The 4th Concept detector for the
International Linear Collider

High energy physics 1s aggressive: Tevatron 1s running
past 2 inverse-fb 1n 2 TeV proton-antiproton collisions,
the LHC 1s almost ready for pp collisions at 14 TeV, and
already the community 1s designing the next machine:

a 1 TeV e+e- collider, the International Linear Collider.

And the detectors are 1n a “concept” phase somewhere between “wild
ideas” and “engineering design™.

This 1s the “4th” concept detector since previous to 1.5 years ago,
there were three long-standing concepts:
GLD - “Global Large Detector” (JLC/KEK, mostly Japanese)
LDC - “Large Detector Concept” (TESLA/DESY, mostly European)
S1D - “Silicon Detector” (NLC/SLAC, mostly US)




Pixel vertex - TPC - dual readout calor - dual solenoid muon




4th Concept People  ~1/3 Asia, ~1/3 US, ~1/3 Europe

Mostly orthogonal to other three concepts

Basic design principle: only four basic, powerful
systems, each as simple as possible. Obviate any need
for tail-catchers, pre-showers detectors, end-cap
chambers, or silicon blankets to augment performance of
main detector.
*Pixel Vertex (PX) 20-micron pixels (like Fermilab/SiD thin pixel)
*TPC (like GLD or LDC) or KLOE-like cluster counting drift chamber (new)

*Triple-readout fiber calorimeter: scintillation/Cerenkov/neutron (new)

*Muon dual-solenoid iron-free geometry (new), cluster counting (new)

Measure all partons with high precision
e — e/u/m uds — i €b (Mecay): t — Wb
W — jj and Z — jj, uu, ee (mass); v (subtraction)




The GLD “Global Large Detector” ... mostly iron!
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Figure 1.2: Schematic view of two different quadrants of GLD Detector. The left Bgure

ahows the v view and the right shows the rz view., Dimensions are in meter. The vertex
detector and the silicon inner tracker are not shown hege,
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Pixel vertex detector 1s “conventional”

Scientific goal 1s 1dentification of b,c quarks
and tau leptons with high efficiency and purity,
and hit occupancy reduction (by brute force) to

about 1%. This requires ...
* 15-micron, or so, square pixels
* a billion, or so, channels
* several competing technologies
* we do not have “a dog 1n this fight”

We design with the SiD/Fermilab “thin pixel”
vertex chamber.




Pixel vertex
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Time Projection Chambers (TPCs)

Truly extraordinary advances are being made with
these large volume, low mass, 3-dimensional
tracking chambers. Dan Peterson 1s at the center
of this world-wide work:

* single-electron sensitive

* 50-micron spatial precision
Concern: long time integration, background
tracks, and positive ion loading of drift volume

GLD, LDC and 4th advocate using TPC; 4th also
considers KLOE cluster counting DC (Franco
Grancagnolo).




New TPCs

DESY test beam data:
digital TPC, GEM
endplane, MediPix chip
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Calorimeter 1s new: a “dual readout” fiber
calorimeter, first developed by R. Wigmans

Back end of
2-meter deep
module
2.5 mm— Physical
E 4 mm ; channel
structure
Unit cell

http://www.phys.ttu.edu/dream



http://www.phys.ttu.edu/dream
http://www.phys.ttu.edu/dream

Downstream end of DREAM (Dual REAdout
Module) showing HV and signal connectors to
ordinary PMTs

Scintillation: all
charged particles -

e,pL,K,p

Cerenkov:
predominantly e from
~ photon showers from
pi-zeros




Hadronic showers suffer from large
fluctuations 1in “EM fraction™, that 1s, from
fluctuations 1n neutral and charged pion
production within the shower. This leads to

* poor energy resolution
* non-Gaussian response, high-side tail
* non-linear response with energy

Common characteristics of “non-compensating”

calorimeters in which electromagnetic and hadronic
responses differ, “e/h # 17




Dual-Readout: Measure

every shower twice - In _
scintillation light and in I a) 200 GeV “jets”

40 GeV electrons into the center = |  « =40+ 1451,
of each tower. :

(e/h)c =nc =5
(G/h)s =18 ~ 1.4

C = [fem_l_(l_fem)/nC]E “F
S = [fem -+ (]. — fem)/nS]E oz o4 U!-:J 08 1

em shower fraction, fom

— C/E=1/n¢ + fem(1 —1/nc)

Data NIM A537 (2005) 537.



