
DOI: 10.17181my9jk-hv376

1

A vertex fitting package
Franco Bedeschi1*

1*INFN - Sezione di Pisa, Largo B. Pontecorvo 3, Pisa, 56127, Italy.

Corresponding author(s). E-mail(s): franco.bedeschi@pi.infn.it;

1 Introduction

Vertex fitting code is commonly found within the analysis packages of several HEP
experiments, unfortunately it usually deeply packaged inside their software infrastruc-
ture, making it cumbersome to use in the context of external applications such, for
instance, in the study of the performance of the proposed FCCee detectors. In this note
a totally independent package is described. The only dependencies being the ROOT
libraries, making it easy to use in a wide range of applications.

The code currently works with track trajectories that are either helices or straight
lines, as generated by charged or neutral particles in a constant magnetic field, but is
expandable in principle to other type of trajectories or parameterizations.

This vertexing package, in addition to fitting a vertex given a list of tracks, sup-
ports several features: addition and subtraction of tracks, momenta and their errors
of the tracks at the vertex point, external vertex constraints, mass constraints, and
the capability to perform fits of chain decays.

This note is organized as follows: in section 2 the basic formulas for the fit are
derived, section 3 describes how to use the software and two examples are given in
section 4. Details on the fit formulas derivation are shown in appendix ??. Several
formulas needed for trajectories in a uniform magnetic field, track parameters and
related derivatives are contained in appendix B and C.

2 Basic formulas

Two main approaches are used for vertex fitting: the simplest finds the location of the
point closest to all tracks without changing the track parameters; the second is more
complex and forces all tracks to go through the same point by changing the track
parameters. We look now at the first method, while the second will be developed in
the next subsection.

2

2.1 Vertex fit without track parameter steering

Given a track trajectory x⃗(s; α⃗), where α⃗ are the track parameters and the phase, s,
defines the position on the trajectory, the covariance matrix S of a point on the track
at fixed s is given by

S = W−1 =
∂x⃗

∂α⃗
C

(
∂x⃗

∂α⃗

)t

= ACAt

where C is the covariance matrix of the track parameters α⃗. The χ2 to minimize is
the following:

χ2 =

N∑
i=1

(x⃗(si; α⃗i)− x⃗V)
tWi(x⃗(si; α⃗i)− x⃗V) (1)

where x⃗V is the vertex to be determined. The unknown parameters in this fit, besides
the vertex position, x⃗V , are the phases, si. We now set to 0 the derivatives of the χ2,
after using a first order approximation for x⃗(s; α⃗) ≃ x⃗0 + ∂x⃗

∂s δs = x⃗0 + a⃗δs:

1

2

∂χ2

∂sk
= a⃗tkWk(x⃗

0
k + a⃗k δsk − x⃗V) = a⃗tkWk(x⃗

0
k − x⃗V) + a⃗tkWka⃗k δsk = 0 (2)

which can be solved for δsk:

δsk =
a⃗tkWk(x⃗V − x⃗0

k)

a⃗tkWka⃗k
=

a⃗tk
ak

Wk(x⃗V − x⃗0
k) (3)

then:

1

2

∂χ2

∂x⃗V
= −

N∑
i=1

Wi(x⃗
0
i + a⃗i δsi − x⃗V) = −

N∑
i=1

Wi(x⃗
0
i +

a⃗ia⃗
t
k

ak
Wi(x⃗V − x⃗0

i)− x⃗V) (4)

that can be solved for x⃗V :

x⃗V = (

N∑
i=1

Di)
−1(

N∑
i=1

Dix⃗
0
i) = D−1(

N∑
i=1

Dix⃗
0
i) (5)

where:

Di = Wi −Wi
a⃗ia⃗

t
i

ai
Wi (6)

The error matrix on x⃗V is obtained by error propagation on the x⃗0
i :

Cov(x⃗V) = D−1(

N∑
i=1

DiW
−1
i Di)D

−1 (7)

The procedure can be iterated by using x⃗V as obtained in eq. 5 to update the si
(from eq. 3) and then the x⃗ 0

i .

3

2.2 Vertex fit with parameter steering

The method described in section 2.1 is very fast and provides a reliable vertex position
and error matrix, however it is not suitable to allow further functionality, such as mass
constraints or applications in chain decays. We then describe another method where
N input tracks are forced to pass through a common vertex by varying their track
parameters. Let

x⃗i(si, α⃗i) ≃ x⃗i(s
′
i, α⃗

′
i) +

∂x⃗i

∂α⃗i
(α⃗i − α⃗′

i) +
∂x⃗i

∂ si
(si − s′i) = x⃗ 0

i +Aiδα⃗i + a⃗iδ si

be all track equations and their first order expansion in the track parameters, α⃗i

and the variables describing the position in each trajectory, si. The symbol ′ is used
to indicate the expansion point. Let also Ci be the covariance matrices of the original
track parameters α⃗ 0

i The vertex fit amounts to minimizing the following χ2:

