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Many open questions in cosmology 
and particle physics

Experiment-driven:

Dark Matter & Dark Energy

Matter-antimatter asymmetry

Theory-driven:

Hierarchy problems (weakness of gravity, fine 
tuning at level 1016)

Why 3 generations of fermions?

→ New physics within LHC reach?
quantumdiaries.org

michaelgstrauss.com
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Dozens of searches

→ no sign of new physics 
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CMS established rich search program for new physics



Maybe looking in the wrong spots or 
for the wrong models?

→ Need safeguard against missing 
signs of new physics

Are we searching for the wrong signatures?
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“Does this event look like BSM theory XYZ?”

“Does this event look like the Standard Model?”

Re-formulate the question

→ Anomaly detection

Maybe looking in the wrong spots or 
for the wrong models?

→ Need safeguard against missing 
signs of new physics

Are we searching for the wrong signatures?
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Focus of this talk: 
Dijet events



1. What are jets at CMS

2. Anomaly hunting

3. Expected performance

4. Actual look into data

Outline
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quark, gluon

top quarkHiggs, W, Z

Different particles → different substructure 

→ Exploit substructure
(e.g., N-subjettiness 𝝉21, grooming algorithms)

Characterizing jets
B hadrons long-lived 

→ displaced “secondary” vertex within jet

→ Exploit flavor content
(e.g., multivariate B tagging algorithms)

abundant at LHC
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Anomalous jets
● No assumption on how exotic jets look like, but 

they could have:
○ long decay chains of SM resonances
○ completely exotic particles & weird radiation 

patterns

● Want our algorithm as model-independent as 
possible

?!

t’

t

Z

Model independence:

1.) Not assuming specific signal model
2.) Not relying on imperfect background model (→ 
QCD Monte Carlo) either

→ Train directly on data!
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Searching in dijet topology
● Target narrow resonance A → BC, B & C decay hadronically

● Goal is to be sensitive to broad range of possible A,B,C

● Assumption: mA >> mB, mC
○ Results in highly boosted B, C
○ Decay products contained in large-radius jets

        →   Anomalous large-radius jet on either side

● Select events with at least two AK8 jets
○ pT > 300 GeV, |𝜂| < 2.5

● Dijet invariant mass mjj > 1455 GeV
○ Dictated by trigger turn-on

● 𝛥𝜂jj < 1.3   (to target s-channel resonance)
9

Anomalous

Anomalous



Developing and testing with a suite of BSM signals

Jet B
substructure

Je
t C

su
bs

tr
uc
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re

Search probes unexplored 

signals
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1. Characterizing jets at CMS

2. Anomaly hunting

3. Expected performance

4. Actual look into data

Outline
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Preselected Data

Analysis Strategy

five different strategies
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Preselected Data
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Learn QCD jets, 
look for outliers



Autoencoder Fundamentals

● Train on non-anomalous examples, 
learns to reconstruct input

● Force information through a bottleneck
○ Focus on core features of normal 

examples

Illustrations: J Gonski, A Kahn

training examples
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Autoencoder Fundamentals

● Train on non-anomalous examples, 
learns to reconstruct input

● Force information through a bottleneck
○ Focus on core features of normal 

examples

  → Fails at reconstructing exotic examples
Illustrations: J Gonski, A Kahn

training examples

unknown examples

17

reconstruction loss



Variational Autoencoder (VAE)
Input Jet 
(100x3)

Reconstructed Jet 
(100x3)

● Trained on jets from signal-depleted 
𝛥𝜂jj sideband

○ 𝛥𝜂jj > 1.4

● Jet represented by 100 highest-pT 
constituents: px, py, pz

● Constituents sorted by clustering 
sequence
○ More expressive in terms of 

substructure

● 100 x 3 matrix processed with 2D 
and 1D convolutional layers, 
bottleneck dimension = 12

● Anomaly metric: min(loss j1, loss j2)

● VAE encouraging (through additional 
loss term) latent space to be 
Gaussian
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Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting
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Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted



