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A brief introduction 
to Hyperparameter 
Optimization



What is Deep Learning? (1/2)

➢ Deep Learning (DL) is a subset of Machine Learning (ML) where the ML model is a deep 
Neural Network (NN)

➢ To be considered deep, the NN should have multiple layers

➢ Two examples:
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‘cat’: 0.89
‘napoleon’: 0.11



What is Deep Learning? (2/2)

➢ In DL, model parameters 𝑤 are learned using backpropagation and gradient 
descent to minimize some objective, or loss, 𝑓(𝑤, 𝜃)

➢ Training:
➢ For each 𝑥 in training data, compute the gradients of the loss and change the model’s 

weights by subtracting from them the gradients multiplied by some learning rate, ⍺

➢ Repeat until convergence or other stopping criterion
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Loss 
function

Ground truth, 𝑦𝑇

ModelInput, 𝑥 Output, 𝑦 Compute 
gradients w.r.t. 𝑤

Change model weights by −⍺
𝑑𝑓

𝑑𝑤



What is Hyperparameter Optimization? (1/3)

➢ 𝑓(𝑤, 𝜃), depends not only on 
𝑤, but also on 𝜃

➢ 𝑤: Model parameters 

➢ 𝜃: Hyperparameters

➢ Number of layers

➢ Number of nodes

➢ Choice of optimizer, learning 
rate, batch size, etc.

➢ Hyperparameter Optimization 
(HPO) is the process of tuning 𝜃
to improve performance
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𝑤

Input, 𝑥 Output, 𝑦

𝑓 is the final validation
loss after completed training,
𝑓 is not the model itself

Model: 𝑀 𝑥,𝑤 = 𝑦



➢ Optimizing the objective 𝑓(𝑤, 𝜃) is done in two different ways
➢ 1: Optimize 𝑤 by gradient descent ⟹ search for 𝑤∗ = argmin

𝑤
𝑓(𝑤, 𝜃)

➢ 2: Optimize 𝜃 by HPO ⟹ search for 𝜃∗ = argmin
𝜃

𝑓(𝑤, 𝜃)

𝑓(𝑤, 𝜃) non-differentiable w.r.t. 𝜃

𝑓
(𝑤

)

What is Hyperparameter Optimization? (2/3)
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➢ Black-box optimization

➢ No straightforward update rule for 𝜃

𝑓 𝑤, 𝜃 is differentiable w.r.t. 𝑤

Gradient descent

?𝜃 𝑓(𝜃)



What is Hyperparameter Optimization? (3/3)

➢ HPO is a black box optimization problem, we want to find 
𝜃∗ = argmin

𝜃
𝑓(𝑤, 𝜃) but only get to query values of 𝑓, not 

compute its gradient w.r.t. 𝜃
➢ 𝑤: Model parameters (learned by gradient descent)

➢ 𝜃: Hyperparameters

➢ 𝑓(𝑤, 𝜃): What we’re trying to minimize, e.g., loss

➢ 𝑓 is non-differentiable w.r.t. 𝜃

➢ 𝑓 is often expensive to evaluate

➢ HPO is compute-resource intensive
➢ Benefits greatly from HPC resources

➢ In need of smart, efficient search algorithms
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?𝜃 𝑓(𝜃)



Why we need automatic hyperparameter optimization

➢ Very time consuming for humans, and 
we do a bad job

➢ Without good tuning, performance is 
likely left on the table

➢ Good tuning is required to accurately 
compare model architectures

➢ In 2017, it was shown that then recent 
advances of STOTA in NLP were not due 
to the novel architectures, but 
insufficient tuning of old architectures [1]
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https://arxiv.org/abs/1707.05589

https://arxiv.org/abs/1707.05589


Some popular HPO algorithms

➢ Model-free algorithms
➢ Grid search

➢ Random search

➢ Successive Halving (SHA)

➢ Hyperband

➢ Asynchronous SHA (ASHA)

➢ Evolutionary search

➢ Model-based algorithms
➢ Bayesian optimization

➢ Hybrid algorithms
➢ Combines model-free and 

model-based methods
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Adaptive configuration evaluation

Adaptive configuration selection

Static configuration selection

Selection- and evaluation-based 
algorithms can easily be combined



Grid and random search

➢ Grid search
➢ Deterministic

➢ Exhaustive search (on the grid)

➢ Uses same value several times

➢ Random Search
➢ Stochastic

➢ Exhaustive search (on the random 
points)

➢ Explores many more values of each HP
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Figure from: [2]James Bergstra and Yoshua Bengio: Random Search for Hyper-Parameter 
Optimization, https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf


Adaptive 
configuration 
selection



Bayesian Optimization (1/5)

➢ Bayesian Optimization (BO) is a black-box optimization technique for 
expensive and/or noisy objectives

➢ Surrogate model
➢ Estimates 𝑓(𝜃), given some HPs 𝜃
➢ Estimates uncertainty of the objective function estimate

➢ Must be much faster than evaluating 𝑓

➢ Acquisition function
➢ Selects next 𝜃 to evaluate

➢ Makes exploitation/exploration trade-off

➢ Popular choice: Expected Improvement (EI), i.e., how much better is the next 
observation going to be over our current best?