χ2 =

N∑
i=1

(α⃗i − α⃗ 0
i)

tC−1
i (α⃗i − α⃗ 0

i) + 2(x⃗(si, α⃗i)− x⃗V)
tλ⃗i} (8)

where α⃗i and si are the modified track parameters and the phases at the vertex, x⃗V

is the vertex to be determined and λ⃗i are Lagrange multipliers. The fit varies the
track parameters and the phases until all tracks go through a common vertex x⃗V . The
solution is found to be:

x⃗V =

(
N∑
i=1

Di

)−1(N∑
i=1

Di(x⃗
0
i +Ai δα⃗

0
i)

)
= D−1

(
N∑
i=1

Di(x⃗
0
i +Ai δα⃗

0
i)

)
(9)

where δα⃗ 0
i = α⃗ 0

i − α⃗i is the difference between the input and final track parame-
ters. The corresponding error matrix on x⃗V is obtained by taking the average of the
fluctuations of x⃗V due to those of the track parameters, α⃗ 0

i :

CV = Cov(x⃗V) = D−1
(∑

ij DiAi < δα⃗ 0
i δα⃗

0t
j > A t

iDj

)
D−1

= D−1
(∑

i DiW
−1
i Di

)
D−1

(10)

We note that the vertex position and its errors are almost the same as obtained
with the simpler fit with no parameter steering, however here we have the updated
parameters satisfying the vertex constraint. This is very useful to expand the function-
ality of the vertex fit as seen in later sections, when dealing with complex constraints
or chain decays.

4

2.3 χ2 and updated track parameter errors

Since the constraints are all zero after solving the minimization problem, the χ2 is
given only by the sum of the variation of the track parameters:

χ2 =

N∑
i=1

(α⃗i − α⃗ 0
i)

tC−1
i (α⃗i − α⃗ 0

i) =

N∑
i=1

λ⃗ t
i (AiCiA

t
i)λ⃗i =

N∑
i=1

λ⃗ t
iW

−1
i λ⃗i (11)

Comparing with eq. 1 the Lagrange multipliers correspond to the vector distances
of the tracks from the vertex. Given the structure of the χ2 it is easy to separate the
contribution of each track. The λ⃗i can be obtained directly from eq. A1:

λ⃗i = Di(x⃗
0
i +Ai δα⃗

0
i − x⃗V) = Di

N∑
k=1

(Iδik −D−1Dk)(x⃗
0
k +Ai δα⃗

0
i) (12)

This leads to a closed form for the relation between the updated track parameters,
α⃗i, and those in input, α⃗0

i :

α⃗i = α⃗0
i − Ci A

t
i λ⃗i

= α⃗0
i − Ci A

t
iDi

N∑
k=1

(Iδik −D−1Dk)(x⃗
0
k +Ak δα⃗

0
k) (13)

so:

dα⃗i = dα⃗0
i − Ci A

t
iDi

N∑
k=1

(Iδik −D−1Dk)Ak dα⃗
0
k

=

N∑
k=1

[I5δik − Ci A
t
iDi(I3δik −D−1Dk)Ak] dα⃗

0
k (14)

=

N∑
k=1

M i
k dα⃗

0
k (15)

where the subscript under the I indicates the dimensionality of the unit matrix. So

M i
k =

∂α⃗i

∂α⃗0
k

(16)

Finally the errors on the updated track parameters are given by:

< δα⃗iδα⃗
t
j >=

N∑
k=1

M i
k < δα⃗0

i δα⃗
0 t
j > M j t

k =

N∑
k=1

M i
kCk(M

j
k)

t (17)

5

2.4 Momenta at vertex and their errors

The track momentum at the vertex can be calculated from the updated track
parameters and the phase: p⃗i = p⃗i(α⃗i, si) therefore:

∂p⃗i
∂α⃗0

k

=
∂p⃗i
∂α⃗i

∂α⃗i

∂α⃗0
k

+
∂p⃗i
∂si

∂si
∂α⃗0

k

where the phase derivatives are given by:

∂si
dα⃗ 0

k

= S⃗i
k

t
=

a⃗ t
iWi

ai
(D−1Dk − Iδik)Ak (18)

Using a similar strategy as that used to calculate < δα⃗iδα⃗
t
j >, we get all the

< δp⃗iδp⃗
t
j > terms:

Cij =< δp⃗iδp⃗
t
j >=

N∑
k=1

∂p⃗i
∂α⃗0

k

Ck

(
∂p⃗i
∂α⃗0

k

)t

i, j = 1, N (19)

This can be used to get the covariance matrix of the total vertex momentum
p⃗ =

∑
i p⃗i:

< δp⃗δp⃗ t >=

N∑
i,j

Cij (20)

The correlation between the momenta and the vertex position is given by:

Ci,0 =< δp⃗iδx⃗
t >=

N∑
k=1

∂p⃗i
∂α⃗0

k

Ck (Xk)
t

(21)

where Xk = D−1Ak.

