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Future e+e- Silicon Detectors
• Physics drivers 

‣ Higgs physics: vertexing resolution, 
strange tagging..  

‣ Vector-like leptons  
‣ Exotics Higgs decays, axion-like 

particles: displaced vertices  
‣ Resonances/anomaly detection?  

• → detector specifications 
‣ High granularity, spatial constraints 

(low material budget, low power)  
‣ Vertexing detector before silicon 

tracker with 25 × 25 μm2 pixels, 3 μm 
single point resolution, power density < 
30 mW/cm2

Yikun Wang, Caltech, U.S. FCC Workshop 2024 10

Electroweak phase transition and Higgs Exotic Decays

[Kozaczuk, et al, 19’]

Higgs exotic decay  and  branching fraction 
into  final states mediated through mixing. 

H → SS S
XXYY

[Gershtein, et al, 21’]

Projections at HL-LHC and Higgs factories on Higgs 
exotic decay H → SS

95% C.L. upper limit on selected BRs

[Liu, et al, 16’]

Y. Wang

2108.13451

https://indico.mit.edu/event/876/contributions/2597/
https://arxiv.org/pdf/2108.13451
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Ideas for ML-based Readout
• Working with “smart pixel” datasets 

[1, 2, 3]: futuristic pixel sensor with 
datasets of CMS tracks 
‣  Allows for ML-based compression at 

source: classification (eg removal of 
pileup), regression of cluster features 

• Studying embedded FPGAs 
(eFPGAs) as technology to perform 
reconfigurable logic on-chip 
‣ Taped out 28nm proof-of-concept 

eFPGA at SLAC and get perfect 
closure of simple BDT on hardware 
with respect to golden software 
(quantized) result 
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Bringing ML into pixel readout electronics can significantly lower the data rate that must be
sent off the sensor. An ML-based front-end chip can enable straightforward compression of on-chip
data to a lower number of bits, or inference at the front-end that enables a smaller transmittable
dataset through classification (e.g. filtering of low pT clusters) or regression (e.g. featurization by
converting raw data to physics quantities such as energy).

A problem that arises in the implementation of ML in readout ASICs is flexibility. ASICs are
designed to perform a specific task, which is not easily adapted to run an ML algorithm that will
require updated weights through the ASIC’s lifetime. An eFPGA allows for the reconfiguration
of firmware into an ASIC, to the extent that not only model weights but the entire model
architecture can be rewritten onto the chip. It can also be programmed like an FPGA, simplifying
the process of chip design. The “FABulous” framework [43] is an open source option to design such
ASICs, lowering the barrier to entry for collider electronics design and offering the opportunity for
broad institutional engagement.

I plan to study eFPGAs to implement ML-based data reduction at the front-end of silicon detec-
tors. The “smart pixel” collaboration, driven by Fermilab and several other institutions, provides a
simulated dataset of particles propagated through a futuristic pixel sensor that can be used to study
ML-based readout [44]. This dataset consists of 500,000 fitted tracks originating from high energy
pions collected by the CMS detector, and propagated through a 21x13 array of pixels with 50 x
12.5µm pitch located at a radius of 30mm from the beamline in a magnetic field of 3.8 T. Each track
is represented as a sequence of 8 deposited charge arrays in (x, y) pixel dimensions at time steps
of 200 ps. Figure 7 shows a diagram of a pixel sensor from this dataset; high pT particles are less
curved in the magnetic field and therefore traverse fewer pixels than low pT or “pileup” particles.
As the x-profile (sum over pixel columns) is parallel to the magnetic field, only y-profile (sum over
pixel rows) is sensitive to the track pT .

Smart Pixel Sensors 5

• The detector is immersed in a 3.8T magnetic field parallel to the x coordinate.

