Introduction to Machine Learning

Michael Kagan SLAC

CERN Openlab Summer Student Lectures July 5, 2024

Long History of Machine Learning

Perceptron

AlphaStar

2

The Power of ML

Slide credit: L. Heinrich

Particle Physics Has Similar Goals!

Simulation

Slide credit: L. Heinrich

Machine Learning in HEP

What is Machine Learning?

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization
- Fitting data with complex functions
- Mathematical models learnt from data that characterize the patterns, regularities, and relationships amongst variables in the system

Artificial Intelligence, Machine Learning, Deep Learning

- AI: make computers act in an intelligent way
 - Rules, reasoning, symbol manipulation
- ML: Uses data to learn "intelligent" algorithms
- **Deep Learning**: Approach to ML that (often) uses complex pipelines to process low level data (e.g. pixels)

Machine Learning: Models

- Key element is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
- Learning: estimate statistical model from data
 - Supervised learning
 - Unsupervised Learning
 - Reinforcement Learning
- **Prediction and Inference:** using statistical model to make predictions on new data points and infer properties of system(s)

Probability Review

- Joint distribution of two variables: p(x, y)
- Marginal distribution: $p(x) = \int p(x,y)dy$
- Conditional distribution:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

• Bayes theorem:
$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

- Expected value: $\mathbf{E}[f(x)] = \int f(x)p(x)dx$
- Normal distribution: $-x \sim N(\mu, \sigma) \rightarrow p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$

Supervised Learning

• Given N examples with observable features $\{x_i \in X\}$ and prediction **targets** $\{y_i \in Y\}$, learn function mapping h(x)=y

Classification:

 ${\mathcal Y}$ is a finite set of ${\rm labels}$ (i.e. classes) denoted with integers

Regression: *V* is a real number

Unsupervised Learning

Given data $D=\{x_i\}$, but no labels, find structure in data

(a)

Clustering: partition the data into groups $D = \{D_1 \cup D_2 \cup D_3 \dots \cup D_k\}$

Dimensionality reduction: find a low dimensional (less complex) representation of the data with a mapping Z = h(X)

Density estimation and sampling: estimate the PDF p(x), and/or learn to draw plausible new samples of x

(i)

Image credit: Bishop

Reinforcement Learning

- Model agents that take actions depending on state
 - Actions incur rewards, and affect future states ("feedback")
- Learn to make the best sequence of decisions to achieve a given goal when feedback is often delayed until you reach the goal

Nature 529, 484-489 (28 January 2016)

Supervised Learning: How does it work?

Supervised Learning: How does it work?

W

15

Supervised Learning: How does it work?

16

W

- Repeat until parameters stabilize

Reminder: Empirical Risk Minimization

- Framework to design learning algorithms
 - *L* is a loss function comparing prediction $h(\cdot)$ w/ target y
 - $-\Omega(w)$ is a regularizer, penalizing certain values of w
 - λ controls how much penalty: a hyperparameter we have to tune
- Learning is cast as an optimization problem

Example Loss Functions

Square Error Loss:
– Often used in regression

- With
$$y \in \{0,1\}$$

- Often used in classification
- Hinge Loss: - With $y \in \{-1,1\}$ $L(h(\mathbf{x}; \mathbf{w}), y) = \max(0, 1 - yh(\mathbf{x}; \mathbf{w}))$
- Zero-One loss

-
$$h(\mathbf{x}; \mathbf{w})$$
 predicting label
 $L(h(\mathbf{x}; \mathbf{w}), y) = 1_{y \neq h(\mathbf{x}; \mathbf{w})}$

$$L(h(\mathbf{x};\mathbf{w}),y) = (h(\mathbf{x};\mathbf{w}) - y)^2$$

$$\mathcal{L}(h(\mathbf{x}; \mathbf{w}), y) = -y \log h(\mathbf{x}; \mathbf{w}) - (1-y) \log(1 - h(\mathbf{x}; \mathbf{w}))$$

Model Space and Learning Algorithms

- Choose type of model
 - Each set of parameters is a point in space of models
- Need to find the best model parameters for loss
- Learning is like a search through space of models, guided by the data
- Various possibilities
 - Exhaustive search
 - Closed form solutions (rare)
 - Iterative optimization

Space of Possible Models

Putting It All Together

- Gather data to be used
- Propose a space of possible models
- Define what "good" means with loss function / learning objective
- Use learning algorithm to find best model

Linear Classification

Classification

- Learn a function to separate different classes of data
- Avoid over-fitting:

 Learning too fined details about your training sample that will not generalize to unseen data

Linear Decision Boundaries

- Image credit: Bishop • Separate two classes: x_2 h(x) > 0h(x) = 0 $-\boldsymbol{x}_i \in \mathbb{R}^m$ \mathcal{R}_1 h(x) < 0 \mathcal{R}_2 $-y_i \in \{-1,1\}$ х Linear discriminant model $h(x; w) = w^{T}x + b$ XΙ x_1 $\frac{-w_0}{\|\mathbf{w}\|}$
- Decision boundary defined by hyperplane

$$h(\boldsymbol{x}; \boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{x} + b = 0$$