2.5 Covariance matrix of vertex track parameters

This code has the feature of using each found vertex as an additional track (charged
or neutral) that can be used for vertexing. This requires to calculate the vertex track
parameters, that is trivial given the position of the vertex and its total momentum,
α⃗V (x⃗, p⃗), and their covariance matrix, CV .

It is useful to define a global vector:

q⃗ =


x⃗
p⃗1
· · ·
p⃗N

 (22)

6

and its covariance matrix:

Q = Cov(q⃗) =


C00 C01 · · · C0N

C10 C11 · · · C1N

· · · · · · · · · · · ·
CN0 CN1 · · · CNN

 (23)

Then, after noting that ∂α⃗V /∂p⃗i = ∂α⃗V /∂p⃗:

CV =
∂α⃗V

∂q⃗
Q

(
∂α⃗V

∂q⃗

)t

(24)

2.6 External constraint

Adding an external constraint to the χ2 in the form (x⃗V − y⃗)tV −1(x⃗V − y⃗), where y⃗ is
an independent measurement of the vertex and V its covariance matrix, is relatively
straightforward. Indeed all derivatives are the same except for those with respect to
x⃗V that become:

1

2

∂χ2

∂ x⃗V
= −

N∑
i=1

λ⃗i + V −1(x⃗V − y⃗) =

N∑
i=1

Di(x⃗V − x⃗ 0
i −Ai δα⃗

0
i) + V −1(x⃗V − y⃗) = 0

solving this the final vertex x⃗V is:

x⃗V =

(
N∑
i=1

Di + V −1

)−1(
V −1y⃗ +

N∑
i=1

Di(x⃗
0
i +Ai δα⃗

0
i)

)
= D−1

V

(
V −1y⃗ +

N∑
i=1

Di(x⃗
0
i +Ai δα⃗

0
i)

)
(25)

Its covariance matrix can be easily obtained by error propagation:

CV = Cov(x⃗V) = D−1
V

(
V −1 +

N∑
i=1

DiW
−1
i Di

)
D−1

V (26)

The effect of this type of contraint on all above formulas is just a modification of
the matrix D:

D =
∑
i

Di → D =
∑
i

Di + V −1 (27)

2.7 Generic constraint

Both vertex and moments can be improved applying a constraint, for instance an
invariant mass constraint on a subset of particles used for vertexing. We solve here the
case of a generic set of contraints using the notations defined in the previous sections.

Let f⃗(q⃗) be the constraints, then the χ2 is given by:

χ2 = (q⃗ − q⃗0)
tQ−1(q⃗ − q⃗0) + 2f⃗ t(q⃗)λ⃗ (28)

7

We linearize the constraint around a point q⃗ ′ to allow the solution by iteration,

f⃗(q⃗) ≃ f⃗(q⃗ ′) +
∂f⃗

∂q⃗
(q⃗ − q⃗ ′) = f⃗0 +Bδq⃗ (29)

we also define δq⃗0 = q⃗0 − q⃗ ′. The linearized problem is solved by setting to zero the
derivatives of the χ2 with respect to the vectors p⃗ and λ⃗:

1

2

∂χ2

∂q⃗
= Q−1(δq⃗ − δq0) +Btλ = 0 → δq⃗ = δq0 −QBtλ (30)

Replacing δq⃗ in the constraint we obtain λ:

f⃗0 +Bδq⃗0 −BQBtλ = 0 → λ = (BQBt)−1(f⃗0 +Bδq⃗0) (31)

and finally :

δq⃗ = δq⃗0−QBt(BQBt)−1(f⃗0+Bδq⃗0) = (I−QBt(BQBt)−1B)δq0−QBt(BQBt)−1f⃗0
(32)

The covariance of the updated parameters is obtained averaging over the fluctuations
of the q⃗0:

Cov(q⃗) = (I −QBt(BQBt)−1B)Q(I −QBt(BQBt)−1B)t = Q−QBt(BQBt)−1BQ
(33)

8

3 Software implementation

The vertex fitting code is implemented with three classes: VertexFit, that per-
forms the vertex fit with some options, VertexMore, that provides additional
features such as update the fit with mass constraints, calculation of track momenta
at the vertex and their errors and calculation of the vertex track parameters
to allow use in chain decays, while some usuful general formulas are kept in
TrkUtil.These three classes are currently part of the DELPHES package available at
https://github.com/delphes/delphes. These three classes are self-contained and
the only other dependencies are with the standard ROOT package.

It is worth noting that, while VertexFit can be used with any units or magnetic
field, since its formulas depend only on the track parameters, this is not the case
for VertexMore since explicit track parameter to momenta conversions are needed.
Meters, GeV and B-field of 2 Tesla are the default. An option to switch to millimeters
is provided in the constructor, but at present the field needs to be changed by hand
in the code.

Given an array of pointers to track parameter sets, tPar, and their covariance
matrices, tCov, the vertex fit is obtained by the following simple code sequence:

const Int t N = something;

TVectorD* tPar[N]; TMatrixDSym* tCov[N];

.... assign tPar[i] and tCov[i]

eg: tPar[i] = new TVectorD(par); tCov[i] = new TMatrixDSym(cov);

...