The detector response is simulated using a time-sliced version of PixelAV [16], which

provides: an accurate model of charge deposition by primary hadronic tracks (in particular

to model delta rays), a realistic electric field map resulting from the simultaneous solution

of Poisson’s Equation, carrier continuity equations, and various charge transport models, an

established model of charge drift physics including mobilities, Hall E↵ect, and 3-D di↵usion,

a simulation of charge trapping and the signal induced from trapped charge, and a simulation

of electronic noise, response, and threshold e↵ects. A particularly valuable aspect of PixelAV

used in this study is time evolution of the drift and induced currents in the pixel sensor.

(a) (b)

Figure 2: (a): A schematic of the pixel sensor area and the specific region of interest (blue)

of 21⇥13 pixels for a given cluster. The magnetic field is parallel to the sensor x coordinate.

(b): A diagram of three charged particles traversing our simulated silicon sensor at the same

y0 position. The sensor is viewed in the bending plane of the magnetic field. The solid track

corresponds to a charged particle with high pT , while the two dashed tracks correspond to

low pT particles with opposite charge.

Figure 2 sketches out key features of the pixel sensor and corresponding strategies

employed by this paper. Within the pixel sensor area, we define a cluster region of interest,

shown in blue, which corresponds to 21⇥13 pixels in x and y, respectively. This region is

large enough to fully encompass a charge cluster and serves as input to the ML algorithm

used to extract cluster features. The position (x, y) where the charged particle traverses the

sensor mid-plane is uniformly distributed across the central 3 ⇥ 3 pixel array. The shape

Description of the Dataset
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Figure 7: A diagram of a track passing through a pixel sensor (left) [45], and an example smart pixel
track represented as deposited charge across the 2D pixel grid (right).

The smart pixel collaboration has demonstrated the ability to classify high-momentum particles
from pileup based on the pattern of charge across the sensor as a function of time, allowing for
real-time reduction of data rate by rejecting pileup at the sensor level. This pileup classification
model has also been shown to be feasibly incorporated into an ASIC design [45]. Another option
for on-chip ML is to perform regression on low-level data, such that charged particle energy and
angular information can be determined at the front-end, thereby reducing the number of bits of
information to be sent out [46]. Both of these approaches can significantly decrease the amount
of data that must be moved off-detector. However, they rely on dedicated ASIC designs that are
fixed to a particular algorithm. My goal is to demonstrate data reduction capability with
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ML using the reconfigurability of eFPGAs, and demonstrate the feasibility of eFPGA
technology for front-end tasks.

By providing a means for open-source on-chip intelligence to handle high data density, this work
supports a key priority of the European Committee on Future Accelerators Detector R&D [47] and
the US future Higgs factory detector R&D budgetary exercise [24].

Progress So Far Engineers in SLAC TID have already designed two eFPGAs using FABulous
and taped them out in CMOS multi-project wafers, one in a 130nm (v0) and another more recently
in 28nm technology (v1), funded by HEP detector R&D. The v1 eFPGA has very small logical
capacity, only about 500 look-up tables (LUTS). While this is only about one thousandth of the
typical commercial FPGA, it can act as a valuable proof-of-concept of the ability to reconfigure ML
architectures to the FABulous-designed hardware. In my Fast ML lab at SLAC, I have testboards
for these eFPGAs that allow us to program them and test their performance (Figure 8).

Figure 8. (Left) Photograph of the KCU105 development board with the custom FMC ASIC carrier with
ASIC wire bonded to it. (Right) Zoomed in photograph of the 28nm CMOS ASIC (1mm x 1mm)

photograph showing the setup for this test can be seen in Figure 9. In lack of having GPIO tiles, 16
bits from the WEST_IO tiles were tapped off and driving off chip, which subsequently interfaced
with a 16-pin header. This header was then connected to a digital logic analyzer, facilitating the
observation of the eFPGA 16-bit counter firmware’s behavior. The behavior of the firmware was
observed to be as anticipated. The successful loading of the bitstream was thus demonstrated by
this process.

