

(_N

S A

3’ . o trivial cuts on min(L1,L2) A
e RS result in background sculpting

'i ...'..‘.:. - .

‘—‘E,:- O ‘/;
s 2 .
M-. W
N

40'/" 17\?5 oft

éﬁ s bk@ é#

¢l 7 5](]7 iy

1) ol usive

19



Variational Autoencoder: Decorrelation from dijet mass

wiw (L4 L2)

A
o Ll oft
trivial cuts on min(L1,L2) A 'l 7
' result in background sculpting 22 bk v,
- ’ . gp‘/: bl{ﬁ iy

1) el usive

l\

train NN to regress quantiles A 10 bl ot
o corresponding to fixed efficiencies 22 it
\ gt bl‘ﬁ S

\

V) ol usivie
leaves background unsculpted =

.-
W

20



How do you identify
anomalous jets?

Train classifier between
two samples with
different signal purities

Learn QCD jets,
look for outliers

Increasing Model Dependence '

21



Weak Supervision Fundamentals

. . ) of and
el NTeee? background events with different
OO | | ®ECO®GO® purities
OOOOG® | | OEC®®®
©l6]Gl6]6] OEe®E®® e Train classifier on the two samples
©l6]6l6]6)] ®EO®O® o Learns to distinguish VS
@GOG ©]6]CI0C), background
) i g o Bias from also learning different
\1 0/ background shapes if they are different
e Higher fraction — better

Classifier

classifier performance

JHEP 10 (2017) 174

3 weakly supervised methods presented here

— Differ in how they construct the mixed samples )


https://arxiv.org/abs/1708.02949

JHEP 10 (2017) 174

Weak Supervision #1: CWolLa

e Assume signal is a narrow resonance

— narrow peak, choose a mass window accordingly yrized eanle

o = events from window in m.. N\
o = events from sidebands c 1 _
O o
p =
e Train a NN classifier on jets from © S
background
VS. g
signal =
e Must ensure NN classifier does not learn m, \‘L

— Train separate classifiers for heavier and lighter jet*

o Allows to reweight jets in p_ so that distributions are
identical between two samples
o Avoids learning my through jet p; * modification w.r.t. original paper

— Event anomaly score: max(score j1, score j2)


https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1708.02949

JHEP 01 (2021) 153

Weak Supervision #2: Tag N’ Train (TNT)

e Similar to CWolLa, but enhance signal purity of with autoencoder
o Autoencoder: 2D CNN trained on jet images from jets in sideband

e Assumes both jets are anomalous Jet A
TR % -
i A
Sideband jet Apply AE to signal classifier
images + region jets
autoencoder — reconstruction loss

e Better starting point let’s classifier pick up more

easily on signal jets 24


https://arxiv.org/abs/2002.12376

Weak Supervision #3: CATHODE

Instead of using sidebands for Mixed Sample 2,

interpolate their distributions into signal region
o More robust to feature correlations with m;

Train normalizing flows to learn density p___(x | mjj) of
features x in sidebands, conditioned on m;
o Results in bijective, invertible map f(x;mjj)

Interpolate to get density in the signal window

Draw samples in signal window to construct a
synthetic background sample in SR — Mixed
Sample 2

o Proceed as usual (train classifier VS.
Mixed Sample 2)

Phys.Rev.D 106 (2022) 5,055006

train "

take a sample of
events from SR

llabel:1

1 m;;

"on SBto learn

!

sample from interpolated
density estimator

|

l label=0

train classifier

25


https://arxiv.org/abs/2109.00546

Weak Supervision: Training Quirks

A ' :
L : | .
: = : fine f - _ notfine

-
- 4 ‘v -
(
\ v \ .
: : "
< .-
¢ p :
L r
r - -
o s N
. 7
;
i C
i !

e \Weakly supervised methods assume signal window for training
o Fine if signal well within window, not fine if at the edge
o Need to slide window and repeat trainings to cover full mass range

e Define two sets of bins, Aand B
e Set B is shifted by half window w.r.t. Set A

e In total 12 signal regions, different trainings and event selection for each one

26



How do you identify
anomalous jets?

Train classifier between
two samples with
different signal purities

Learn QCD jets,
look for outliers

Encode a ‘prior’ of
potential anomalies,
look for similar

Increasing Model Dependence l

27



Quasi Anomalous Knowledge (QUAK)

JHEP 21 (2020) 030

Signal Loss

2D QUAK
Space

Selection

0,0 Background Loss

Hybrid approach between
model-independent and standard search

Idea: encode prior knowledge of how a
signal could look

Train density estimator (normalizing flow) on
colorful mix of simulated signals

Train additional normalizing flow on
background simulation

Construct 2D space, select events with high
background loss and low signal loss
28


https://arxiv.org/abs/2011.03550

QUAK: general vs. specific

weakly hybrid
unsupervised suplervised / \
/ CWola, TNT, fully
VAE CATHODE supervised

