Higgs Yukawa couplings Contributions from Dalitz diagrams

Michele Selvaggi (CERN)

(with input from Gavin Salam and Marco Zaro)

Physics Performance Meeting March 18, 2023

Intro Physical Overview and Motivation

FCCee @ \sqrt{s} = 240 GeV \rightarrow Higgs factory Measure Higgs couplings Sensitivity on coupling strength modifiers K _{b,c,s,g}?

 $\sigma(vvH) = 46.2 \text{ fb}$

 $BR(H\rightarrow bb) = 0.582$ $BR(H\rightarrow cc) = 0.0289$ $BR(H\rightarrow ss) = 2.4e-04$ $BR(H\rightarrow gg) = 0.819$

 $BR(H \rightarrow uu) = 1.2e-07$ $BR(H \rightarrow dd) = 5.5e-07$

Intro Physical Overview and Motivation

Final state	upper limit BR(H→xx) 95% CL
$H \rightarrow dd$	1.7e-03
$H \rightarrow uu$	1.8e-03
$H \rightarrow bd$	3.3e-04
$H \rightarrow bs$	4.5e-04
H → cu	3.0e-04
$H \to sd$	9.5e-04

Question:

How sensitive are we really to the Yukawa couplings?

Parameter	FCC-ee CDR	FCCee today
H→WW	1 %	2.0 %
H→ZZ	3.6 %	4.6 %
H→gg	1.6 %	0.78 %
Н→үү	7.5 %	3.5 %
Н→сс	1.8 %	1.6 %
H→bb	0.25 %	0.18 %
H→µµ	15.8 %	19.5 %
Η→ττ	0.75 %	0.9%
H→Zγ		
H→ss	—	103 %
Invisible	< 0.25 %	< 0.18 %
m _H	5 MeV	4 MeV
Г _н	1 %	4%
κ _λ	42 %	30%

CERI

Contamination from Dalitz decays

With first real emission, $H{\rightarrow}qqg$ receives contribution from

- Yukawa $H \rightarrow qq^* \rightarrow q (qg)$
- Dalitz $H \rightarrow gg^* \rightarrow g(qq)$

Event generation

- parton level study with MG5
- model H \rightarrow gg vertex with mt $\rightarrow \infty$ approx
- generate full, Yukawa, Dalitz
 - Interference = Full Yukawa Dalitz
- rescale m_{b}/y_{b} to obtain result for charm, strange, up and down
 - Dalitz ~ log(m)
 - Yukawa ~ m^2
- $p_{T}(g) > 1$ GeV, else Yukawa is not finite


```
import model heft
generate h > b b~ g
Full sample
Yukawa: HIG=0
Dalitz: QED=0
```

Bottom and charm

Overall Dalitz contribution seems small

• 10% inclusively for charm, but negligible at large m_{qq}

Strange

- Dalitz ~ 30 x Yukawa
- But:

$$\circ$$
 m_{aa} > 90 GeV : Dalitz ~ 10%

- \circ m⁴⁴_{aq} > 100 GeV : Dalitz ~ 3%
- With few GeV expected hadronic mass resolution no issue seems

Up and down

Dalitz contribution overwhelming for up and down

• Dalitz ~ 10x Yukawa under Higgs peak

(Very) Preliminary conclusions

- Naive parton level study seems to indicate that Dalitz contribution under Higgs peak will be small for ≥ 2nd generation
 - Not the case for 1st generation
- Preliminary study with H->ss (shower) and H->gg (FO) and jet clustering (Gavin)
 - ~ 15% Dalitz contamination (vs 3% here), t.b.c
 - \circ from TH perspective is shower analysis consistent with H \rightarrow qqg calculation at NLO?
- Fragmentation/Hadronization effects neglected, are they going to be important?
- Detector effects to be included

Ο

Backup

Dalitz scaling with mass

expect scaling as $log(m_H^2/m_g^2)$: OK