Train classifier between 
two samples with 

different signal purities

21

Learn QCD jets, 
look for outliers



Weak Supervision Fundamentals

1 0

JHEP 10 (2017) 174

● Two mixed samples of signal and 
background events with different 
purities 

● Train classifier on the two samples
○ Learns to distinguish signal vs 

background
○ Bias from also learning different 

background shapes if they are different

● Higher signal fraction → better 
classifier performance

22

3 weakly supervised methods presented here
→ Differ in how they construct the mixed samples

https://arxiv.org/abs/1708.02949


Weak Supervision #1: CWoLa

background-rich

signal-rich

mjj

dN
/d
m

jj

● Assume signal is a narrow resonance 
→ narrow peak, choose a mass window accordingly

○ Signal-rich sample = events from window in mjj
○ Background-rich sample = events from sidebands

● Train a NN classifier on jets from signal-rich sample 
vs. background-rich sample

● Must ensure NN classifier does not learn mjj

   → Train separate classifiers for heavier and lighter jet*
○ Allows to reweight jets in pT so that distributions are 

identical between two samples
○ Avoids learning mjj  through jet pT 

   → Event anomaly score: max(score j1, score j2)

* modification w.r.t. original paper
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JHEP 10 (2017) 174

https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1708.02949


Weak Supervision #2: Tag N’ Train (TNT)
● Similar to CWoLa, but enhance signal purity of Mixed Sample 1 with autoencoder

○ Autoencoder: 2D CNN trained on jet images from jets in sideband

● Assumes both jets are anomalous

● Better starting point let’s classifier pick up more 
easily on signal jets 24

Sideband jet 
images + 
autoencoder

Apply AE to signal 
region jets 
→ reconstruction loss

Jet A 
(tag)

 JHEP 01 (2021) 153

Jet B
Mixed 

sample 
1

Jet A
(tag)

Jet B Mixed 
sample 

2

classifier

https://arxiv.org/abs/2002.12376


 Phys.Rev.D 106 (2022) 5, 055006

Weak Supervision #3: CATHODE
● Instead of using sidebands for Mixed Sample 2, 

interpolate their distributions into signal region
○ More robust to feature correlations with mjj

● Train normalizing flows to learn density pdata(x | mjj) of 
features x in sidebands, conditioned on mjj 
○ Results in bijective, invertible map f (x;mjj)

● Interpolate to get density in the signal window

● Draw samples in signal window to construct a 
synthetic background sample in SR → Mixed 
Sample 2

○ Proceed as usual (train classifier Mixed Sample 1 vs. 
Mixed Sample 2)
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https://arxiv.org/abs/2109.00546


Weak Supervision: Training Quirks

mjj
mjj

● Weakly supervised methods assume signal window for training
○ Fine if signal well within window, not fine if at the edge 
○ Need to slide window and repeat trainings to cover full mass range

● Define two sets of bins, A and B

● Set B is shifted by half window w.r.t. Set A

● In total 12 signal regions, different trainings and event selection for each one 26

fine not fine
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Train classifier between 
two samples with 

different signal purities

Learn QCD jets, 
look for outliers



JHEP 21 (2020) 030

Quasi Anomalous Knowledge (QUAK)

● Hybrid approach between 
model-independent and standard search

● Idea: encode prior knowledge of how a 
signal could look

● Train density estimator (normalizing flow) on 
colorful mix of simulated signals

● Train additional normalizing flow on 
background simulation

● Construct 2D space, select events with high 
background loss and low signal loss

Loss

Lo
ss

28

https://arxiv.org/abs/2011.03550


QUAK: general vs. specific

VAE
CWoLa, TNT, 

CATHODE QUAK - general QUAK - specific
fully 

supervised

● Which signals to use for encoding prior knowledge?
○ general - mixture of several signal models
○ specific - using only model to be probed 

● Can use QUAK to “interpolate” towards fully supervised approach

unsupervised
weakly 
supervised

hybrid
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CATHODE QUAK

+
B tag scores of j1, j2

CATHODE-b

𝜏41
j1

𝜏41
j2

𝜏32

mSD

j1

mSD - mSD

j1 j2𝜏21

VAE

𝜏43

mSD

CWoLa TNT

Input features

nconst

leptonic
energy 
fraction

sub-jets B 
tag score

Constituents 
px , py , pz

same as CWoLa 𝜌= mSD/pT

𝜏43
nconst

𝜏32

𝜏21

√𝜏21 / 𝜏1

jet B tag 
score

targets individual jets      targets events

Nice complementarity
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QCD backgroundW’ → B’t → qqq qqq X → YY’ → qq qq