' L

Increasing Model Dependence

e Which signals to use for encoding prior knowledge?
o - mixture of several signal models
o - using only model to be probed

e Can use QUAK to “interpolate” towards fully supervised approach o



Input features Nice complementariy,

VAE CWola TNT CATHODE QUAK
i1
Constituents Mgy same as C\Wol.a | Mgy | 0= Mgy/P;
px’ Py pz T J1 2 T
y 21 mSD = mSD 21
T3 i 32
T
Ty3 A Ty3
r]const T4J12 nconst
leptonic || || + __________ \ 12Y / 7,
energy L
fraction B tag scores of j1, j2 jet Bitag
sub-jets B CATHODE-b Seore
tag score

targets individual jets targets events 20



Checking the correlations

VAE

CWolLa Hunting

TNT

CATHODE

QUAK

W' — B't — qqq qqq

CMS Simulation Preliminary (13 TeV)
0.24 0.22
0.33 0.70 0.36
0.24 0.26
0.11 0.31 0.51
0.22 0.26
1
& & +
\a N3 \a
) R 0\5
&

VAE}|

CWol.a Hunting

TNT

CATHODE

QUAK

X—-YY —qqqq

CMS Simulation Preliminary (13 TeV)
0.15 0.17 0.44
0.15 0.65 0.14
0.17 0.65 0.30
0.39 0.18 0.25 0.62
0.44 0.14 0.30 .
1
Y N N+
\a & NS s
&0 &
G‘\

QCD background

CMS Simulation Preliminary (13 TeV)
VAE[- 0.28 0.08 0.19 0.05
CWola Hunting{- 0.28 0.52 -0.02 0.24
TNT[- 0.08 0.52 -0.00 0.22
CATHODE|- 0.19 -0.02 -0.00 0.05
QUAK[- 0.05 0.24 0.22 0.05 1

Complementary architectures and input features reflected in low Pearson

correlation among anomaly scores

TNT and CWolLa most similar (in approach and thus in score)

31



| =>

Preselected Data

@
O

Trained Model

R
oo'o =l
oAl

Anomaly Metric

CabdOLJEN

Bump Hunt

32



Cut definition

VAE CWolLa TNT CATHODE QUAK
Single event Selection same as CWola Selection Selection
selection for changes for each changes for each changes for each
all masses SR SR mass hypothesis

Cut determined Cut determined in lteratively select
10% most on sidebands SR
anomalous
events

Chosen such that

eff == 1% for low
m., eff == 5% for
I} )
high m,

Chosen such that
eff ==1%

least-populated
bins in sideband
QUAK space,
until decent
population in SR

33



Outline

3. Expected performance

34



@
O

)= (3558 = lg=> [ = (&)

Preselected Data Trained Model = Anomaly Metric

35



, n ] n
Let’s inject some signal ; i
- IS Sintlalion Frelinivary __ ({STEV) x o3
8 Inclusive: X — YY, 6=24 fb E ------- <:
=, 10 ol q
o N
: 10° = Signal + Background Fit 3
(%) E —— Signal E
g 10t L Background ] q
Ll>_| E x?/ndf =27.11/31 = 0.87 3
1 03 o Prob = 0.667 = . y . . H
1022 1+ e Injected X—YY’ signal with 24 fb cross-section
10E : ip .
E m = 3 TeV e Quantifying performance on simulated mock
T My 170GV dataset worth ~30 b
20 g
80 . . .
SP-2f - e Model background and signal with analytic
-4

2000 3000 4000 5000 6000 fU nction
Dijet invariant mass (GeV) S

e Signal not visible by eye on top of background

36



p-value

Significance of excess: inclusive

CMS Simulation Preliminary (13 TeV)
T [ I I I ' [
10-1 my=3TeV S S — o
mY/Y': 170 GeV R .. 20
e
1073 NIV : B : 2
X =YY (Y/Y = qq)
105} -
50
1077
1091 -®- Inclusive 6o |
101+ -
70
| - 1 1 - . . L 1
5 0 5 10 15 20 25

Cross Section (fb)



p-value

Significance of excess: decent traditional cut

CMS Simulation Preliminary (13 TeV)
oo me=3Tev e | o | e Cuton N-subjettiness 7, to
My, =170 GeV R — enrich in 2-prong jets
101 X S YY(YY > qq) o
ol e Sizeable improvement over
) inclusive search
10 - 11 < 0.4 & mgp > 50 GeV
- e 17, usedin many searches
10711 .
5 0 5 10 15 %5 %5

Cross Section (fb)

38



p-value

Significance of excess: decent traditional cut

10-

10-3|-

107%

1077

10-°

10—11

CMS Simulation Preliminary
T T

- m,=3TeV
my .= 170 GeV

X-=YY(Y/Y =qq)

- Tp1 < 0.4 & mgp > 50 GeV
T32 < 0.65 & mgp > 50 GeV
-@®- Inclusive

Cross Section (fb)