VertexFit* Vfit = new VertexFit(N, tPar, tCov);

This default constructor assumes that all input tracks are charged. If this is not the
case, one needs to tell the fit which tracks are charged and which are not by adding a
Bool t array that is kTRUE for charged tracks and kFALSE for neutrals as follows:

Bool t Charge[N];

... assign Charge[i] values ...

VertexFit* Vfit = new VertexFit(N, tPar, tCov, Charge);

The fit results are provided by the following methods of VertexFit:

TVectorD XvFit = Vfit->GetVtx(); // Vertex position
TMatrixDSym XvCov = Vfit->GetVtxCov();// Vertex position covariance
Int t Ntr = Vfit->GetNtr(); // Number of tracks in fit
Double t Chi2 = Vfit->GetVtxChi2(); // Vertex χ2

TVectorD Chi2List = Vfit->GetVtxChi2List();// χ2 contribution of each track
TVectorD NewPar = Vfit->GetNewPar(i);// Updated ithtrack parameters
TMatrixDSym NewCov = Vfit->GetNewCov(i):// Updated ith track covariance

We note that the instantiation of VertexFit performs only some basic initializa-
tions, while the actual fitting is triggered only when any of these methods is invoked:
GetVtx(), GetVtxCov(), GetVtxChi2() or GetVtxChi2List().

9

The input tracks can also be added or removed incrementally as can be useful in
pattern recognition combinatorics with the following methods:

Vfit->AddTrk(par, cov): // Adds one charged track to the fit track list
Vfit->AddTrk(par, cov, kFALSE): // Adds one neutral track to the fit track list
Vfit->RemoveTrk(i); // Removes the ith track from the fit track list

Finally the VertexFit class supports also including an external vertex constraint,
for instance an independent knowledge of the primary vertex position and width.
Given the mean position, Xpvc, and the covariance matrix, CovXpvc, of this external
constraint, one can include it in the fit with the call:

Vfit->AddVtxConstraint(Xpvc, CovXpvc);

N.B. when an external constraint is in place, vertex fits are allowed also with a
single track in input.

Additional information after fitting can be obtained with the class VertexMore.
Its constructor has in input the pointer to the vertex fit, VertexFit* Vfit and an
optional Bool t parameter that requests the use of millimiters if kTRUE, as shown in
the following:

VertexMore* VM = new VertexMore(Vfit);

or
Bool t opt = kTRUE;

VertexMore* VM = new VertexMore(Vfit, opt);

In the following the most relevant methods are described:

TVector3 GetMomentum(Int t i); // Momentum of the ithtrack in the vertex
TVector3 GetMomentumC(Int t i); // Covariance of the above
TVector3 GetTotalP(); // Total momentum of vertex
TMatrixDSym GetTotalPcov(); // Covariance of the above
TVectorD GetXv(); // Vertex position
TMatrixDSym GetXvCov(); // Covariance of the above
TVectorD GetVpar(); // Vertex track parameters
TMatrixDSym GetVcov(); // Covariance of the above
Mass constraints on a subset of the tracks in the vertex fit are initialized by calls like:
VM->AddMassConstraint(Double t Mass, Int t Ntr, Double t* masses,

Int t* list);

where Mass is the constraining mass value, Ntr is the number of tracks involved,
masses is an array with the masses of the tracks involved and list is an array with
the list of track numbers involved. This function can be called more than once if there
is more than one disjoined set of tracks to constrain. The fit is then activated with

10

VM->MassConstrFit();

that also updates all momenta and vertex positions and their covariance matrices,
that can be accessed with the methods described above.

4 Examples

Some examples on the use of the code are provided with the standard DELPHES distri-
bution available in GitHub. The most instructive ones are discussed in the following
sections. It should be noted that all these examples assume input files generted with
Pythia8 and simulated with DELPHES. It is important to ensure consistency with the
generated files when beam constraints are used in the examples.

4.1 Primary vertex determination

The code for this example is located in examples/ExamplePVtxFind.C and is exe-
cuted from ROOT by :
root>.X examples/ExamplePVtxFind.C("InputFile.root", 1000);, where the
second parameter is the number of events to process. A description of the algorithm
and how the vertexing code is used is presented in the following.

The input is the full set of NtrG tracks in the event, that can be mapped to the
track parameters, pr[i] and their covariance matrix, cv[i]. It is also assumed that
there is an independent knowledge of the primary vertex with mean value xpvc and
covariance covpvc, that wil be used as an external constraint.

The algorithm first loops over all tracks and selects those sufficiently close to the
known primary vertex:
// Skim tracks

Int t nSkim = 0;

Int t* nSkimmed = new Int t[NtrG];

TVectorD** PrSk = new TVectorD * [1];

TMatrixDSym** CvSk = new TMatrixDSym * [1];

Double t MaxChi2 = 9.;

for (Int t n = 0; n < NtrG; n++) {
PrSk[0] = new TVectorD(*pr[n]);

CvSk[0] = new TMatrixDSym(*cv[n]);

// Vertex fit one track at a time

VertexFit* Vskim = new VertexFit(1,PrSk, CvSk);

// with external constraint

Vskim->AddVtxConstraint(xpvc, covpvc);

Double t Chi2One = Vskim->GetVtxChi2();

// Select depending on Chi2

if (Chi2One < MaxChi2) {
nSkimmed[nSkim] = n;

nSkim++;}
}

11

Then setup the primary vertex candidate fit with all selected tracks.