4.4.2 ASIC Power Draw

Similar to Section 2.4.2, the same firmware as referenced in Section 4.4.1 was used, and the clock
frequency of the ASIC was varied. This clock generated by the KCU105’s FPGA is sourced by
the ASIC’s SUGIO, AXI-Lite endpoints, and the eFPGA itself. At different clock frequencies,
both the ASIC’s core rail and I/O rail were measured to calculate the total ASIC power drawing.
These measurements are shown in Figure 10, demonstrating that the ASIC’s core voltage rail power
consumption at a 125 MHz clock is approximately one third that of the 130nm ASIC design.

In contrast to the 130nm ASIC (refer to Section 2.4.2), issues with the CMOS output driver
slew rate of the 28nm ASIC were not observed and appeared to be comparable to that of the
KCU105’s FPGA. A stable SUGOI link lock was achieved on both the ASIC and FPGA sides from
10 MHz to 250 MHz. Although the timing constraints used in the place and route software for
the ASIC’s digital logic were set for 200 MHz (5ns clock period), no unusual behavior was noted.
Measurements were discontinued beyond 250 MHz due to the FPGA’s inability to achieve timing
closure on a combinatorial chain in the PGPv4 protocol, which was related to calculating a 32-bit
Cyclic Redundancy Check (CRC) value.

– 8 –

Figure 8: v1 eFPGA development board at
SLAC used for the proof-of-concept study
(left), and a zoomed in photograph of the
28nm CMOS ASIC (1mm × 1mm) (right).

As a proof-of-concept, Stanford GS Kenny Jia
built a very small boosted decision tree (BDT) archi-
tecture to perform pileup classification on the smart
pixel dataset. GS Jia’s BDT models each track as
the y-profile for each pixel summed over time and
the distance of the pixel from the interaction point
y0, and outputs a probability that the track has pT <
2 GeV. Given the stringent and unrealistic resource
constraints this model consists of a single tree with
depth of 5, ultimately only able to achieve limited
background rejection. However, its ability to suc-
cessfully perform the classification task allowed us to
perform a full hardware synthesis of GS Jia’s pileup
classification BDT, including weight quantization in
order to fit the BDT in the stringent eFPGAv1 re-
source constraints, synthesis through C to firmware,
and simulation of the hardware response. We config-
ured this model onto the v1 eFPGA and were able to obtain 100% accuracy with respect to the
“golden” result of the synthesized model, with an operational run time of 3.8 ns. This successful
proof-of-concept result gives us a strong case for proceeding with a more advanced and
capable eFPGA that can accommodate realistic collider pixel sensors and data flow.

A paper describing the 130 and 28nm eFPGA designs from SLAC, along with the successful
proof-of-concept configuration of the pixel classification BDT, is in preparation and will be submitted
for publication. I am also initiating a collaboration between SLAC, Stanford, Lawrence Berkeley
National Laboratory, and other university partners in the context of US R&D Collaboration (RDC)
4 of the Coordinating Panel on Advanced Detectors (CPAD) 5.

Goals For This Award My group will continue eFPGA development considering more complex
ML at realistic scales, adapting to the expected requirements of detector readout at a future collider.

The reconfigurability of the eFPGA gives it a significant advantage over a pure ASIC-based
approach, in that a single chip design and tape out can be reconfigured to test a variety of models. In
addition to classification and regression models, a new functionality I propose is to introduce anomaly
detection on chip, providing information right from the source about potentially anomalous pixel

5https://cpad-dpf.org/?page_id=1549
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https://arxiv.org/abs/2310.02474
https://arxiv.org/abs/2312.11676
https://zenodo.org/records/7331128
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Summary & Next Steps 

• eFPGAs for on-detector silicon readout: open 
source FABulous framework development, 
radiation tolerance, etc.  

• Study BSM models and specific detector 
simulations to estimate sensitivity gain for different 
on-detector compression schemes  
‣ Eg. Higgs exotic decays, vector-like leptons, 

axion-like particles, resonances, etc.  

• Potential connection of smart readout with MAPS? 
4

https://fabulous.readthedocs.io/en/latest/#
https://agenda.linearcollider.org/event/10300/