DREAM data 200 GeV n: Energy response

Entries 13509
Mean 133.1
RMS

¥2 / ndf 291.8/158
Constant 2714130
Mean 190.1£0.1
Sigma 9.687 £ 0.067

o

Entries 13509
x2 / ndf 95.34/ 65
Constant 622.4+6.7
Mean 202.5+0.0
Sigma 4.293+0.028

Data NIM A537 (2005) 537.

Scintillating fibers

Scint + Cerenkov

fEM & (C/Eshower B I/TIC )

(4% leakage fluctuations)

Scint + Cerenkov

fep © (C/Epeam - 1/Mc)

(suppresses leakage)




More important than good Gaussian response: DREAM
module calibrated with 40 GeV e into the centers of each tower
responds linearly to n- and “jets” from 20 to 300 GeV.

Hadronic
linearity may
be the most
important
achievement
of dual-

o Jets (raw data) | readout

m Jors (after QF5) .

¢ Prons (raw data) | ] calorlmetry.
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Go after the neutrons, improve geometry, make 1t scalable

DREAM module ILC-type module

2mm Pb or brass plates;

3 scintillating fibers fibers every 2 mm

4 Cerenkov fibers

(Removes correlated fiber hits)

Copper o @ ® e @ e |
I' y .‘ 2 '.,' H U H
R . .
“Unit cell” ® o @ ®
—2.5 mm-

~— 4 mm-——-

D Scint ‘ Cerenkov




Binding energy loss fluctuations: next largest
hadronic shower fluctuation after EM fraction,
correlated with MeV neutrons

(1) Measure MeV neutrons by time.

WTeV ATWD read-out

e Velocity of MeV neutrons is

1772041

1439 ~0.05¢
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(2) Measure MeV neutrons by separate hydrogenous fiber

* A hydrogenous scintillating fiber measures proton
ionization from np—np scatters;

» A second scintillating non-hydrogenous fiber measures all
charged particles, but does not see protons from np — np
elastic scatters;

This method has the weakness that the neutron component
1s the difference of two signals.

(3) Measure MeV neutrons with a neutron-sensitive fiber
Lithium-loaded or Boron-loaded fiber (Pacific Northwest
Laboratory has done a lot of work on these)

Some of these materials are difficult liquids
Nuclear processes may be slow compared to 300 ns.

But, most direct method we know about.




(4) Measure MeV neutrons using different Birk’s

« Birk’s constant parameterizes the reduction in
detectable 1onization from heavily 1onizing particles
(essentially due to recombination)

Use two scintillating fibers with widely different
Birk’s constants.

Two problems: (1) hard to get a big difference, and (11)
neutron content depends on the difference of two
signals.




“Ultimate calorimetry™ ?

The theoretical limit (Wigmans) for hadronic
energy resolution 1s

OF ~ 13%
L VE
when leakage, EM fraction fluctuations and

binding energy loss fluctuations are suppressed.
We would be happy to achieve

O‘_E ~ 20—25%
E VE

1n a test module.




What 20% buys you for W and Z decay to 2-jet mass reconstruction:

Both jets are
sampled from
DREAM data
with measured
spatial and

energy

fluctuations

zZW—jj and Z—jj from DREAM data. Method z1
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Dual Solenoid: new magnetic field, new *“wall

of coils”, iron-free. Many benefits to muon detection
and MDI (Machine Detector Interface)

Magnetic field of dual solenoid and wall of coils

R{cm)

402

1 ]




Dual solenoid: scientific advantages

no 1ron: cheaper, more flexible detector
precision measurement of muons

can reverse B field: cancel detector asymmetries in
precision b,c asymmetry measurements

can 1nsert specialized detectors 1n the annulus
between the solenoids for new searches, new i1deas, ...

exceedingly flexible: can move calorimeter in z,
reconfigure geometry for asymmetric beam energy
running, re-configuration of detector, etc.

can 1nsert a toroid to measure small angle tracks ...




