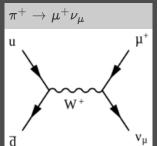
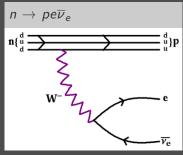
Theory

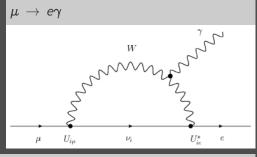
Jan Hajer

Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade de Lisboa

Focus topic: LLPs







Long-lived particles (LLPs) in the Standard Model (SM)

Charged pion

- Decay via weak interactions
- Decay extremely off-shell

$$\Gamma_{\pi^+} \propto g_W^2 \left(\frac{m_\pi}{m_W}\right)^4 m_\pi$$

Muon

- Flavour changing neutral current
- Lepton flavour only violated by neutrino masses and Yukawa couplings ${\sf BR}\,(\mu o e\gamma)\propto 10^{-13}$

Neutron

- Proton and neutron are almost mass degenerate due to isospin
- Decay extremely off-shell

$$\Gamma_n \propto g_W^2 \left(\frac{\Delta_{np}}{m_W}\right)^4 \Delta_{np}, \quad \Delta_{np} = m_n - m_p$$

Generically

- Off-shell decay
- Small mass splitting
- Small coupling due to hierarchy or loop suppression

$$\Gamma \propto \lambda^2 \left(\frac{m}{M}\right)^n m$$

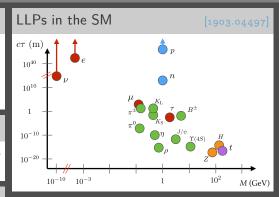
LLPs beyond the SM

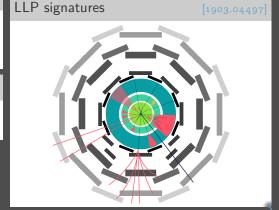
New Physics

Any model with such features can contain LLPs

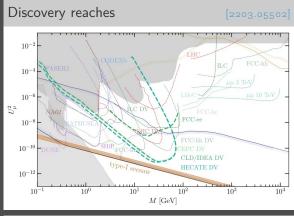
- Supersymmetry
- Dark Matter models
- Extended Higgs sectors

Portals to hidden sectors

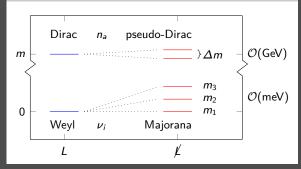

- Many extension to the SM feature hidden sectors
- Often motivated by DM candidates

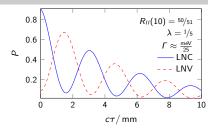

Prime examples

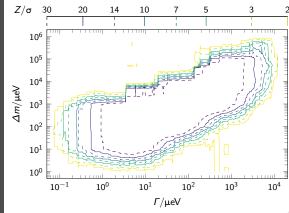
- Axion like particles
- Heavy neutral leptons (HNLs)
- Hidden U(1) / New gauge bosons


Future work

- Improving prediction for discovery reaches
- Sensitivity prediction to measure properties




Example: HNLs and lepton number violation (LNV)



Mass splitting Δm generates oscillations

Measuring LNV at the FCC-ee (preliminary)