Checking the correlations

● Complementary architectures and input features reflected in low Pearson 
correlation among anomaly scores

● TNT and CWoLa most similar (in approach and thus in score) 31



Preselected Data

32



CATHODE QUAKVAE

Selection 
changes for each 

SR

Cut determined 
on sidebands

Chosen such that 
eff == 1% for low 
mjj, eff == 5% for 

high mjj 

CWoLa TNT

Cut definition

Single event 
selection for 
all masses

same as CWoLa

33

10% most 
anomalous 

events

Selection 
changes for each 

SR

Cut determined in 
SR

Chosen such that 
eff == 1%

Selection 
changes for each 
mass hypothesis

Iteratively select 
least-populated 
bins in sideband 

QUAK space, 
until decent 

population in SR



1. Characterizing jets at CMS

2. Anomaly hunting

3. Expected performance

4. Actual look into data

Outline
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Preselected Data
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Let’s inject some signal

● Injected X→YY’ signal with 24 fb cross-section

● Quantifying performance on simulated mock 
dataset worth ~30 fb-1

● Model background and signal with analytic 
functions 

● Signal not visible by eye on top of background

mX= 3 TeV
mY/Y’= 170 GeV

36



Significance of excess: inclusive

mX= 3 TeV
mY/Y’= 170 GeV
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Significance of excess: decent traditional cut

● Cut on N-subjettiness 𝜏21  to 
enrich in 2-prong jets

● Sizeable improvement over 
inclusive search

● 𝜏21 used in many searches

mX= 3 TeV
mY/Y’= 170 GeV

38



Significance of excess: decent traditional cut

● Cut on N-subjettiness 𝜏21  to 
enrich in 2-prong jets

● Sizeable improvement over 
inclusive search

● 𝜏21 used in many searches

● Cut on N-subjettiness 𝜏32  to 
enrich in 3-prong jets gives 
worse sensitivity than inclusive 
search

mX= 3 TeV
mY/Y’= 170 GeV
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Significance of an excess: TNT

● Prominent peak after cut on TNT anomaly metric

● At 18 fb: Improving from 3 sigma (for 𝜏21) to 7 sigma!

mX= 3 TeV
mY/Y’= 170 GeV

hint

discovery!

40



The full picture: a couple of observations

mX= 3 TeV
mY/Y’= 170 GeV

● Model specific QUAK performs best
○ used knowledge about the exact 

signal

● CATHODE-b worse than CATHODE 
○ B tag score in normalizing flows has 

detrimental effect on signal without b 
quarks (acts as noise)

● VAE and CWoLa little or no 
improvement w.r.t. inclusive search

41



The full picture: a couple of observations

● CATHODE-b better than CATHODE for signals with b quarks (W’ → B’(bZ)t → qqq qqq)   

● VAE and CWoLa performing well on rich, broad jets

mX= 3 TeV
mY/Y’= 170 GeV

mW’= 3 TeV
mB’= 400 GeV

42



1. What are jets at CMS

2. Anomaly hunting

3. Expected performance

4. Actual look into data

Outline
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Data spectra - no excess

● Reminder: for VAE, only 1 anomaly cut, totally independent of probed mass

● Six different A regions for weakly supervised models (B regions in Backup)

● No significant excess 44



two anomalous 
jets

VAE says:
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Data spectra - no excess
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● No significant excess for remaining methods either



Discovery sensitivity

● No excess observed → Which 
injected cross section would have 
lead to 3𝜎 / 5𝜎?

● All methods almost always better 
than inclusive / traditional search 
strategy

● For every benchmark, at least one 
method could claim discovery 
where inclusive strategy can only 
set upper limits

47m(Y) = 170 GeV, m(B’,R,H) = 400 GeV



Model-dependent searches: setting limits

48

● Statistical inference gives upper limit on number of signal events still allowed 
in data, NUL

→ Which cross section does this correspond to?