➢ Other choices include Probability of Improvement (PI) and Upper Confidence Bound 
(UCB)
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Bayesian Optimization (2/5)
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𝜃 2

𝜃 𝑛

𝜃 1

…

?
𝑓(𝜃 2)

𝑓(𝜃 𝑛)

𝑓(𝜃 1)

…

Fit 
surrogate 

model
𝑓𝑆(𝜃) 𝐴(𝑓𝑆) 𝜃 𝑛+1

Repeat until stopping criterion

?
𝑓(𝜃 𝑛+1)

Often argmax
𝜃

𝐸𝐼(𝜃)
Often a GP

First evaluate n trials to fit 
surrogate model to



Bayesian Optimization (3/5)

➢ Let’s visualize the BO process

➢ In this example we have
➢ a Gaussian Process as the surrogate model and

➢ use EI as the acquisition function
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Bayesian Optimization (3/5)

➢ Let’s visualize the BO process
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➢ use EI as the acquisition function
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Bayesian Optimization (3/5)
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Bayesian Optimization (3/5)
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Bayesian Optimization (3/5)
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Bayesian Optimization (3/5)
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Bayesian Optimization (3/5)
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Bayesian Optimization (3/5)
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Bayesian Optimization (3/5)

➢ Let’s visualize the BO process

➢ In this example we have
➢ a Gaussian Process as the surrogate model and

➢ use EI as the acquisition function
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Bayesian Optimization (4/5)

➢ Choices of surrogate model
➢ Gaussian Process (GP)

➢ Closed form

➢ Runtime complexity: 𝑂(𝑛3)

➢ Random Forest
➢ Ensemble of decision trees
➢ Faster than GP

➢ Runtime complexity: 𝑂(𝑛𝑙𝑜𝑔 𝑛 )

➢ Bayesian Neural Network
➢ NN with uncertainty estimates built-in

➢ Very flexible
➢ Requires more training data

➢ Tree-structured Parzen Estimator (TPE)
➢ Fast

➢ Simple and non-parametric

➢ Runtime complexity: 𝑂(𝑛𝑙𝑜𝑔 𝑛 )
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Example using Gaussian Process and EI



Bayesian Optimization (5/5)

Tree-structured Parzen Estimator (TPE) [3]
➢ Instead of modelling 𝑝(𝑦|𝑥), model 𝑝(𝑥|𝑦) as

➢ 𝑝 𝑥 𝑦 = ቊ
𝑙 𝑥 , 𝑖𝑓 𝑦 < 𝑦∗

𝑔 𝑥 , 𝑖𝑓 𝑦 ≥ 𝑦∗

➢ 𝑙 𝑥 ,(𝑔 𝑥 ), is a Kernel Density Estimator (KDE) 
formed by all data points 𝑥𝑖 resulting in better, 
(worse), performance than 𝑦∗

➢ 𝑦∗ must be chosen to be worse than the best 
observed

➢ A common choice is to set 𝑦∗ to the 15th

percentile of all observed points

➢ Maximizing EI is equivalent to maximizing 
𝑙 𝑥

𝑔 𝑥

2509.07.2024 – CERN openlab Summer Student Lectures – Eric Wulff
[3] James Bergstra, Rémi Bardenet, Yoshua Bengio and Balázs Kégl, Algorithms for Hyper-Parameter Optimization (2011), Advances in Neural 
Information Processing Systems, https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

TPE advantages

➢ Simple and non-parametric

➢ Works well with mixed HP spaces

➢ Runtime complexity: 𝑂(𝑛𝑙𝑜𝑔 𝑛 )

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf


Parallel Bayesian Optimization

➢ BO as discussed up until now is sequential, it waits for an evaluation to complete 
before selecting a new set of HPs to try

➢ With modern computing and HPC, we can run many trials in parallel
➢ Must ensure to never evaluate same 𝜃 more than once since that would be very 

inefficient

➢ One strategy is to
➢ Evaluate some given number of trials to get a set of observations

➢ Pick next 𝜃 as described previously

➢ If more resources are available, modify acquisition function to penalize 𝜃s that are 
currently being evaluated but haven’t completed yet

➢ One way of doing this is by reducing the variance of the surrogate model at those points, 𝜃
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Evolutionary Search

➢ Evolutionary Search (ES) uses mechanisms inspired by biological evolution such 
as reproduction, mutation, recombination and selection

➢ A generic ES algorithm includes the following steps
➢ Step 1: Train a few initial, random, models

➢ Step 2: Repeat the following

➢ Use the objective function to evaluate the fitness of each model

➢ Select the fittest models for reproduction

➢ Create new individuals from crossover and mutation
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Initialize Evaluate Select
Crossover 

and mutate



Adaptive 
configuration 
evaluation



Adaptive configuration evaluation

➢ It is possible to identify badly performing trials early so 
why train them to convergence?