Cut on N-subjettiness z,,, to
enrich in 2-prong jets

Sizeable improvement over
inclusive search

7,, Used in many searches
Cut on N-subjettiness 7, to
enrich in 3-prong jets gives

worse sensitivity than inclusive
search

39



Significance of an excess: TNT

CMS simulation Preliminary

(13 TeV)
Ll

T T T T

TNT: X - YY, 6=24 b

—+— Simulated Pseudodata
== Signal + Background Fit
—— Signal

Background

x2/ndf = 16.36/24 = 0.68
Prob = 0.875

107 g
CMS Simulation Preliminary (13 TeV) 2 ¢ 4 ]
o T ‘ T ‘ T T T T T 0] -
> 106
T 101 m,= 3 TeV 1o | =
& my,= 170 GeV 20 =2
1Y’ . TTpeee - — 107 &
103} VIV hint R 8 F
X-=YY (Y)Y -qq) S 10t
o i
10°1 o= TNT 1035
5o 10?
1077 N
- Tp1 < 0.4 & mgp > 50 GeV 10
132 < 0.65 & mgp > 50 GeV
_g| ~® Inclusive 66
107° 1 1‘
d- - ' 4 1
iscovery!
107" v i o[
70 80
[ . [ | M I . PR . | 83_2—
-5 0 5 10 15 20 25 4 )
- 2000

Cross Section (fb)

e Prominent peak after cut on TNT anomaly metric

e At 18 fb: Improving from 3 sigma (for z,,,) to 7 sigmal!

3000 2000 5000
Dijet invariant mass (GeV)



p-value

The full picture: a couple of observations

CMS Simulation Prelim
| ! L ¥ I ! v ¢ !

inary

10-1} mx= 3 TeV
m,,.= 170 GeV

103k XYY (Y/Y > qq)
= VAE-QR
—+- CWolLa Hunting
10-5-"* TNT
—+— CATHODE
-#- CATHODE-b
QUAK
1077
QUAK: Model Specific
->- Tp1<0.4 & mgp > 50 GeV

1079 o 13, 0.65 & mgp > 50 GeV
-@- Inclusive

10—11,

70

20 25
Cross Section (fb)

Model specific QUAK performs best
o used knowledge about the exact
signal

CATHODE-b worse than CATHODE

o B tag score in normalizing flows has
detrimental effect on signal without b
quarks (acts as noise)

VAE and CWola little or no
improvement w.r.t. inclusive search

41



The full picture: a couple of observations

CMS Simulation Prelim
| ! ¥ L ¥ I ! v ¢ !

10—1_ mX: 3 TeV
m,,.= 170 GeV

p-value

10-3k X-=YY(Y/Y >qq) -*

#- VAE-QR
—+- CWolLa Hunting

10-5-* TNT
—+— CATHODE
-#- CATHODE-b

jo-7l & QUAK

¢- QUAK: Model Specific
->- Tp1<0.4 & mgp > 50 GeV

1079 o 13, 0.65 & mgp > 50 GeV
-@- Inclusive

10-11,

70

20 25

Cross Section (fb)

p-value

CMS Simulation Preliminary (13 TeV)
[ X k I ! ? |k ‘_ ________________ J [
— S - Sl dste S L ..
10-1_ mW,— 3 TeV ------- [ ——— S -’ 1o
=400 GeV = @ e e e 2
mg. 400 GeV \N‘ - l\\ o
109 W 5 BtB - b2) b Wi 30 |
% VAE-QR Sy =
S
—+— CWola Hunting E e
1o-sl—+ ™T >
—+— CATHODE \
-#- CATHODE-b
50
QUAK
10—7 | \+ |
- QUAK: Model Specific \.
-»- 121 <0.4 & mgp > 50 GeV
107%1 o 13,<0.65 & mgp > 50 GeV e
-@- Inclusive " \
10—11 - —
- 7 g
L | L (P TR v i v
20 0 20 40 60 80 100

Cross Section (fb)

e CATHODE-b better than CATHODE for signals with b quarks (W’ — B’(bZ)t — qqq qqq)

e VAE and CWolLa performing well on rich, broad jets

42



Outline

4. Actual look into data

43



Data spectra - no excess

, CMS Preliminary 138 fb! (13 TeV) . CMS Preliminary 138 fb~! (13 TeV) . CMS Preliminary 138 fb! (13 TeV)
> 10 T T T T T > 10 : T ™ ™ T T T T > 10 . T T T T T T —T
8 VAE-QR -+ Data 8 - CWola Hunting: A Signal Regions - Data 8 Tag N' Train: A Signal Regions ~+  Data

108} 5 .