// Load all skimmed tracks

TVectorD** PrFit = new TVectorD * [nSkim];

TMatrixDSym** CvFit = new TMatrixDSym * [nSkim];

for (Int t n = 0; n < nSkim; n++) {
PrFit[n] = new TVectorD(*pr[nSkimmed[n]]);

CvFit[n] = new TMatrixDSym(*cv[nSkimmed[n]]);}
// Setup vertex fit

VertexFit* Vtx = new VertexFit(nSkim, PrFit, CvFit);

// add Constraint

Vtx->AddVtxConstraint(xpvc, covpvc);

and remove iteratively the tracks that contribute most to the χ2 if above a given
threshold.

//

// Remove tracks with large chi2

Double t MaxChi2Fit = 8.0;

Int t Nfound = nSkim;

const Int t MaxFound = 100; Double t Chi2LL[MaxFound];

Bool t Done = kFALSE;

while (!Done) {
// Find largest Chi2 contribution

TVectorD Chi2List = Vtx->GetVtxChi2List(); // Contributions to Chi2

Chi2L = Chi2List.GetMatrixArray();

Int t iMax = TMath::LocMax(Nfound, Chi2L);

Double t Chi2Mx = Chi2L[iMax]; // Largest Chi2 contribution

if (Chi2Mx > MaxChi2Fit && Nfound > 1) {
// Remove bad track

Vtx->RemoveTrk(iMax);

Nfound--;}
else {Done = kTRUE;}

}

After this selection Vtx is the final primary vertex.

4.2 Bs → Dsπ

The code for this example is located in examples/VtxBs2DsPi.C and is executed
from ROOT by :
root>.L goBs.C+

root>goBs();

root>.X examples/VtxBs2DsPi.C("InputFile.root", 1000);, where the second
parameter is the number of events to process. The goal of this example is to first
fit the decay D±

s → K+K−π± and then use the Ds track to fit the decay vertex

12

Bs → D−
s π

+ or charge coniugate. A mass constraint is applied to the Ds vertex fit
to improve resolution. A description of the algorithm and how the vertexing code is
used is shown.

// Find Ds Vertex with mass constraint

// Load Ds tracks

TVectorD* tDsPar[nDsT];

TMatrixDSym* tDsCov[nDsT];

for(Int t k=0; k<nDsT; k++){
TVectorD par(5); TMatrixDSym cov(5);

TrkToVector(tDs[k], par, cov);

tDsPar[k] = new TVectorD(par);

tDsCov[k] = new TMatrixDSym(cov);

}
// Fit Ds vertex

VertexFit* vDs = new VertexFit(nDsT, tDsPar, tDsCov);

Double t DsChi2 = vDs->GetVtxChi2(); // Ds fit Chi2

// More fitting

Bool t Units = kTRUE; // Set to mm

VertexMore* VMDs = new VertexMore(vDs,Units);

// Mass constraint if requested

Bool t MCst = kTRUE; // Mass constraint flag

if(MCst){
Double t DsMass = pBsDs->Mass; // Ds mass

Double t DsMasses[nDsT]; Int t DsList[nDsT];

for(Int t k=0; k<nDsT; k++){
DsMasses[k] = pDs[k]->Mass;

DsList[k] = k;

}
VMDs->AddMassConstraint(DsMass, nDsT, DsMasses, DsList);

VMDs->MassConstrFit();

}
TVectorD rDv = VMDs->GetXv(); // Ds vertex

Then use the Ds track and the remaining π to fit the Bs vertex.

// Find Bs vertex

// Load Bs tracks

TVectorD* tBsPar[nBsT];

TMatrixDSym* tBsCov[nBsT];

TVectorD par(5); TMatrixDSym cov(5);

TrkToVector(tBs[0], par, cov);

tBsPar[0] = new TVectorD(par); // Bs pion

tBsCov[0] = new TMatrixDSym(cov);

tBsPar[1] = new TVectorD(VMDs->GetVpar()); // Ds from previous fit

13

tBsCov[1] = new TMatrixDSym(VMDs->GetVcov());

//

// Fit Bs vertex

VertexFit* vBs = new VertexFit(nBsT, tBsPar, tBsCov); // Bs vertex

Double t BsChi2 = vBs->GetVtxChi2();

One could also use VertexMore for the Bs vertex to extract more information or
even apply an additional mass constraint on the Bs if useful.