➢ Adaptive configuration evaluation strategies terminate 
badly performing trials early

Some examples include:

➢ Successive Halving Algorithm (SHA)
➢ Terminate some fraction of trials according given stopping rate 𝑠

➢ Hyperband
➢ Loop over SHA using different stopping rates 𝑠

➢ Asynchronous Successive Halving Algorithm (ASHA)
➢ Async version of SHA
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Successive Halving Algorithm – SHA
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Round 1 Round 2 Round 3 Round 4
1. Partially train some trials up to a 

decision point

2. Evaluate performance and throw 
out worst x%

3. Repeat 1-2 until target epoch is 
reached or only 1 trial remains

4. Repeat 1-3 for different sets of 
decision points

➢ Drawback: sensitive to stragglers

➢ All trials within a round must complete 
before proceeding to next round

➢ Not suitable for large-scale HPC runs

R
o

u
n

d

B
ra

ck
et

Hyperband 
adds a 4th

step



Successive Halving Algorithm – SHA

➢ SHA [4] requires
Number of HP configs, 𝑛
Max resource, 𝑅
Min resource, 𝑟
Reduction factor, 𝜂
Min early-stopping rate, 𝑠

➢ 𝑠 determines how many rounds we do, 
higher 𝑠 means less rounds

➢ In this example we have
𝑛 = 8, 𝑅 = 100%, 𝑟 = 12.5%, 𝜂 = 2, 𝑠 = 0

➢ Drawback: sensitive to stragglers
➢ All trials within a round must complete 

before proceeding to next round

➢ Not suitable for large-scale HPC runs
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Figure from: Yazdani Abyaneh, Amir Hossein & Krunz, Marwan. (2022). Automatic Machine 
Learning for Multi-Receiver CNN Technology Classifiers

Round 1 Round 2 Round 3 Round 4

31

https://arxiv.org/abs/2204.13819


Successive Halving Algorithm – SHA

3209.07.2024 – CERN openlab Summer Student Lectures – Eric Wulff

Figure from: Yazdani Abyaneh, Amir Hossein & Krunz, Marwan. (2022). Automatic Machine 
Learning for Multi-Receiver CNN Technology Classifiers

SHA algorithm as defined by Lisha Li, Kevin Jamieson, Afshin Rostamizadeh, Katya 
Gonina, Moritz Hardt, Benjamin Recht and Ameet Talwalkar, Massively Parallel 
Hyperparameter Tuning, Proceedings of Machine Learning and Systems (2018) 
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6
b171c71b88bbfc-Paper.pdf

Round 1 Round 2 Round 3 Round 4

https://arxiv.org/abs/2204.13819
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf


Hyperband

➢ Hyperband [5] loops over SHA using 
different stopping rates 𝑠

➢ One less parameter to choose

➢ Choice of 𝑠 can be important since learning 
dynamics are highly problem dependent

➢ Potentially finds better solutions compared 
to SHA (at cost of additional compute)

➢ Sensitive to stragglers
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[5] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar, 
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization, (2016) 
https://arxiv.org/abs/1603.06560

https://arxiv.org/abs/1603.06560


Asynchronous Successive Halving Algorithm – ASHA

➢ ASHA’s [6] asynchronous nature eliminates 
straggler problem

➢ Promotes trials to next round whenever possible

➢ If no promotions are possible, initiate new trials

➢ Number of erroneously promoted trials 
expected to be small for large 𝑛

➢ The authors provide defaults which they claim 
work well for a wide variety of problems

➢ 𝑠 = 0, 𝜂 = 4

➢ Run for as long as you like
➢ Common stopping criteria are the number of 

trials to evaluate, 𝑛, or reaching a given wall 
time

➢ Can be used to implement Asynchronous 
Hyperband by looping over values of 𝑠
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ASHA algorithm as defined by Lisha Li, Kevin 
Jamieson, Afshin Rostamizadeh, Katya 
Gonina, Moritz Hardt, Benjamin Recht and 
Ameet Talwalkar, Massively Parallel 
Hyperparameter Tuning, Proceedings of 
Machine Learning and Systems (2018) 
https://proceedings.mlsys.org/paper/2020/f
ile/f4b9ec30ad9f68f89b29639786cb62ef-
Paper.pdf

https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf


Some practical tips

➢ Don’t use a too narrow search space

➢ Don’t use grid-search – very inefficient
➢ Random search is just as easy to implement but much more efficient