S =ka. S .. — Bkg.fit | S, — Bkg. fit
g --- 3TeVX-YY'-4q | = > 10°F E
i) --- 5TeVW'-Bt-bZt 0 @
c c c
g g 108 g 3
it m w '

102 g 102}
b s

10'E e 10tk
of -+
) pil i E l I I i 1 1 i I
= 4 = 4 T T T T T T T = 4 T T T T T
g2 g, of £l of
g n ¢
% 0 8|S of===- m)—a—\----.-»----.—.—._‘—- gi5 oﬂrutnhr___-___“-—m
ol 21 al of al 2
4 | 1 I 1 L 4 i Ml rall el Lo i gl L : 4
2000 3000 4000 5000 6000 2000 2500 3000 3500 4000 4500 5000 5500

I 1 PR R A | PRI | :
2000 2500 3000 3500 4000 4500 5000 5500

my; (GeV) mj; (GeV) mi; (GeV)

e Reminder: for VAE, only 1 anomaly cut, totally independent of probed mass

e Six different A regions for weakly supervised models (B regions in Backup)

e No significant excess 44



CMS Experiment at the LHC, CERN
Data recorded: 2018-Sep-06 05:06:55.343296 GMT
Run / Event / LS: 322332 / 851591650 / 487

VAE says:

two anomalous
jets

P 4

45



Data spectra - no excess

Events / 100 GeV

Data - Fit

- CMS Preliminary 138 fb~! (13 TeV)
: T T T 1 1 N
CATHODE: A Signal Regions -+ Data

1o~\ — Bkg. fit 1
“F \ ]
1021 \3 ]
N
+
10'F e
00k T
L 1 Il 1 !
4 T T T T T T
s 2F E
S o Jﬁ"ﬁ“"‘“’i’-"r_ g™ esd
2F ! 53
+ 20|00 25|00 30|00 35‘00 40‘00 4500 50|00 5500
m;; (GeV)

10°

(=}
S

Events / 100 GeV

o
o

10’

(=]
°

Data - Fit
Unc.
AN oN S

No significant excess for remaining methods either

CMS Preliminary 138 fb! (13 TeV) i CMS Preliminary 138 fb! (13 TeV)
T T T T T T T E| > T T T T T T T
CATHODE-b: A Signal Regions -+ Data 8 Generic QUAK: A Signal Regions -+ Data
o — Bkg.fit { S — Bkg. fit
\ ~ 104} -
PR:
L \ {4 E
2 [
>
Ll
L \ E 10} |
i 4
+
I 1 1 1 1 L |‘ “ L 1 1 1
- L] T T T T E 4 T 1 T T T T = T
; 2f E - 2 ]
_LL'I_a-L._,u.L._...._,-‘...l.- g g OF’LW'“"IL-“""M"‘
E E al” of ja
. 1 N Il .
5000 2500 3000 3500 4000 4500 5000 5500 45000 2500 3000 8500 4000 4500 000 5500
m;; (GeV) m;j; (GeV)
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Discovery sensitivity

No excess observed — Which
injected cross section would have
lead to 3o / 567

All methods almost always better
than inclusive / traditional search
strategy

For every benchmark, at least one
method could claim discovery
where inclusive strategy can only
set upper limits

CMS Preliminary 138fb~1 (13 TeV)
L2 10°F 3 TeV Resonances =
c ¢ 30 Significance VAE-QR 1
-f:’ O 50 Significance +# 8 CWola Hunting
8 104 -- Inclusive, 95% CL Exp. Upper Limit +®m TNT _
w + B Inclusive + m CATHODE E

a 2-prong (t21, Msp) +® CATHODE-b
e 3-prong (132, Msp) QUAK - General
O 103 -
102} . i
g = g * ] - ]

* - I =i + Qﬂ
TR e I B .
L] N &
10" * o E
; ___________ g:\D}%-- = E
27F
S6F E
g
4F
2 3F - ] E
€ AF o8 - L L L
o 2 ? ] .r} * * ™ E‘%g o _E
B et SRR e BT e I L - =]
> 0 :\F—/ "" I/ | = | E
S XoYYo4q WoBtobZt Wg-oWR-3W  YoHH-4t

E (2+2) (3+3) (2+4) (6+6)

Signal Model

m(Y) = 170 GeV, m(B’,R,H) = 400 GeV



Model-dependent searches: setting limits
e Statistical inference gives upper limit on number of signal events still allowed
in data, N

— Which cross section does this correspond to?

N. =X LXAXE€

sig

— Solve for ¢. Done.

48



Model-dependent searches: setting limits

e Statistical inference gives upper limit on number of signal events still allowed
in data, N

— Which cross section does this correspond to?

N. =X LXAXE€

sig

— Solve for ¢. Done.

Not the full story!