4.3 B0 → K0
SK

0
S

The code for this example is located in examples/VtxB02KsKs.C and is executed
from ROOT by :
root>.L goKsKs.C+

root>goKsKs();

root>.X examples/VtxB02KsKs.C("InputFile.root", 1000);, where the second
parameter is the number of events to process. The goal of this example is to first fit the
decays K0

s → π+π− and then use the K0
s tracks to fit the decay vertex B0 → K0

s K
0
s

or charge coniugate. A mass constraint is applied to the K0
s vertices fits to improve

resolution. A description of the algorithm and how the vertexing code is used is shown.

// Find first Ks vertex

// Load 1st Ks tracks

TVectorD* tKs1Par[nKsT];

TMatrixDSym* tKs1Cov[nKsT];

for(Int t k=0; k<nKsT; k++){
TVectorD par(5); TMatrixDSym cov(5);

TrkToVector(tKs1[k], par, cov);

tKs1Par[k] = new TVectorD(par);

tKs1Cov[k] = new TMatrixDSym(cov);

}
// Fit 1st Ks vertex

VertexFit* vKs1 = new VertexFit(nKsT, tKs1Par, tKs1Cov);

Double t Ks1Chi2 = vKs1->GetVtxChi2(); // Ks fit Chi2

// More fitting

Bool t Units = kTRUE; // Set to mm

VertexMore* VMKs1 = new VertexMore(vKs1,Units);

// Mass constraint if requested

Bool t MCst = kTRUE; // Mass constraint flag

if(MCst){
Double t KsMass = pB0[0]->Mass; // Ks mass

Double t KsMasses[nKsT]; Int t KsList[nKsT];

for(Int t k=0; k<nKsT; k++){
KsMasses[k] = pKs1[k]->Mass;

KsList[k] = k;

}

14

VMKs1->AddMassConstraint(KsMass, nKsT, KsMasses, KsList);

VMKs1->MassConstrFit();

}

A similar code is used to fit the second K0
s in the event. The B0 vertex is then fit

using the two neutral tracks:

// Find B0 vertex

// Load B0 tracks

TVectorD* tB0Par[nB0T];

TMatrixDSym* tB0Cov[nB0T];

tB0Par[0] = new TVectorD(VMKs1->GetVpar()); // 1st Ks previous fit

tB0Cov[0] = new TMatrixDSym(VMKs1->GetVcov());

tB0Par[1] = new TVectorD(VMKs2->GetVpar()); // 2nd Ks previous fit

tB0Cov[1] = new TMatrixDSym(VMKs2->GetVcov());

//

// Fit B0 vertex

Bool t Charged[nB0T] = kFALSE, kFALSE; // Tag neutral tracks

VertexFit* vB0 = new VertexFit(nB0T, tB0Par, tB0Cov, Charged);

Double t B0Chi2 = vB0->GetVtxChi2();

// More fit information

VertexMore* VMB0 = new VertexMore(vB0,Units);

TVectorD rvmB0 = VMB0->GetXv();

As in the previous case one could further improve the resolution by mass
constraining the B0 if useful.

15

Appendix A Steered parameter fit derivation

Differentiating the χ2 shown in eq. 8 with respect to the track parameters and using
the expansion of the track positions at the points (s′i, α⃗

′
i) we obtain:

1

2

∂χ2

∂ α⃗i
= C−1

i (α⃗i − α⃗ 0
i) +At

iλ⃗i = C−1
i (δα⃗i − δα⃗ 0

i) +At
iλ⃗i = 0

where δα⃗i = α⃗i − α⃗′
i and δα⃗ 0

i = α⃗ 0
i − α⃗′

i. The following derived relations will be used
later:

α⃗i = α⃗ 0
i − CiA

t
iλ⃗i

and after mltiplication by Ai Ci:

Ai δα⃗i = Ai δα⃗
0
i − (AiCiA

t
i)λ⃗ = Ai δα⃗

0
i −W−1

i λ⃗

Differentiating with respect to the Lagrange multipliers returns the constraints:

0 = x⃗i − x⃗V = x⃗ 0
i − x⃗V +Aiδα⃗i + a⃗iδ si = x⃗ 0

i +Ai δα⃗
0
i − x⃗V −W−1

i λ⃗i + a⃗iδ si

so:
λ⃗i = Wi{x⃗ 0

i +Ai δα⃗
0
i − x⃗V + a⃗iδsi}

Differentiating by si we can eliminate the dependence on δsi in the above:

1

2

∂χ2

∂ si
= a⃗tiλ⃗i = 0

so replacing λ⃗i from the above:

a⃗tiλ⃗i = a⃗tiWi{x⃗ 0
i +Ai δα⃗

0
i − x⃗V + a⃗iδ si} = 0

leading to:

δsi = a⃗tiWi
x⃗V − x⃗ 0

i −Ai δα⃗
0
i

ai
where we have set ai = a⃗tiWia⃗i. Finally:

λ⃗i = Wi{x⃗ 0
i +Ai δα⃗

0
i − x⃗V +

a⃗ia⃗
t
i

ai
Wi(x⃗V − x⃗ 0

i −Ai δα⃗
0
i)}

=

(
Wi −Wi

a⃗ia⃗
t
i

ai
Wi

)
(x⃗ 0

i +Ai δα⃗
0
i − x⃗V)