➢ Coarse to fine search

➢ Use appropriate scale when searching for HP values
➢ The sensitivity of the LR or the momentum parameter is much higher in certain 

ranges (i.e., when LR is small, or the momentum is close to 1)

➢ Use at least three dataset splits, train, test, validation, one of which is only 
used for evaluation after the full HPO process has finished
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Hyperparameter 
Optimization in 
CoE RAISE



CoE RAISE and Work Packages 2 & 4

➢ CoE RAISE: Center of Excellence for Research on AI- and 
Simulation-based Engineering at Exascale

➢ Develop novel, scalable Artificial Intelligence technologies

➢ Use-cases from Engineering and Natural Sciences

➢ CERN (Dr. M. Girone) leads WP4: Data-Driven Use-Cases 
towards Exascale

➢ Including Task 4.1 (E. Wulff): Event reconstruction and 
classification at the CERN HL-LHC, more on this shortly

➢ UOI (Prof. M. Riedel) leads WP2: AI- and HPC-Cross 
Methods at Exascale

➢ Provides expert support on HPC and AI methods to use-cases in 
WP4
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CoE RAISE Partners

https://www.coe-raise.eu

https://www.coe-raise.eu/


➢ Representative use-cases from research and industry/SMEs, which have a 
strong focus on data-driven technologies, i.e., analyzing data-rich 
descriptions of physical phenomena

➢ Event reconstruction and classification at the CERN HL-LHC (CERN, RTU)
➢ develop novel approaches for HL-LHC collision event reconstruction replacing 

traditional algorithms with AI-driven techniques towards HPC-to-Exascale

➢ Seismic imaging with remote sensing for energy applications (FZJ, UOI, CYI)
➢ optimize seismic imaging and remote sensing, enabling AI approaches, combining 

satellite and airborne data with seismic imaging

➢ Defect-free metal additive manufacturing (UOI, FM)
➢ develop prediction models that detect porosity inside metal parts such that the 

information is exploited to improve the product quality in additive manufacturing 

➢ Sound engineering (FZJ, UOI)
➢ develop a deep-learning-based algorithm that associates individual anatomy to a 

head-related transfer function (HRTF), for use in spatial audio systems
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WP4 use-cases



Event reconstruction at the LHC

➢ Event reconstruction attempts to solve the inverse problem of particle-detector interactions, 
i.e., going from detector signals back to the particles that gave rise to them

➢ Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and 
gives particle types and momenta as output
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AI-based particle flow reconstruction workflow
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[7] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M.,  Girone, M. (2022). Machine 

Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330

CMS Collision event MLPF event reconstruction [7]

Physics simulation Dataset creation ML training Trained model

Model export
Data pre-

processingData selection

Event 
reconstruction

http://arxiv.org/abs/2203.00330


Machine-Learned Particle-Flow (MLPF)

➢ The Particle Flow (PF) Algorithm [8]
➢ Tries to identify and reconstruct all stable individual 

particles from collision events by combining 
information from different subdetectors (tracks, 
calorimeter clusters)

➢ Machine-Learned Particle-Flow (MLPF) [9]
➢ GPU accelerated, NN-based algorithm for PF

➢ Code available on GitHub

➢ See ACAT2021 talk by J. Pata (and proceedings) for 
more MLPF model details and ACAT 2021 talk by E. 
Wulff (and proceedings) for more details on the 
hypertuning of MLPF

➢ See Nature Commun Phys 2024 paper for latest 
results
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[9] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using 
graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w

Based on Eur. Phys. J. C 81, 381 (2021)

https://arxiv.org/abs/2101.08578

The MLPF model

[8] CMS Collaboration https://cds.cern.ch/record/1194487?ln=en

https://github.com/jpata/particleflow
https://indico.cern.ch/event/855454/contributions/4597457/
https://doi.org/10.1088/1742-6596/2438/1/012100
https://indico.cern.ch/event/855454/contributions/4598499/
https://doi.org/10.1088/1742-6596/2438/1/012092
https://www.nature.com/articles/s42005-024-01599-5
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://arxiv.org/abs/2101.08578
https://cds.cern.ch/record/1194487?ln=en


Large-scale distributed Hyperparameter Optimization

42

➢ Using ASHA + Bayesian Optimization

➢ Scalable up to hundreds of GPUs

➢ Mean validation loss decreased by 
~44% giving a significant 
performance improvement

Distributed HPO

Assess learning 
variability Better learning
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[10][10]