49



Limit setting for weakly supervised methods

For weakly supervised methods, efficiency depends on number of signal
events in data!

e Much signal present — classifier learns well how to pick up on it
— high selection efficiency

e Low signal present — classifier cannot learn it properly not constant
— low selection efficiency

Ngig(0) =0 X L x A X €(0)

e Need to find ¢ such that NSig = NUL
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Limit setting for weakly supervised methods

CMS Preliminary 138fb~" (13 TeV)
& 30|~ CATHODE, X(3000)—Y(170)Y'(170)
NSlg(o-) = 0 X £ X A >< 3 | — Acceptance x Efficiency
S )
. . . L] EI]_ :
e Inject different # signal, retrain o, .,
; P : 0 1 2 3 4 5 6 7
algorlthms, measure efficiencies Injected Signal Cross Section o (fb)
o Shaded band: syst. + stat. error
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Limit setting for weakly supervised methods

=0 x LXAxe(0)

e Inject different # signal, retrain

algorithms, measure efficiencies
o Shaded band: syst. + stat. error

e Gives number of selected signal events

CMS Preliminary 138fb~! (13 TeV)
32 30|- CATHODE, X(3000)—Y(170)Y (170)
gf | —— Acceptance x Efficiency
3 20
w |
ww—i P I Rt MU SR BRI
; | —— Selected Signal Events Ngjg(0)
0
©
@
o)
£
>
Z
150
100~
50
07\.\.I.‘.\.\\I‘\.\H\\J.‘\I“\I
0 1 2 3 4 5 6 7

Injected Signal Cross Section o (fb)
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Limit setting for weakly supervised methods

N,

S

e Inject different # signal, retrain

algorithms, measure efficiencies
o Shaded band: syst. + stat. error

e Gives number of selected signal events

e Find intersection with obs. / exp. event

limits

— Obs. & exp. limits on cross section!

ig(0) =0 X LXAXEe(0)

w
o

Efficiency (%)
3

w
o
o

Number of Events
o
o

CMS Preliminary 138fb~" (13 TeV)

- CATHODE, X(3000)—-Y(170)Y'(170)
| —— Acceptance x Efficiency

PR AT NI MY I I T AN ST N AN ST N S AN I Y N |

—_
o

| —— Selected Signal Events Ngjg(0)
— Observed Limit
- Expected Limit

68% Expected

150
100
50; /
NI W VO
0 1 2 3 S 4 5 6 7

Injected Signal Cross Section o (fb)
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F Ina I I Im ItS CMS Preliminary 138fb~" (13 TeV)

:{3: 108} Limits on A 5BC, m(A) = 3 TeV £
o) $ Expected +10 # » VAE-QR :
| é 105? ;' ﬁ:ﬁiri\\id ;: 1C—:’\\/l\/ToLa Hunting _
e Several 3 TeV resonance scenarios E | § x 2:prong (tzr, mso) % CAIHOOE
. = 104L 3-prong (T2, Msp) # = CATHODE-b y
o 5 TeVin Backup o I . Dedicated Wy search, QUAK - General ]
% i PRD 106 (2022)
- 103 E
3 | t ,
e Large improvement over inclusive L S e R e I .
2 | it R R . z
strategy obedd | TV R
g __ﬁ._-_i!.i,ﬁ- * x : E
e Dominant uncertainty from substructure 3 al g
modelling for signal E L Tm . o i1l 1]
Sy > ol H]
o Dedicated W,, search beats all anomaly =~ £ [~ PR T ]
: v WSBISbZl W oWRSAW  YoRHS4
detection methods (expected) g Rl agna Wl A
Signal Model

m(Y) = 170 GeV, m(B’,R,H) = 400 GeV 54



Summary

e For the first time: search with five different & complementary anomaly
detection algorithms

e (Cast a wide net to catch potential new heavy resonances A decaying into
B, C — dijet final state

e Large sensitivity improvements over inclusive search or searches with
generic traditional cuts

e No excess observed

e Check out CMS-EXO-22-026 & CMS-NOTE-2023-013

e Stay tuned for more
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ChatGPT

I've created a "Where's Waldo?" style image set at a high energy physics conference for you. Look

closely among the scientists and researchers, amidst the posters and presentations, to find

Waldo. Enjoy your search in this academically rich scene!
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BACKUP



Want a starting point as clean as possible

e Jets inevitably not a perfect representation of
the resonance decay

e Not everything in jet comes from particle at
origin
o Initial-state radiation, underlying event, pileup

e Measurement inaccuracies for constituents

Can give appearance of anomalous radiation
patterns

Can reduce expressiveness of truly exotic
features, pronginess, etc ...
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Removing particles from pileup

Remove charged particles Weight neutral particles

Interaction of interest  Pileup interaction

e Need to resolve products from up to 50

simultaneous collisions
o Tracks: good pointing resolution
o Neutrals: poor pointing resolution

e PUPPI algorithm discards neutral pileup particles
by extrapolating from charged to neutrals

e Large improvement in jet resolution + substructure

W boson identification efficiency

JINST 15 (2020) P09018 p—

—
2 O

1.2

LA LA AL BN L B B B

C LA B ]
" CMS —&- PUPPI T, <055
1 Simulation 4 CHSt,<06
&~ PUPPI1y,<0.4 1

~%— CHS 1,,<0.45

[ Bulk graviton
[ Anti-k;, R=0.8
- 400 <p <600 GeV

fraction of particles

11 e e v b 1
0 10 20 30 40 50

P

Number of vertices

JHEP 10 (2014) 59

T I

[ charged LV

—— charged PU

neutrals LV
0.06-—- . neutrals PU B
0.04 ]
0.021- ]