= Di(x⃗
0
i +Ai δα⃗

0
i − x⃗V) (A1)

We now differentiate by x⃗V obtaining:

1

2

∂χ2

∂ x⃗V
= −

N∑
i=1

λ⃗i =

N∑
i=1

Di(x⃗V − x⃗ 0
i −Ai δα⃗

0
i) = 0

16

that can be solved for x⃗V giving the solution:

x⃗V =

(
N∑
i=1

Di

)−1(N∑
i=1

Di(x⃗
0
i +Ai δα⃗

0
i)

)
= D−1

(
N∑
i=1

Di(x⃗
0
i +Ai δα⃗

0
i)

)
(A2)

The corresponding error matrix on x⃗V is obtained by taking the average of the
fluctuations of x⃗V due to those of the track parameters, α⃗ 0

i :

CV = Cov(x⃗V) = D−1
(∑

ij DiAi < δα⃗ 0
i δα⃗

0t
j > A t

iDj

)
D−1

= D−1
(∑

i DiW
−1
i Di

)
D−1

(A3)

The fitting procedure starts setting α⃗′ = α⃗ 0 and s′ to some smart guess of its
value. After each iteration α⃗′ is set to the latest value of α⃗ obtained, given by:

α⃗i = α⃗ 0
i − CiA

t
i λ⃗i

and s′i to the latest value of si obtained given by:

si = s′i + a⃗tiWi
x⃗V − x⃗ 0

i −Ai δα⃗
0
i

ai

Appendix B Charged track formulas

B.1 Trajectory formulas

In the point of minimum approach to the z-axis the 3D position and momentum are
given by:  x = x0 + [sin(s+ φ0)− sin(φ0)]/(2C)

y = y0 − [cos(s+ φ0)− cos(φ0)]/(2C)
z = z0 + λ s/(2C)

(B4)

and  px = pt cos(s+ φ0)
py = pt sin(s+ φ0)
pz = ptλ

(B5)

where  x0 = −D sinφ0

y0 = D cosφ0

z0 = z0

{
a = −0.2998BQ (T/m/GeV)
ρ = 2C = a/pt

(B6)

and s is the angular displacement from the point of minimum approach to the z axis
(pma), D is the signed transverse impact parameter, φ0 the track direction at the
pma, z0 the z coordinate at the pma, and λ = pz/pt or the cotangent of the polar
angle. The phase, s, at point x⃗ on the trajectory is given by:

s = sin−1{2C(x cosφ0 + y sinφ0)} (B7)

17

In the following we show the derivatives of the track trajectory, x⃗(α⃗, s), with respect
to the track parameters, α⃗ = (D, φ0, C, z0, λ), and the phase, s. They are shown in
the following:

a⃗ = ∂x⃗
∂s = 1

2C

 cos(s+ φ0)
sin(s+ φ0)

λ

 ; a = a⃗ t a⃗ = 1+λ2

4C2 (B8)

A =
∂x⃗

∂α⃗
=

−sinφ0 −D cosφ0 +
[cos(s+φ0)−cos φ0]

2C − [sin(s+φ0)−sinφ0]
2C2 0 0

cosφ0 −Dsinφ0 +
[sin(s+φ0)−sinφ0]

2C
[cos(s+φ0)−cos φ0]

2C2 0 0
0 0 −λ s/(2C2) 1 s/(2C)


(B9)

Similarly for the track momentum:

∂p⃗

∂α⃗
=

 0 −py −px/C 0 0
0 px −py/C 0 0
0 0 −pz/C 0 pt

 (B10)

and
∂p⃗

∂s
= (−py, px, 0) (B11)

B.2 Track parameters from x⃗, p⃗

We provide the basic formulas to obtain the track parameters in cylindrical geome-
try given a point on the track, x⃗, and the momentum, p⃗, in that point. Two of the
parameters, λ and C, depend only on the momentum:

λ = pz/p⊥; C = a/(2p⊥) (B12)

The transverse impact parameter, D, is given by:

D =
1

a
(T − p⊥); T =

√
p2⊥ − 2a(xpy − ypx) + a2(x2 + y2) (B13)

The angle φ0 is given by:

cosφ0 =
px + ay

T
; sinφ0 =

py − ax

T
(B14)

or

tanφ0 =
py − ax

px + ay
(B15)

Finally z0:
z0 = z − λs/2C (B16)

18

The derivatives of the track parameters relative to both x⃗ and p⃗ are reported in
the following.

