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Introduction

• HNLs introduced as a massive, sterile RH object 
that can generate small SM neutrino masses via 
Type I see-saw mechanism (Dirac or Majorana).

• Consequential lifetime (𝜏∝M-5|U|-2)† can result in 
displaced signatures giving us LLPs to search for at 
the FCC in this framework

• We look for Dirac HNLs in the mass range 10 – 80 
GeV with 10-4 < |UeN|2 < 10-10  in electron dijet final 
state

† arXiv:2403.00100 

1



ML approaches to HNLs: BDT

• A unique BDT model was trained using 
XGBoost with TMVA for each signal mass 
point and compared with the background 
proccess (4 lepton, Z àbb and Z à cc) and 
normalised to 10 fb-1

• BDT Hyperparameters optimised via 
gridsearch cross-validation à final result 
~20% improvement on cut and count 
method 

• Input features for BDT :
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ML approaches to HNLs: DNN

• A DNN is being trained using keras for the 
same classification task – optimisation of 
the model underway, fine tuning of the 
hyperparameters necessary to match or 
improve upon BDT performance.

• Optimisation of the model underway, fine 
tuning of the hyperparameters necessary 
to match or improve upon BDT 
performance.

• Input features for the DNN (same as BDT 
so far):
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Improved Limits

• Most successful improvement (so 
far) from the use of BDTs

• ~20% improvement on existing 95% 
CL limits compared with the same 
final state for cut and count study

• ejj only ~15% of the total HNL 
branching ratio, hence we do not 
see the same full coverage as for 
expected FCC

• Next steps: DNN optimisation and 
searches for viable filters working 
with Sarah, improving our ability to 
scale to full lumi
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Lead electron energy distribution
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Missing energy distribution
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Correlation matrix (50 GeV |VeN|2 = 10-6)
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LLP vs Prompt Decay BDTs 

Use of a lead electron energy filter E > 15 GeV for 
inclusive BDT output

Combined with D0 significance > 5 for LLP

Combined with D0 significance < 5 for Prompt decay

Not much improvement from seperating processes – 
likely because BDT trains for each signal point à 
displaced vertex mass points already have the D0 as 
their most important input feature for the inclusive BDT
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