[10] E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven AI models on 
HPC systems, J. Phys.: Conf. Ser. 2438 012092 (2023) https://doi.org/10.1088/1742-
6596/2438/1/012092

Model 
selection

https://doi.org/10.1088/1742-6596/2438/1/012092


Scaling of MLPF hypertuning on multiple compute nodes
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➢ Scaling of a hypertuning run of MLPF on the JURECA-DC-GPU system at the Jülich Supercomputer Centre 
(JSC), 4 NVIDIA A100 and 2× 64 cores AMD EPYC 7742 per node

➢ Superlinear scaling due to re-loading of models when using fewer nodes

➢ Using the ASHA algorithm to schedule and terminate trials, in combination with Bayesian optimization

Data used: [11] Simulated particle-level events of ttbar and QCD with PU200 using 
Pythia8+Delphes3 for machine learned particle flow (MLPF), 
https://doi.org/10.5281/zenodo.4559324

https://doi.org/10.5281/zenodo.4559324


Hypertuning tool of choice: Ray Tune

➢ Open-source tool for multi-node distributed 
hyperparameter optimization

➢ Many built-in SOTA search algorithms
➢ ASHA

➢ Hyperband

➢ Bayesian Optimization

➢ Supports TensorFlow, PyTorch and others

➢ Supports integration of many other hypertuning tools 
such as Scikit-Optimize, HyperOpt, Optuna, SigOpt, 
etc.
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Using Ray Tune on SLURM clusters
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#!/bin/sh

#SBATCH ...
#SBATCH ...

# Get the node names
nodes=$(scontrol show hostnames $SLURM_JOB_NODELIST)
nodes_array=( $nodes )

# Get the head node
node_1=${nodes_array[0]}
ip=$(srun --nodes=1 --ntasks=1 -w $node_1 host ${node_1}i | awk '{ print $4 }’)
port=6379
ip_head=$ip:$port
echo "IP Head: $ip_head"

echo "STARTING HEAD at $node_1"
srun --nodes=1 --ntasks=1 -w $node_1 \

ray start --head --node-ip-address="$node_1"i --port=$port \
--num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_TASK}" --block &

sleep 5

worker_num=$(($SLURM_JOB_NUM_NODES - 1)) #number of nodes other than the head node
for (( i=1; i<=$worker_num; i++ ))
do

node_i=${nodes_array[$i]}
echo "STARTING WORKER $i at $node_i"
srun --nodes=1 --ntasks=1 -w ${node_i} \

ray start --address "$node_1"i:"$port" \
--num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_TASK}" --block &

sleep 5
done

# Run the Ray Tune script
python3 tune_script.py --cpus "${SLURM_CPUS_PER_TASK}" --gpus "${SLURM_GPUS_PER_TASK}"
exit

➢ Ray expects a head-worker architecture 
with a single point of entry

➢ Start a head node and multiple worker 
nodes before running the Ray Tune script on 
the head node

➢ Sometimes tricky to set up but once 
done, it works great



Hypertuning MLPF on HPC systems

➢ Thanks to Forschungszentrum Jülich (FZJ), San Diego 
Supercomputing Center (SDSC), Flatiron Institute 
(collaboration with CMS and CERN openlab)

➢ Using multiple compute nodes with 4 GPUs per node
➢ Both systems: 4 NVIDIA A100 40GB per node
➢ @CoreSite: 64 core Intel Icelake Platinum 8358
➢ @JUWELS: 2x 24 core AMD EPYC Rome 7402

➢ We did 2 stages of hypertuning:
➢ BOHB [12] - Bayesian Optimization combined with Hyperband 

– using JUWELS Booster
➢ ASHA [2] + Bayesian Optimization [3] – using CoreSite
➢ ~76000 core-hours in total

➢ Back of the envelope calculation shows that it would 
have taken ~6 months on a single GPU instead of ~83 
hours using HPC systems
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search_space = {

"lr": loguniform(1e-4, 3e-2),

"expdecay_decay_steps": quniform(10, 2000, 10),

"dropout": uniform(0.0, 0.5),

"clip_value_low": uniform(0.0, 0.2),

"dist_mult": uniform(0.01, 0.2),

}

search_space = {

"layernorm": samp([False, True]),

"ffn_dist_hidden_dim": samp([32, 64, 128, 256]),

"ffn_dist_num_layers": samp([1, 2, 3, 4]),

"distance_dim": samp([32, 64, 128, 256]),

"num_node_messages": samp([1, 2, 3, 4]),

"num_graph_layers_common": samp([1, 2, 3, 4]),

"num_graph_layers_energy": samp([1, 2, 3, 4]),

"bin_size": samp([16, 32, 40, 64, 80]),

"normalize_degrees": samp([True, False]),

"output_dim": samp([32, 64, 128, 256]),

}

Image: Run in part on the JUWELS Booster [2] 