→ Solve for 𝜎. Done.



Model-dependent searches: setting limits
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● Statistical inference gives upper limit on number of signal events still allowed 
in data, NUL

→ Which cross section does this correspond to?

→ Solve for 𝜎. Done.

Not the full story!



Limit setting for weakly supervised methods

50

For weakly supervised methods, efficiency depends on number of signal 
events in data!

● Much signal present → classifier learns well how to pick up on it 
→ high selection efficiency

● Low signal present → classifier cannot learn it properly 
→ low selection efficiency

● Need to find 𝜎 such that Nsig = NUL

not constant



Limit setting for weakly supervised methods

51

● Inject different # signal, retrain 
algorithms, measure efficiencies

○ Shaded band: syst. + stat. error



Limit setting for weakly supervised methods
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● Inject different # signal, retrain 
algorithms, measure efficiencies

○ Shaded band: syst. + stat. error

● Gives number of selected signal events



Limit setting for weakly supervised methods
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● Inject different # signal, retrain 
algorithms, measure efficiencies

○ Shaded band: syst. + stat. error

● Gives number of selected signal events

● Find intersection with obs. / exp. event 
limits 

→ Obs. & exp. limits on cross section!



Final limits

● Several 3 TeV resonance scenarios
○ 5 TeV in Backup

● Large improvement over inclusive 
strategy 

● Dominant uncertainty from substructure 
modelling for signal

● Dedicated WKK search beats all anomaly 
detection methods (expected)

54m(Y) = 170 GeV, m(B’,R,H) = 400 GeV



Summary

● For the first time: search with five different & complementary anomaly 
detection algorithms

● Cast a wide net to catch potential new heavy resonances A decaying into 
B, C → dijet final state

● Large sensitivity improvements over inclusive search or searches with 
generic traditional cuts

● No excess observed

● Check out CMS-EXO-22-026 & CMS-NOTE-2023-013

● Stay tuned for more
55
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BACKUP
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Want a starting point as clean as possible

● Jets inevitably not a perfect representation of 
the resonance decay

● Not everything in jet comes from particle at 
origin

○ Initial-state radiation, underlying event, pileup

● Measurement inaccuracies for constituents

Jet energy mismeasurement

ISR, UE

pileup

Can give appearance of anomalous radiation 
patterns

Can reduce expressiveness of truly exotic 
features, pronginess, etc …
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● Need to resolve products from up to 50 
simultaneous collisions 

○ Tracks: good pointing resolution
○ Neutrals: poor pointing resolution

● PUPPI algorithm discards neutral pileup particles 
by extrapolating from charged to neutrals

Removing particles from pileup
JINST 15 (2020) P09018

JHEP 10 (2014) 59

● Large improvement in jet resolution + substructure 
59

http://www.arxiv.org/abs/2003.00503
https://arxiv.org/abs/1407.6013


● Soft-drop algorithm to remove soft and wide-angle radiation

● Iteratively undo clustering and remove sub-jets that fail:

● Moves QCD Sudakov peak out of the way → soft-dropped 
jet mass mSD much more expressive

Grooming the jet with soft-drop algorithm
CMS-PAS-SMP-16-010

JINST 15 (2020) P06005

grooming

0.1
0

=

=

60

https://cds.cern.ch/record/2273393?ln=de
https://arxiv.org/abs/2004.08262


CMS uses Particle Flow 
reconstruction:

- Aimed at reconstructing each 
individual particle 

- “Follow” the path of a particle 
through the detector

- Match deposits between 
subdetectors

- For each particle combine 
subdetector information for best 
E/momentum measurement
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Weak Supervision #2: Tag N’ Train (TNT)

● Mixed Sample 1: 
○ In mjj window + in top 20% of AE loss

● Mixed Sample 2:
○ In mjj sideband OR 

In mjj window & bottom 40% of AE loss

● Train Mixed Sample 1 vs Mixed Sample 2

   → Anomaly score: score j1 * score j2

62



 Phys.Rev.D 106 (2022) 5, 055006

x from f -1(z;mjj)