• Class predictions: Predict class -1 if $h(x_i; w) < 0$, else class 1

• Goal: Separate data from two classes / populations

 \mathbf{X}_1

- Goal: Separate data from two classes / populations
- Data from joint distribution $(x, y) \sim p(X, Y)$
 - Features: $\boldsymbol{x} \in \mathbb{R}^m$
 - Labels: $y \in \{0,1\}$

- Goal: Separate data from two classes / populations
- Data from joint distribution $(x, y) \sim p(X, Y)$
 - Features: $\boldsymbol{x} \in \mathbb{R}^m$
 - Labels: $y \in \{0,1\}$
- Breakdown the joint distribution: p(x, y) = p(x|y)p(y)

Likelihood: Distribution of features for a given class Prior: Probability of each class

- Goal: Separate data from two classes / populations
- Data from joint distribution $(x, y) \sim p(X, Y)$
 - Features: $\boldsymbol{x} \in \mathbb{R}^m$
 - Labels: $y \in \{0,1\}$
- Breakdown the joint distribution: p(x, y) = p(x|y)p(y)
- Assume likelihoods are Gaussian

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{\sqrt{(2\pi)^m |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{y}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{y}})\right)$$

- Separating classes \rightarrow Predict the class of a point **x**
- $p(y=1|\mathbf{x})$

• Want to build a classifier to predict the label y given and input **x**

• Separating classes \rightarrow Predict the class of a point **x**

$$p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x})}$$

Bayes Rule

• Separating classes \rightarrow Predict the class of a point **x**

$$p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x})}$$
Bayes Rule

$$= \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)} \qquad \begin{array}{l} \text{Marginal} \\ \text{definition} \end{array}$$

• Separating classes \rightarrow Predict the class of a point **x**

$$p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x})}$$
Bayes Rule

$$= \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)} \qquad \begin{array}{l} \text{Marginal} \\ \text{definition} \end{array}$$

$$= \frac{1}{1 + \frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}}$$

$$\overline{1 + \exp\left(\log \frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}\right)}$$

Logistic Sigmoid Function

Predicting Classes with Gaussian Likelihoods

$$p(y = 1 | \mathbf{x}) = \sigma \Big(\log \frac{p(\mathbf{x} | y = 1)}{p(\mathbf{x} | y = 0)} + \log \frac{p(y = 1)}{p(y = 0)} \Big)$$

Log-likelihood ratio Constant w.r.t. **x**

Predicting Classes with Gaussian Likelihoods

$$p(y=1|\mathbf{x}) = \sigma\Big(\log\frac{p(\mathbf{x}|y=1)}{p(\mathbf{x}|y=0)} + \log\frac{p(y=1)}{p(y=0)}\Big)$$

• For our Gaussian data:

$$= \sigma \Big(\log p(\mathbf{x}|y=1) - \log p(\mathbf{x}|y=0) + const. \Big)$$

$$= \sigma \left(-\frac{1}{2} (\mathbf{x} - \mu_1)^T \Sigma^{-1} (\mathbf{x} - \mu_1) + \frac{1}{2} (\mathbf{x} - \mu_0)^T \Sigma^{-1} (\mathbf{x} - \mu_0) + const. \right)$$

 $=\sigma\left(\mathbf{w}^T\mathbf{x}+b\right)$

Collect terms

What did we learn?

- For this data, the log-likelihood ratio is linear!
 - Line defines boundary to separate the classes
 - Sigmoid turns distance from boundary to probability

Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:
$$p(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b) \equiv h(\mathbf{x}; \mathbf{w})$$

- Farther from boundary $w^T x + b = 0$, more certain about class
- Sigmoid converts distance to class probability

This unit is the main building block of Neural Networks!

• What if we ignore Gaussian assumption on data?

Model:
$$p(y = 1 | \mathbf{x}) = \sigma \left(\mathbf{w}^T \mathbf{x} + b \right) \equiv h(\mathbf{x}; \mathbf{w})$$

• With
$$p_i \equiv p(y_i = y | \mathbf{x}_i)$$

$$P(y_i = y | x_i) = \text{Bernoulli}(p_i) = (p_i)^{y_i} (1 - p_i)^{1 - y_i} = \begin{cases} p_i & \text{if } y_i = 1 \\ 1 - p_i & \text{if } y_i = 0 \end{cases}$$

- Goal:
 - Given i.i.d. dataset of pairs (x_i, y_i) find w and b that maximize likelihood of data

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_{i})^{y_{i}} (1 - p_{i})^{1 - y_{i}}$$

$$= -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

$$= -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

• Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

$$= -\sum_{i} y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)$$

$$= \sum_{i} y_i \ln(1 + e^{-\mathbf{w}^T \mathbf{x}}) + (1 - y_i) \ln(1 + e^{\mathbf{w}^T \mathbf{x}})$$

• No closed form solution to $w^* = \arg \min_{w} - \ln \mathcal{L}(w)$

• How to solve for **w**?