[12] Falkner S, Klein A and Hutter F BOHB: robust and efficient hyperparameter optimization at scale
(2018), https://arxiv.org/abs/1807.01774

HPO studies done in: [10] E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven AI models on 
HPC systems, J. Phys.: Conf. Ser. 2438 012092 (2023) https://doi.org/10.1088/1742-6596/2438/1/012092

https://arxiv.org/abs/1807.01774
https://doi.org/10.1088/1742-6596/2438/1/012092


Improvements from HPO
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➢ Loss curves before (left) and after (right) hypertuning

➢ Only the physical datasets, no single particle gun samples

➢ Mean and standard deviation of 10 trainings with identical hyperparameters

➢ Mean validation loss decreased by ~44%
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[1][1]

HPO studies done in 2021 in: E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven AI models on HPC systems, J. Phys.: 
Conf. Ser. 2438 012092 (2023) https://doi.org/10.1088/1742-6596/2438/1/012092

https://doi.org/10.1088/1742-6596/2438/1/012092


Quantum-assisted 
HPO in CoE RAISE



Model performance prediction using QSVR

➢ Current STOTA hypertuning algorithms rely 
on early stopping

➢ Stopping criterion: ranking according to a 
single metric (e.g., validation loss)

➢ Potential problem: loss curves are not linear

➢ Idea 1: Use a non-linear stopping criterion

➢ For instance, an SVR model, inspired by [1]

➢ Idea 2: Use quantum computing to fit a 
Quantum-SVR (QSVR)
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Train n epochs
Sample 

random configs
Terminate worst 
x% at last epoch

Approach inspired by [13] Bowen Baker, Otkrist Gupta, Ramesh Raskar, Nikhil Naik, Accelerating Neural 
Architecture Search using Performance Prediction (2017) https://arxiv.org/abs/1705.10823

https://arxiv.org/abs/1705.10823


Model performance prediction
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➢ The performance predictor
○ Must be fast to train
○ The training samples come from previously fully 

trained trials

➢ We use a Quantum Annealer to train a QSVR as 
our model performance predictor

Saved 75 epochs of the target 
model!

➢ Using performance prediction can accelerate 
the evaluation step in HPO.

○ Use a meta-model which provides a cheap 
approximated evaluation of the target model
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Using the D-Wave Quantum Annealer in CoE RAISE

➢ A quantum annealer is a particular kind of quantum 
computer

➢ Solves QUBO problems (Quadradic Unconstrained Binary 
Optimization)

➢ SVR can be formulated as a QUBO problem [14]

➢ The annealer returns multiple solutions
➢ Quantum annealing is a stochastic process

➢ Challenges
➢ We can only fit 20 training samples

➢ Unstable results, quantum noise
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Image from D-Wave documentation
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Quantum SVR

➢ QSVR: re-formulation of SVR model that can be trained in a Quantum Annealer. 
(Pasetto et al.)

➢ In theory: QSVR training is O(N) and SVR is O(N3), N=#training samples. (Date et al.)

➢ In practice:
○ Currently no time advantage from Q-SVR.
○ Limited training size: ~20 samples.

SVR
not trained 

training 
samples

Classical
computer

QUBO
problem 

QUBO
solutions 

Classical
computer

trained
Q-SVR

Quantum Annealer

09.07.2024 – CERN openlab Summer Student Lectures – Eric Wulff 52

We used the D-Wave AdvantageTM system JUPSI at the Jülich Supercomputer Centre

https://www.techrxiv.org/articles/preprint/Quantum_SVR_for_Chlorophyll_Concentration_Estimation_in_Water_with_Remote_Sensing/19619676
https://arxiv.org/abs/2008.02369
https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility/juniq/d-wave-advantagetm-system-jupsi


QSVR results

➢ Predicting final loss from fraction of loss 
curve (25%)

➢ QSVR results comparable to classical SVR 
and to simulated quantum annealing
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Best QSVR results

R2 scores



Swift-Hyperband

➢ Fast-Hyperband: not suitable for integration with QSVRs.