-5



http://www.arxiv.org/abs/2003.00503
https://arxiv.org/abs/1407.6013

Grooming the jet with soft-drop algorithm

Normalized yield (1/GeV)

MC / Data

CMS Preliminary

2317 (13 TeV)

2317 (13 TeV)

CMS Preliminary

g >  0018F-
0.016— CMS-PAS-SMP-16-010 e Data 0] = e Data
0.014— HERWIG++ MC = 0016 - HERWIG++ MC
E T 0.014F 2 PYTHIA MC
o pYTHAEMC | 0 @ YA oo Ll
0.012 E ‘1_; .
0.01 3 0.01F= """
0.008 = 650 <p, <760 GeV g 0.008 E_ 650 <p, <760 GeV
0.006 2 0006/
0.004 0.004
0 E . - ot L Lol L lo L I 1 |
15 « 1.5 -
-] ] e
1 s o 1;,_““,7—- '''' ;ggf
A [®) . pou oy
=

|
100

lteratively undo clustering and remove sub-jets that fail:

‘ 000 05 — 500
Jet mass (GeV)
grooming

Soft-drop algorithm to remove

P |
1000
Groomed jet mass (GeV)

and wide-angle radiation

JINST 15 (2020) PO6005 (13 TeV)
; 02T T
o) - E
< 0.18f CMS — QCD multijet
- Simulation — W boson
0.16 axs
0.14 - 500<p':‘<1ooo GeV, "1 <2.4 —Zboson =
E Higgs boson ]
012 ]
0.1 ]
0.08f ; -
N fm ]
0.06f A 4
0.04} JJJ H 1
il 1 1
0.02f JFH ¥ 1
OZ'T%MI e ]
0 20 40 60 80 100 120 140 160 180 200
mgp [GeV]
0.1 D
& ]
min(pr1, pr2) (AR12
cut
pr1+ P2 Ry

Moves QCD Sudakov peak out of the way — soft-dropped

jet mass mg,

much more expressive
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https://cds.cern.ch/record/2273393?ln=de
https://arxiv.org/abs/2004.08262

CMS uses Particle Flow
reconstruction:

Aimed at reconstructing each
individual particle

“Follow” the path of a particle
through the detector

Match deposits between
subdetectors

For each particle combine
subdetector information for best
E/momentum measurement

N I
AT by il Aad
i/ . ¥



Weak Supervision #2: Tag N’ Train (TNT)

Grouping

e Mixed Sample 1:
o In m, window + in top 20% of AE loss

'J1' and 'J2' labels

. M ixed Sa m p | e 2 : randomly assigned

o In m, sideband OR
In m, window & bottom 40% of AE loss

e Train Mixed Sample 1 vs Mixed Sample 2

— Anomaly score: score j1 * score j2

Initial Weakly Merge Train New
Classification Classified Events Samples Classifier
Sig Like

Jzs \
Sig Like Jets

Sig RichT

J1 Classification
/ Bkg Like
I's J2's
—> | New Classifier
J2's Sig Like >< S

\ J1's I
J2 Classification = | s ‘———Bkg Rich

'Bkg Like ) >
\ J1's
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Weak Supervision #3: CATHODE

m; from KDE fit

Events (a.u.)

3.3

I Background
[ Samples

3.4 3.5 3.6 3.7
m,j (TeV)

-1 .
x from f (z,mjj) .<

\

Events (a.u.)

Events (a.u.)

0-

Phys.Rev.D 106 (2022) 5, 055006

mm Background
[ Samples

0.0 0.2 0.4 0.6
mjl (TeV)

Events (a.u.)

0_
0.00 0.25 0.50 0.75 1.00

mmm Background
[ Samples

mp —mp (TeV)

. Background
[ Samples

0.00 025
™

0.50 0.75 1.00

Events (a.u.)

2.0 A1

1.5

1.0 1

0.5 A

0.0 -

0.00 0.25 0.50 0.75

mw Background
[ Samples

2
™


https://arxiv.org/abs/2109.00546

QUAK Signal Prior

e Train 6 separate normalizing flows (six-layer autoregressive rational quadratic
splines) on different signal samples
o Grouped by daughter masses (M80-M80), (M80-M170), (M80-M400),
(M170-M170), (M170-M400), (M400-M400)

e Normalize each score so mean 0O, std 1

e Combine 6 scores into single ‘sig-like’ score using L5 signed norm
(|s1|*5+|s2|*5+...) (%)
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Signal B Regions

