Algebra Exercises

Reference Frame

Beam Direction

- At 0 degree:

$$
\text { - } \quad p(0)=(0,0,1)
$$

- After a rotation in xz plane (of an angle ω):

$$
p(\omega)=(\sin \omega, 0, \cos \omega)
$$

Cherenkov Light

- At 0 degree:
$\mathbf{C}(\mathbf{0})=(\sin \mathbf{c} \cdot \cos \varphi, \sin \mathbf{c} \cdot \sin \varphi, \cos \mathbf{c})$ $=(\cos \alpha \cdot \cos \varphi, \cos \alpha \cdot \sin \varphi, \sin \alpha)$
$c=$ Cherenkov angle
$\alpha=$ critical angle with air $=\pi / 2-c$
- After beam rotation:
$\mathrm{C}(\omega)=(\cos \alpha \cdot \cos \varphi \cdot \cos \omega+\sin \alpha \cdot \sin \omega$, $\cos \alpha \cdot \sin \varphi$,
$-\cos \alpha \cdot \cos \varphi \cdot \sin \omega+\sin \alpha \cdot \cos \omega)$

Geometrical Acceptance

$$
\mathbf{C}=\left(\cos \theta_{\mathbf{x}}, \cos \theta_{\mathbf{y}}, \cos \theta_{\mathbf{z}}\right)
$$

$\cos \theta_{x}>\cos \eta \quad(\eta:$ critical angle $)$
$\cos \alpha \cdot \cos \varphi \cdot \cos \omega+\sin \alpha \cdot \sin \omega>\cos \eta$
$\cos \varphi>\frac{\cos \eta-\sin \alpha \cdot \sin \omega}{\cos \alpha \cdot \cos \omega}=\cos \lambda$

$$
\lambda=f(\omega, \alpha, \eta) \ldots \alpha, \eta: \text { "known"... }
$$

airpe (x)
GOMMON PAWCY in rnermary

$\operatorname{silpg}(x)$

Wrapping

- From the unitarity constraint:

$$
\cos \theta_{\mathbf{y}}, \cos \theta_{\mathbf{z}} \leq \sin \theta_{\mathbf{x}}<\sin \eta<\cos \eta_{\mathbf{a i r}}
$$

being :

$$
\begin{aligned}
& \sin \eta_{\text {air }}=1.0 / 2.2=\mathbf{0 . 4 5} \\
& \sin \eta_{\text {sil }}=1.43 / 2.2=0.65 \\
& \cos \eta_{\text {air }}=0.89
\end{aligned}
$$

SO :

$$
\theta_{\mathbf{x}}, \theta_{\mathbf{z}}>\eta_{\text {air }}
$$

anyway totally reflected on the non - instrumented faces
Reflective wrapping doesn't improve light collection.

Polarization

- Cherenkov light 100% linearly polarized in plane containing photon and incident particle momenta:

$$
\begin{aligned}
\overrightarrow{E(0)} & =(\cos c \cdot \cos \varphi, \cos c \cdot \sin \varphi,-\sin c) \\
& =(\sin \alpha \cdot \cos \varphi, \sin \alpha \cdot \sin \varphi,-\cos \alpha)
\end{aligned}
$$

- After rotation:

$$
\begin{aligned}
\overrightarrow{E(\omega)}= & (\sin \alpha \cdot \cos \varphi \cdot \cos \omega-\cos \alpha \cdot \sin \omega \\
& \sin \alpha \cdot \sin \varphi \\
& -\sin \alpha \cdot \cos \varphi \cdot \sin \omega-\cos \alpha \cdot \cos \omega)
\end{aligned}
$$

Polarization

- Two components: Es and Ep

Transmission

$$
\begin{gathered}
\left|\mathbf{E}_{\mathbf{p}}\right|=\frac{\mathbf{E}_{\mathbf{x}}}{\sqrt{1-\mathbf{C}_{\mathbf{x}}^{2}}} \\
\left|\mathbf{E}_{\mathbf{s}}\right|=\sqrt{\mathbf{1 - \mathbf { E } _ { \mathbf { p } } ^ { 2 }}}=\frac{\sin \varphi \cdot \cos \omega}{\sqrt{1-\mathbf{C}_{\mathbf{x}}^{2}}} \\
\mathbf{T}_{\mathbf{p}}=1-\left[\frac{\tan \left(\theta_{\mathbf{t}}-\theta_{\mathbf{x}}\right)}{\tan \left(\theta_{\mathbf{t}}+\theta_{\mathbf{x}}\right)}\right]^{2} \quad \sin \theta_{\mathbf{t}}=\frac{\sin \theta_{\mathbf{x}}}{\sin \eta} \\
\mathbf{T}_{\mathbf{s}}=1-\left[\frac{\sin \left(\theta_{\mathbf{t}}-\theta_{\mathbf{x}}\right)}{\sin \left(\theta_{\mathbf{t}}+\theta_{\mathbf{x}}\right)}\right]^{2}
\end{gathered}
$$

$$
\operatorname{Prob}(\mathbf{T})=\mathbf{T}_{\mathbf{p}} \cdot\left|\mathbf{E}_{\mathbf{p}}\right|^{2}+\mathbf{T}_{\mathbf{s}} \cdot\left|\mathbf{E}_{\mathbf{s}}\right|^{2}
$$

Reflection Coefficients

Scintillating Light

- Calculations for scintillating light, for (TOTAL) geometrical acceptance, transmittance and prompt collection give:
- AIR :

11, 81, 9 \%

- SILICON : 24,90,22 \%

Conclusions

- ... I am convinced that likely geometry could (should ?) be improved :