➢ Swift-Hyperband: new approach to combine performance prediction with 
Hyperband. Can be used with SVR and QSVR
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Fast-Hyperband Swift-Hyperband

Multiple decision points 
inside each round

Estimates σ for every SVR

Trains many
SVRs

Not suitable for 
Q-SVRs

Only 1 decision point inside 
each round

No need to estimate σ 

Trains few SVRs

Suitable for Q-
SVRsSequential Easily parallelizable
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Algorithm Comparison
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➢ Comparing Quantum assisted HPO with previous HPO algorithms

➢ Simulated results using learning curve datasets

MLPF for Delphes - 7 HPs LSTM for PTB - 2 HPs
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A Hybrid Quantum-Classical workflow for HPO

➢ Distributed Hybrid Quantum-Classical Model 
Performance Prediction for Hyperparameter 
Optimization (HPO) of Deep Learning (DL) Models

➢ Quantum Annealer (QA) aids classical GPU-accelerated 
HPC cluster in performing HPO

➢ GPU cluster trains DL models

➢ QA trains Quantum-SVR (QSVR) used to aid the HPO 
process

➢ Promising results
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Hybrid Quantum-Classical Workflow

SVR
not trained 

training 
samples

Classical
computer

QUBO
problem 

QUBO
solutions 

Classical
computer

trained
Q-SVR

Quantum Annealer

Quantum-SVR training workflow

➢ This work was most recently shown at QTML at 
CERN 19th-24th November 2023 and continues 
the effort based on the following previous 
works:

➢ ACAT 2022, E. Wulff, J.P García Amboage, David 
Southwick, Maria Girone, Eduard Cuba

➢ CHEP 2023, E. Wulff, J.P García Amboage, David 
Southwick, Maria Girone, Eduard Cuba

➢ ISC 2023, M. Aach, E. Wulff, E. Pasetto, A. Delilbasic, R. 
Sarma, E. Inanc, M. Girone, M. Riedel, A. Lintermann

Train DL
models

in parallel

Trains
QSVR

https://indico.cern.ch/event/1106990/contributions/4998112/
https://indico.jlab.org/event/459/contributions/11847/
https://juser.fz-juelich.de/record/1007703
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Computational performance

➢ Key feature: avoid quadratic 
bottleneck, linear scaling of 
runtime and memory usage 
with input size

➢ Test was done using a single 
stream on 1 GPU with one event 
at a time (this is not a 
production setting)

➢ GPU: NVIDIA RTX 2060S
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[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine 
Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330

[1]

[1]

http://arxiv.org/abs/2203.00330


TPE Algorithm [1]

1. Define a hyperparameter search space

2. Create an objective function, 𝑓(𝜃)

3. Get some of observations using randomly selected hyperparameters

4. Divide the scores into two groups based on some quantile. The first group (x1) 
contains observations that gave the best scores and the second one (x2) - all other 
observations,

5. Two densities 𝑙 𝑥 and g 𝑥 are modeled using Parzen Estimators (also known as 
KDEs) which are a simple average of kernels centered on existing data points,

6. Draw sample hyperparameters from 𝑙 𝑥 , evaluating them in terms of g 𝑥 /l 𝑥 , and 
returning the set that yields the minimum value under g 𝑥 /l 𝑥 corresponding to the 
greatest expected improvement. These hyperparameters are then evaluated on the 
objective function.

7. Update the observations from step 3

8. Repeat steps 4-7 with a fixed number of trials or until time limit is reached
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[1] James Bergstra, Rémi Bardenet, Yoshua Bengio and Balázs Kégl, Algorithms for Hyper-Parameter Optimization (2011), Advances in Neural 
Information Processing Systems, https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
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MLPF architecture overview

➢ Fully connected feedforward networks are 
used for encoding and decoding

➢ Custom CombinedGraph layers are used 
to dynamically build graphs and perform 
message passing

➢ We use two stacks of CombinedGraph
layers:

➢ one for momentum regression

➢ one for particle classification
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Image: Joosep Pata

[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine 
Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330

[1]
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The CombinedGraph layer

➢ A learnable embedding allows flexibility in 
graph building

➢ Elements are binned into local context 
areas

➢ A graph is built within each bin

➢ The graphs are disjoint but together they 
represent the entire event

➢ One or more graph convolutions are 
applied for message passing

➢ Elements are unbinned and returned
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Image: Joosep Pata

[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine 
Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330

[1]
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BOHB (Bayesian Optimization Hyperband)

➢ Combination of Bayesian Optimization with 
early stopping functionality of Hyperband [12]

➢ Using 12 compute nodes with:
➢ 4x NVIDIA A100 SXM4 40GB

➢ 2× AMD EPYC Rome 7402, 2× 24 cores @ 2.8 GHz

➢ Two different hypertuning runs:
➢ With ExponentialDecay

➢ Approximately 105.5 node-hours, or 10128 core-hours

➢ With CosineDecay

➢ Approximately 98.4 node-hours, or 9446 core-hours
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num_samples = 200

search_space = {

"lr": loguniform(1e-4, 3e-2),

"expdecay_decay_steps": quniform(10, 2000, 10),

"dropout": uniform(0.0, 0.5),

"clip_value_low": uniform(0.0, 0.2),

"dist_mult": uniform(0.01, 0.2),

}

Image: Run on JUWELS Booster

[12] Falkner S, Klein A and Hutter F BOHB: robust and efficient hyperparameter optimization at scale
(2018), https://arxiv.org/abs/1807.01774