Muon trajectories from the interaction point
604~




4th Concept Muon Tracking Field
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HOD
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TC
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Mecan 2.43
RMS 0.86

100 GeV u
Mean 3.07
RMS 2.10

el

oy
<
<
<

Events per 0.5 GeV

R HJ WH electrons
200 GeV U
LLIR‘/ Mean 3.56

1\.|

RMS 2.62

Entries per bin

" ; ]IO |I5 2IO
Ll T i Muon Signal (GGV)
10 15 20 25 :

Signal PSD (mip) NIM A533 (2004) 305-321.



The Cerenkov signal from an aligned,
non-radiating muon 1S zero

Photons at

Cerenkov angle /

Cerenkov fiber

Muon

All of the Cerenkov light of an approximately aligned
muon falls outside of the numerical aperture of the fiber.

C~0 S ~ dE/dx




Average signal (GeV)
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Use 1t for muon 1dentification

Muons (40 GeV) & Pions (20 GeV)

S-Q vs (S+Q)/2 : R291 : electron : 40 GeV

S-Q vs (S+Q)2 : R193 : pion: 20 GeV

0

Entries

Entries 9827
Meanx  3.295
Meany 13.16
. |RMSx 2142

JRMSy 2786
| Integral 9809

Mean x 25
Mean v
RMS x
RMSy
Integral

—
>
O
O
g
N
=
@
_|_
7p)
g

\\\I|IIII|IIII|IIII|III\‘\\\I' OllllllllllllllllI ’||III|III

0 1 2 3 4 5 -[0 -8 -6 -4 -2 0 2 4 6 2 10

S-Q
S-C (GeV) S-C (GeV)




Muons and Pions (80 GeV)

S-Q vs (S+Q)2 : R191 : pion: 80 GeV
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Muons and Pions (200 GeV)
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Muons and Pions (300 GeV)
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or

Dual
readout of
muons 1n
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Muon as a “perfect parton” 1n 4th Concept.

 momentum measured in TPC + vertex

1onization energy loss and radiative energy losses
measured separately in the dual readout calorimeter

near-positive 1dentification of muon 1n calorimeter

momentum measured again in annulus between the
solenoids: energy balance of muon 1n detector

Etpc ~ EcaLor + EMU-sSPECTR

pion rejection against muons 1s huge: use both
calorimeter identification and energy balance

muons 1nside a jet, however, have not yet been
studied




Dual solenoid: machine-detector interface
advantages

control of B on and near beam line
“push-pull” of two detectors 1in one IR
installation and re-installation

costs and infrastructure 1n interaction hall

FF optics, compensation, quads up to and inside the
detector

can accomodate adiabatic focusing,
monochromatization, any crossing angle, etc.




Dual solenoids Alexander Mikhailichenko

Final focus optics,
mounted inside a
cylinder attached to the
detector by consoles.

Directional kicker

This reduces influence
of ground motion.

Valves for |
push-pull
disconnection

FF optics




Another new 1dea: we are toying with the design of a toroid
between the TPC and calorimeter for small angle tracks




IL.Croot software
ete” - H'ZY = WTWnuTpu~™ — jj e v putpu

Illustrates all the detectors of 4™ Concept ... particle ID “obvious”
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ete” — HYZY — HY + ™

Recoil Mass (GeV) hRecoilMassH
Entries 6092
Mean 125.6
RMS 12.55
200
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III|III|III|III|III|III|III|III|III
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Missing Mass against the putp~ (GeV/c?) —




Where to ? What next ?

e Main ILC detector goal: design and build a detector that
1s 2-to-10 times better than the already excellent LEP
detectors.

I have not mentioned “physics”. The intent of the 4th
Concept is to measure all partons of the standard model
with high precision, say, 1-2% in four-vector
components. Having accomplished this, all physics 1s
accessible.

About six months from now, these four concepts will
merge into two concepts--presumably the two future
detectors at the ILC. This will be tricky.

We are small (a mouse 1n a room with three elephants),
having fun with new 1deas, and have about two years to
think-optimize-finalize the design.




spares...

v2 / ndf 136.2/98
p0 0.005814 + 0.000027
p1 0.1432 = 0.0021

x? / ndf 162.9/98
p0 0.004331 = 0.000021
___0.131+0.002

10
Momentum, GeV/c




Toroid for low angle tracks