Events / 100 GeV

Data - Fit

. CMS Preliminary 138 fb~! (13 TeV) CMS Preliminary 138 fo~' (13 TeV)
> 10T T T T > 1T ; T T T T
8 CWola Hunting: B Signal Regions - Data 8 Tag N' Train: B Signal Regions -+ Data
8 — Bkg.fit | 8o — Bkg. fit |
- i -
- -
[2] |2}
2 2
|~ | =
D 103} 1 @10 )
> >
iT] i
102} \ E 10 \ E
il J
10k X 10
L L L L 1 L 100kt L L L 1 I ! 1 1
Tls 2k Sle 2k 1
M OUWI- H °"'"T"—‘-“-I.I_‘-—-'"‘-_—-
ol 2f ol of 3
e . . , . . . , . . .
“T2000 2500 3000 3500 40‘00 4500 5000 5500 60‘00 - 20‘00 2500 30‘00 3500 40‘00 4500 5000 55‘00 6000
i 05CMSPre/im{nary ‘ ‘ 138 lb"‘ (13 TeV) e oSCI\‘IIS Preliminary . 138167 (13 TeV) 0o CMS Prefiminary 13811 (13 TeV)
> T . 7 ‘ ‘ T T T
S : [ S :
CATHODE: B Signal Regions <+ Data [0} CATHODE-b: B Signal Regions -+ Data 8 Generic QUAK: B Signal Regions - Data
10 — Bkg. fit 4 S i — Bkg.fit | 8 — Bkg. fit
-
\ L \ =l i
\ ‘g 2
103} E
@ 10} \\ ]
> >
\ w o
102 \ 10%) ]
o X,%R ‘
101k +
101 1 o |
10% |
. . . . . L . . . . . . . . . A
4 T = AT T : T T T = 4rT . : : . . T . .
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What happens if no signal present?

CMS simulation Preliminary (13 TeV)

> 107 ¢ L B T l T
8 ] = TNT: Background Only
8 10 EE —$— Simulated Pseudodata
— 10° L = Signal + Background Fit
; g —— Signal
qc) 10* E Background
T . ¥2/ndf = 20.29/22 = 0.92
10° = Prob = 0.565
102 E
10
1 = =
q? 1
E . 2; .
SIS of ]
8—2F .
-4

2000 3000 4000 5000
Dijet invariant mass (GeV)

No sculpting
No artificial excesses
Checked for all methods

Validated also on data in An.
sideband (2.0 < Any < 2.5)
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Signal extraction - bump hunt on dijet mass spectrum

e After anomaly selection, all methods share common statistical framework

e Bump hunt performed on m, spectrum with 4 GeV bin size to emulate an
unbinned fit (for plots, coarser binning is used)
e Background distribution modeled with standard dijet function

AN __ Py(1—x)"1
dm]-]- o )P2+P3 log(x)+Py log? (x)

(x

e Starting with P3, P4 = 0, but can be added if found they improve fit quality
(Fisher’s F-test)

e For signal use a double Crystal ball (from fits to MC); generic shape
e Fit quality: compute chi2/ndf — p value > 0.05
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Fit bias study

e Test for bias in functional form
e Generate toys according to alt. fit functions, fit & check bias in signal strength
e Perform for different signal regions / masses

e No significant bias seen
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Global p value for weakly supervised methods

e Approximate each SR as fully indep. search — trial factor of 12 for whole scan

e Within each signal region, use traditional methods (toys) to compute effective trial
factor based on mass points scanned

e Global pval = (local pval) * (SR trial factor) * 12
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Effect of Signal in Data on Limit Setting

Presence of the same signal already in the data prior to injection for limit
setting would lead to biased estimate of signal efficiency — limits could
undercover
Tested in two MC studies

O One using the CATHODE method on a 5 TeV Y—HH signal (low stats. regime)

O  One using the TNT method on a 3 TeV X—YY signal

For each study, construct 100 mock datasets containing some signal

o Run limit setting procedure on each dataset (assuming no signal)
o Compare distribution of limits to true xsec to check coverage

Excellent coverage observed for signal strengths giving up to 2sigma

TNT sees some undercoverage (85%) for very large (3.60) signal

In data no excesses larger than ~2.50 — these studies demonstrate
we will have coverage
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Mismatched signals?

e If signal already in the data (A) that is different from the one we are setting a limit
on (B), that will affect results

e During injections, training will be performed with both A & B signal events

e Found that efficiency when training on A+B is the same or less than the efficiency
when training on just A/just B

e Same or lower eff. — same or more-conservative limits
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Protocol if we see something

- Consult with detector experts to look at most anomalous events and exclude
detector noise, etc.