HPO studies done in 2021 in: E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven AI models on HPC systems, J. Phys.: 
Conf. Ser. 2438 012092 (2023) https://doi.org/10.1088/1742-6596/2438/1/012092

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/CosineDecay
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
https://arxiv.org/abs/1807.01774
https://doi.org/10.1088/1742-6596/2438/1/012092


HPO results
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➢ Using BOHB, a set of best hyperparameters were found 
in the first search space

➢ ASHA + Bayesian Optimization (BO) were used in the 
second, larger, search space

➢ Final best hyperparameters shown below

➢ Variability check: best trial was re-trained 10 times and 
achieved similar results

best_config =

{'bin_size': 64,

'distance_dim': 64,

'ffn_dist_hidden_dim': 128,

'ffn_dist_num_layers': 3,

'layernorm': 'False',

'normalize_degrees': 'True',

'num_graph_layers_common': 3,

'num_graph_layers_energy': 2,

'num_node_messages': 3,

'output_dim': 64}

best_config =

{'clip_value_low': 0.001998,

'dist_mult': 0.120898,

'dropout': 0.016312,

'lr': 0.001129}

BOHB

ASHA + BO

From the final ASHA + BO search

[10] E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven AI models on HPC systems, J. Phys.: Conf. Ser. 2438 012092
(2023) https://doi.org/10.1088/1742-6596/2438/1/012092

[10]

https://doi.org/10.1088/1742-6596/2438/1/012092


A two-layer fully connected feed-forward network
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Model: 𝑀 𝑥,𝑤 = 𝑦

𝑤

Input, 𝑥 Output, 𝑦



From SVR to Q-SVR formulation (Pasetto et al.)

Classical SVR primal formulation

predictions:

Classical SVR dual formulation
predictions:

calculate b:

QUBO formulation

Encode SVR variables using binary variables

Add restriction as penalty term

“Ignore” the 2nd restriction

Resulting problem with binary variables and without restrictions ✅

QUBO matrix for the 
canonical formulation:

1 2

3 4
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https://www.techrxiv.org/articles/preprint/Quantum_SVR_for_Chlorophyll_Concentration_Estimation_in_Water_with_Remote_Sensing/19619676


Learning curve dataset

➢ Generated dataset consisting of learning curves 
and HP configs

➢ Run 300 MLPF trainings

➢ For each training, sample HPs from a 7-dimensional 
search space

➢ Train for 100 epochs on the publicly available Delphes
dataset [11]

➢ Inputs:
➢ HP configuration

➢ Partial learning curve

➢ 1st and 2nd order differences of the partial learning curve

➢ Targets
➢ Final validation loss

6809.07.2024 – CERN openlab Summer Student Lectures – Eric Wulff
[11] Pata J et al. Simulated particle-level events of t ̄t and QCD with PU200 using PYTHIA8+DELPHES3
for machine learned particle flow (MLPF), (2021), https://zenodo.org/record/4559324

https://zenodo.org/record/4559324


QSVR results
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MLPF true loss

Best Q-SVR true vs predicted test values
train size = 20, known fraction of lc = 0.25

➢ Very promising results for Q-SVR and SVR.
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Classical SVR as performance predictor

➢ We first studied the problem using classical SVR

➢ Varying the know fraction of learning curve and size and contents of feature vector

➢ With ≥25% of epochs observed, we see an R2 > 0.9

➢ We also studied the performance dependence on training set size

➢ 𝑅2 = 1 −
σ𝑖 𝑦𝑖 −ෞ𝑦𝑖

2

σ𝑖 𝑦𝑖 − 𝑦
2 = 1 −

σ𝑖 𝑒𝑖
2

σ𝑖 𝑦𝑖 − 𝑦
2
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Classical SVR under restrictions

➢ We evaluate how well a classical SVR performs 
when meeting same restrictions as the QSVR

➢ Reduced training set: randomly draw 20 samples from 
full training set

➢ Reduced feature vector: using only downsampled
learning curve as input

➢ Fit 1000 SVRs using same HPs
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Best Worst Mean Std Median

R2 0.959 0.318 0.889 0.050 0.900



Swift-Hyperband
Lo

ss

➢ One extra decision point inside each 

round

➢ At the beginning of the round some trials 

are fully trained to define a threshold.

➢ The other trials are partially trained

➢ If their predicted loss is lower than the 

threshold the trials are stopped before 

completing the round.

Trainings are done in parallel
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Algorithm Comparison

➢ Simulated results using learning curve datasets

CNN for CIFAR-10 - 5 HPs CNN for SVHN - 9 HPs
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