∂λ

∂x⃗
= (0, 0, 0);

∂λ

∂p⃗
=

(
−pxpz

p3⊥
, −pypz

p3⊥
,
1

p⊥

)
(B17)

∂C

∂x⃗
= (0, 0, 0);

∂C

∂p⃗
=

a

2

(
− px
p3⊥

, − py
p3⊥

, 0

)
(B18)

∂T

∂x⃗
=
(
− a

T
(py − ax),

a

T
(px + ay), 0

)
;
∂T

∂p⃗
=

(
px + ay

T
,
py − ax

T
, 0

)
(B19)

∂D

∂x⃗
=

1

a

∂T

∂x⃗
;
∂D

∂p⃗
=

(
1

a

(
∂T

∂px
− px

p⊥

)
,
1

a

(
∂T

∂py
− py

p⊥

)
, 0

)
(B20)

∂φ0

∂x⃗
= −a cos2 φ0

px + ay
(1, tanφ0, 0) (B21)

∂φ0

∂p⃗
=

cos2 φ0

px + ay
(−tanφ0, 1, 0) (B22)

The derivative of z0 is calculated after noting that an alternate expression for the
phase, s, is given by:

s = tg−1 py
px

− φ0 (B23)

then:
∂z0
∂x⃗

=

(
λ

2C

∂φ0

∂x
,

λ

2C

∂φ0

∂y
, 1

)
=

(
pz
a

∂φ0

∂x
,
pz
a

∂φ0

∂y
, 1

)
(B24)

∂z0
∂p⃗

=

(
pz
a

(
py
p2t

+
∂φ0

∂px

)
,
pz
a

(
−px
p2t

+
∂φ0

∂py

)
, −s/a

)
(B25)

Appendix C Neutral track formulas

The track trajectory equation for neutral tracks is a straight line. For consistency with
the previous parameterization we find the trajectory equation by setting C = 0 in the
charged track equations obtaining: x = x0 + s cosφ0

y = y0 + s sinφ0

z = z0 + s λ
where


x0 = −Dsinφ0

y0 = D cosφ0

s =
√
R2 −D2

(C26)

we note that in this case the parameter s is not angle, but the distance from the pma,
and is given by:

s = x cosφ0 + y sinφ0 (C27)

Alternatively, as a function of the radius, R, the neutral track equation can be writtten
as: {

φ(R) = φ0 + sin−1(D/R)

z(R) = z0 + λ
√
R2 −D2 (C28)

There are only 4 parameters to define the trajectory, however we include also a
5th parameter, pt, to keep track of the neutral track momentum. The final set of

19

parameters describing a neutral is threrefore α⃗ = (D, φ0, pt, z0, λ). The derivatives
of the trajectory with respect to the track parameters is:

∂x⃗

∂α⃗
=

−sinφ0 −D cosφ0 − s sinφ0 0 0 0
cosφ0 −D sinφ0 + s cosφ0 0 0 0
0 0 0 1 s

 =

−sinφ0 −y 0 0 0
cosφ0 x 0 0 0
0 0 0 1 s

 (C29)

Derivatives of the trajectory with respect to s are given by:

∂x⃗

∂ s
= (cosφ0, sinφ0, λ) (C30)

Neutral track momenta are constant and given by:

p⃗ = (pt cosφ0, pt sinφ0, ptλ) (C31)

with trivial derivatives with respect to track parameters:

∂p⃗

∂α⃗
=

 0 −py cosφ0 0 0
0 px sinφ0 0 0
0 0 λ 0 pt

 (C32)

C.1 Neutral track parameters from x⃗ and p⃗

The track direction is easily obtained from the momentum: cosφ0 = px/pt
sinφ0 = py/pt
λ = pz/pt

where pt =
√

p2x + p2y (C33)

The parameters D and z0 can be obtained by eliminating s in the trajectory equation:

D = y cosφ0 − x sinφ0, s = y sinφ0 + x cosφ0, z0 = z − λ s (C34)

Derivatives of the phase, s, with respect to x⃗:

∂s

∂x⃗
= (cosφ0, sinφ0, 0) (C35)

and with respect to the momentum, p⃗:

∂s

∂p⃗
=

(
−Dsinφ0

pt
,
D cosφ0

pt
, 0

)
(C36)

20

Derivatives of the track parameters with respect to the starting point x⃗ and the
momentum p⃗ are given by:

∂α⃗

∂x⃗
=

−sinφ0 0 0 −λ cosφ0 0
cosφ0 0 0 −λ sinφ0 0
0 0 0 1 0

 (C37)

and

∂α⃗

∂p⃗
=

 s sinφ0

pt
− sinφ0

pt
cosφ0

λ
pt
(s · cosφ0 +Dsinφ0) − λ

pt
cosφ0

−s cosφ0

pt

cosφ0

pt
sinφ0

λ
pt
(s · sinφ0 −D cosφ0) − λ

pt
sinφ0

0 0 0 −s/pt 1/pt

 (C38)

21

	Introduction
	Basic formulas
	Vertex fit without track parameter steering
	Vertex fit with parameter steering
	2 and updated track parameter errors
	Momenta at vertex and their errors
	Covariance matrix of vertex track parameters
	External constraint
	Generic constraint

	Software implementation
	Examples
	Primary vertex determination
	BsDs
	B0K0S K0S

	Steered parameter fit derivation
	Charged track formulas
	Trajectory formulas
	Track parameters from ,

	Neutral track formulas
	Neutral track parameters from and