- Look at features for most anomalous jets vs. standard jets
- Should be clear indication which feature(s) are triggering excess

- Can inform more targeted search with traditional methods / features
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3 TeV limits

Signal Model Daughter Masses (GeV) Method Exp. (Obs.) Limit (fb) Improvement wrt
(3 TeV) Inclusive

Qx — qW’ 25 CWoLa Hunting 61.1 (30.1) 0.3
Qx — qW’ 80 CATHODE 50.0 (95.2) 0.4
Qx — qW’ 170 VAE-QR 52.5 (37.5) 0.4
Qx — qW’ 400 CWoLa Hunting 45.8 (24.3) 0.5
X—=YY —4q 25/25 CATHODE 8.0 (9.9) 0.9
X =YY —4q 25/80 CATHODE 7.6 (13.2) 0.9
X—=YY —4q 25/170 CATHODE 10.3 (18.4) 0.7
X =YY —4q 25/400 VAE-QR 13.6 (12.5) 0.6
X—=YY —4q 80/80 CATHODE 4.2 (8.0) 1.6
X—=>YY —4q 80/170 CATHODE 5.7 (11.4) 1.2
X—=YY —4q 80/400 CATHODE 6.0 (7.3) 1.2
X—=YY —4q 170/170 CATHODE 3.7 (6.8) 1.9
X—=YY —4q 170/400 VAE-QR 44 (4.0 1.7
X—=YY —4q 400/400 VAE-QR 21(1.9) 4.2
W’ — B't — bZt 25 TNT 25.2 (17.4) 15
W’ — B't = bZt 80 TNT 22.3 (14.6) 1.5
W’ — B't — bZt 170 TNT 12.2 (7.3) 2.1
W’ — B't — bZt 400 VAE-QR 15.2 (11.4) 1.8
Wik = RW — 3W 170 TNT 25.1(20.1) 1.4
Wik = RW — 3W 400 CWoLa Hunting 23.8 (25.0) 1.5
7 —5 T 4212 400 QUAK 28.3 (13.9) 07
Y — HH — 4t 400 QUAK 7.7 (3.7) 35

73



5 TeV limits

Signal Model Daughter Masses (GeV)  Method  Exp. (Obs.) Limit (fb) Improvement wrt

(5 TeV) Inclusive
Qx — qW’ 25 QUAK 3.5(3.1) 0.7
Qx — qW’ 80 QUAK 3.2(2.8) 0.8
Qx — qW’ 170 QUAK 3.3(3.6) 0.8
Qx — qW’ 400 QUAK 3.9 (9.9) 0.7
X=YY —4q 25/25 QUAK 1.7 (1.6) 0.5
X—=YY —4q 25/80 QUAK 1.3 (1.3) 0.7
X—=YY —4q 25/170 QUAK 1.1 (1.1) 0.8
X =YY —4q 25/400 VAE-QR 1.0 (3.4) 0.9
X—=YY —4q 80/80 TNT 1.1(1.2) 0.8
X =YY —4q 80/170 QUAK 0.9 (1.0) 0.9
X—=YY —4q 80/400 VAE-QR 0.9 (3.0) 0.9
X—=YY —4q 170/170 CATHODE 0.7 (0.7) 1.2
X—=YY —4q 170/400 VAE-QR 0.7 (2.3) 1.2
X =YY —4q 400/400 VAE-QR 0.4 (1.1) 2.3
W’ — Bt —» bZt 25 TNT 44 (6.2) 1.3
W’ — Bt — bZt 80 TNT 39(5.7) 14
W' — Bt = bZt 170 TNT 2.8 (3.5) 1.6
W' — B't — bZt 400 TNT 2.7 (3.8) 1.6
Wik = RW — 3W 170 TNT 6.1(7.2) 0.8
Wik = RW — 3W 400 VAE-QR 5.4 (18.6) 0.9

Y - HH — 4t 400 TNT 1.5 (2.3) 2.5



5 TeV limits

95% CL Upper Limit on o (fb)

102

10'

—_
o
=)

S

Improvement wrt Inclusive
o N

CMS Preliminary

138fb~1 (13 TeV)

105}
104}

108}

5::;;'::&:1;?:‘

Limits on A -BC, m(A) =5 TeV

i Expected 10
% Observed

® = Inclusive

[

2-prong (T21, Msp)
3-prong (32, Msp)

Dedicated Wkk search,

PRD 106 (2022)

VAE-QR
CWola Hunting
TNT

CATHODE
CATHODE-b
QUAK - General

HH HH HH HH HH
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|
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Signal Model
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Systematic Uncertainties

o Effects on signal efficiency considered for:
Substructure modeling

Pileup

PDF uncertainties

B tagging

Jet energy scale & resolution
Renormalization / factorization scales

O O O O O O
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138 fb™ (13 TeV)
[T e e T e 2

Substructure Modeling R, SbeuEmcmey S

I pata/sim. Ratio
| Uncertainty

e No correction factors for signals with >3 prongs
can be derived with SM proxy
e Derive per-prong correction via Lund Plane

Reweighting (CMS-DP-2023-046)
o Derived on boosted W's, validated on boosted
tops
o Applicable to signals with any number of prongs
e Recluster large-radius jet with exclusive kt

algorithm, recluster subjects with CA algorithm

138 fb™' (13 TeV)
T T L=

= I " .

0 get sptings, St =

e Sort splittings into Lund plane, divide Data/MC & s0oof ’
for per-splitting correction 000" :

e Per splitting — per subjet — per jet — per event : 1‘5:7, T LJ:;,L.: —
£ "o oo i o ia
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https://cds.cern.ch/record/2866330/files/DP2023_046.pdf

