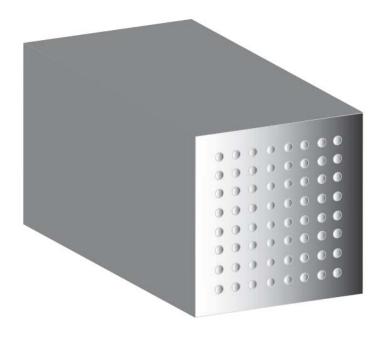
A (dime a dozen) Idea?

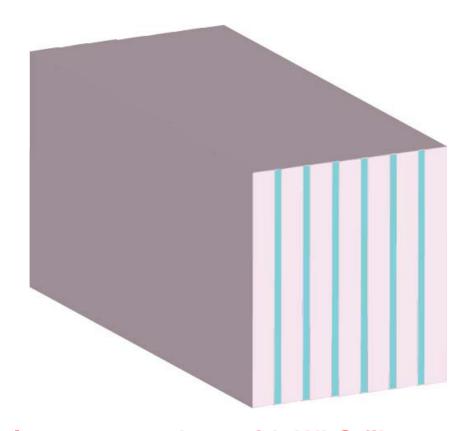
Instead of mixing the Cherenkov and scintillation media in one block, consider making a controlled sandwich of the two.


- 1. Lead glass is both the absorber and the *Cherenkov* medium
- 2. Scintillating fibers or plates are the Scintillating medium
- 3. This approach removes light separation problems

Various geometries are possible (but none is trivial).

- 1. Lead glass rods of different shapes that can accommodate scintillating fibers are not hard to make
- 2. But it is not practical to make long (~meter) and thin (~mm) lead glass rods
- 3. It is possible to groove (~mm) lead glass plates
- 4. It is not practical to make large area (~m²) but thin (~mm) lead glass plates
- 5. It is not possible to drill long (~10 cm) holes in lead glass
- 6. It is not trivial to "readout" lead glass absorber once it is embedded with scintillators

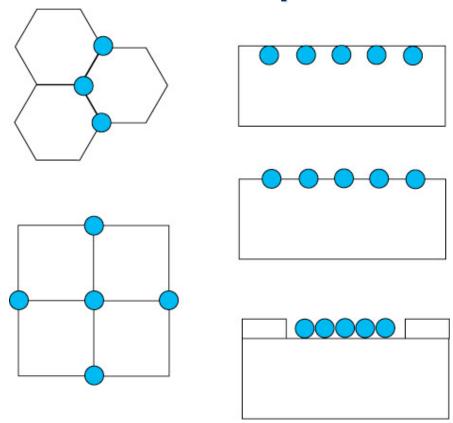
But it is worth investigating...


Scintillating Fiber + Lead Glass "Absorber"

Scintillating fibers are bundled and terminated at a photodetector behind the calorimeter.

Lead glass is readout by placing a large "PMT" in the back? Mount APDs? Hard problem...

Lead Glass "Absorber" + Scintillating Plates


Scintillating plates are readout with WLS fibers and the light is

guided to photodetector.

Lead glass is readout by photodetectors through shaped (solid or air-core) light guides.

Difficult and crowded arrangement at the back of the detector.

Possible Shapes?

There are infinite possibilities but we must consider the relevant scaling factors (e.g. Moliere radius in transverse and radiation/interaction length in longitudinal directions) and weight them against practical limits.

Blue is scintillating fiber and clear shapes are lead glass.