Weak Supervision #3: CATHODE

mjj from KDE fit

63

https://arxiv.org/abs/2109.00546


QUAK Signal Prior

● Train 6 separate normalizing flows (six-layer autoregressive rational quadratic 
splines) on different signal samples
○ Grouped by daughter masses (M80-M80), (M80-M170), (M80-M400), 

(M170-M170), (M170-M400), (M400-M400)

● Normalize each score so mean 0, std 1

● Combine 6 scores into single ‘sig-like’ score using L5 signed norm 
(|s1|^5+|s2|^5+...)^(⅕)
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Signal B Regions



What happens if no signal present?

● No sculpting 

● No artificial excesses

● Checked for all methods

● Validated also on data in 𝛥𝜂jj 
sideband (2.0 < 𝛥𝜂jj < 2.5) 
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Signal extraction - bump hunt on dijet mass spectrum

● After anomaly selection, all methods share common statistical framework

● Bump hunt performed on mjj spectrum with 4 GeV bin size to emulate an 
unbinned fit (for plots, coarser binning is used)

● Background distribution modeled with standard dijet function

● Starting with P3, P4 = 0, but can be added if found they improve fit quality 
(Fisher’s F-test)

● For signal use a double Crystal ball (from fits to MC); generic shape
● Fit quality: compute chi2/ndf → p value > 0.05
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● Test for bias in functional form

● Generate toys according to alt. fit functions, fit & check bias in signal strength

● Perform for different signal regions / masses

● No significant bias seen

Fit bias study
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● Approximate each SR as fully indep. search → trial factor of 12 for whole scan

● Within each signal region, use traditional methods (toys) to compute effective trial 
factor based on mass points scanned

● Global pval = (local pval) * (SR trial factor) * 12

Global p value for weakly supervised methods
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● Presence of the same signal already in the data prior to injection for limit 
setting would lead to biased estimate of signal efficiency → limits could 
undercover

● Tested in two MC studies
○ One using the CATHODE method on a 5 TeV Y→HH signal (low stats. regime)
○ One using the TNT method on a 3 TeV X→YY signal

● For each study, construct 100 mock datasets containing some signal
○ Run limit setting procedure on each dataset (assuming no signal)
○ Compare distribution of limits to true xsec to check coverage

● Excellent coverage observed for signal strengths giving up to 2sigma
● TNT sees some undercoverage (85%) for very large (3.6σ) signal
● In data no excesses larger than ~2.5σ → these studies demonstrate 

we will have coverage

Effect of Signal in Data on Limit Setting

70



71

Mismatched signals?

● If signal already in the data (A) that is different from the one we are setting a limit 
on (B), that will affect results

● During injections, training will be performed with both A & B signal events

● Found that efficiency when training on A+B is the same or less than the efficiency 
when training on just A/just B

● Same or lower eff. → same or more-conservative limits



- Consult with detector experts to look at most anomalous events and exclude 
detector noise, etc.

- Look at features for most anomalous jets vs. standard jets

- Should be clear indication which feature(s) are triggering excess

- Can inform more targeted search with traditional methods / features
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Protocol if we see something



3 TeV limits
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5 TeV limits
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5 TeV limits
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Systematic Uncertainties

● Effects on signal efficiency considered for:
○ Substructure modeling
○ Pileup
○ PDF uncertainties
○ B tagging
○ Jet energy scale & resolution
○ Renormalization / factorization scales
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Substructure Modeling
● No correction factors for signals with >3 prongs 

can be derived with SM proxy
● Derive per-prong correction via Lund Plane 

Reweighting (CMS-DP-2023-046)
○ Derived on boosted W’s, validated on boosted 

tops
○ Applicable to signals with any number of prongs

● Recluster large-radius jet with exclusive kt 
algorithm, recluster subjects with CA algorithm 
to get splittings, 

● Sort splittings into Lund plane, divide Data/MC 
for per-splitting correction

● Per splitting → per subjet → per jet → per event

https://cds.cern.ch/record/2866330/files/DP2023_046.pdf