Gradient Descent

- Minimize loss by repeated gradient steps
 - Compute gradient w.r.t. current parameters: $\nabla_{\theta_i} \mathcal{L}(\theta_i)$
 - Update parameters: $\theta_{i+1} \leftarrow \theta_i \eta \nabla_{\theta_i} \mathcal{L}(\theta_i)$
 - $-\eta$ is the *learning rate*, controls how big of a step to take

Stochastic Gradient Descent

• Loss is composed of a sum over samples:

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(y_i, h(x_i; \theta))$$

- Computing gradient grows linearly with N!
- (Mini-Batch) Stochastic Gradient Descent
 - Compute gradient update using 1 random sample (small size batch)
 - Gradient is unbiased \rightarrow on average it moves in correct direction
 - Tends to be much faster the full gradient descent

Stochastic Gradient Descent

• Loss is composed of a sum over samples:

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(y_i, h(x_i; \theta))$$

- Computing gradient grows linearly with N!
- (Mini-Batch) Stochastic Gradient Descent
 - Compute gradient update using 1 random sample (small size batch)
 - Gradient is unbiased \rightarrow on average it moves in correct direction
 - Tends to be much faster the full gradient descent
- Several updates to SGD, like momentum, ADAM, RMSprop to
 - Help to speed up optimization in flat regions of loss
 - Have adaptive learning rate
 - Learning rate adapted for each parameter

- Too small a learning rate, convergence very slow
- Too large a learning rate, algorithm diverges

Small Learning rate

θ

Gradient Descent

- Logistic Regression Loss is convex
 Single global minimum
- Iterations lower loss and move toward minimum

Logistic Regression Example

Basis Functions

• What if non-linear relationship between **y** and **x**?

Basis Functions

• What if non-linear relationship between **y** and **x**?

• Can choose basis functions $\phi(x)$ to form new features

$$h(x;w) = \sigma(w^T \phi(x))$$

- Polynomial basis $\phi(x) \sim \{1, x, x^2, x^3, ...\},$ Gaussian basis, ...
- Logistic regression on new features $\phi(x)$

Basis Functions

• What if non-linear relationship between **y** and **x**?

• Can choose basis functions $\phi(x)$ to form new features

 $h(x;w) = \sigma(w^T \phi(x))$

- Polynomial basis $\phi(x) \sim \{1, x, x^2, x^3, ...\},$ Gaussian basis, ...
- Logistic regression on new features $\phi(x)$
- What basis functions to choose? *Overfit* with too much flexibility?

What is Overfitting

Underfitting

Overfitting

http://scikit-learn.org/

- Models allow us to generalize from data
- Different models generalize in different ways

 generalization error = systematic error + sensitivity of prediction (bias) (variance)

• Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).

- Complex models over-fit: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).
 - As dataset size grows, can reduce variance!
 - Can use more complex model

Regularization – Control Complexity

$$L(\mathbf{w}) = \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^2 + \alpha \Omega(\mathbf{w})$$

$$L2: \quad \Omega(\mathbf{w}) = ||\mathbf{w}||^2$$

- L2 keeps weights small, L1 keeps weights sparse!
- But how to choose hyperparameter α?

http://scikit-learn.org/

 $L1: \quad \Omega(\mathbf{w}) = ||\mathbf{w}||$

How to Measure Generalization Error?

- Split dataset into multiple parts
- Training set
 - Used to fit model parameters

Validation set

 Used to check performance on independent data and tune hyper parameters

• Test set

- final evaluation of performance after all hyper-parameters fixed
- Needed since we tune, or "peek", performance with validation set

How to Measure Generalization Error?

Prediction Error

Model Complexity

What if we want a non-linear decision boundary?
– Choose basis functions, e.g: φ(x) ~ {x², sin(x), log(x), ... }

$$p(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}$$

What if we want a non-linear decision boundary?
– Choose basis functions, e.g: φ(x) ~ {x², sin(x), log(x), ... }

$$p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}$$

• What if we don't know what basis functions we want?

What if we want a non-linear decision boundary?
– Choose basis functions, e.g: φ(x) ~ {x², sin(x), log(x), ... }

$$p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

 $\phi(\boldsymbol{x}; \boldsymbol{u}) \quad \mathbb{R}^m \to \mathbb{R}^d$

- Where **u** is a set of parameters for the transformation

What if we want a non-linear decision boundary?
– Choose basis functions, e.g: φ(x) ~ {x², sin(x), log(x), ... }

$$p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

 $\phi(\boldsymbol{x}; \boldsymbol{u}) \quad \mathbb{R}^m \to \mathbb{R}^d$

- Where **u** is a set of parameters for the transformation
- Combines basis selection & learning→Representation Learning
- Several different approaches, focus here on neural networks
- Complicates the optimization

• Define the basis functions $j = \{1 \dots d\}$

$$\phi_j(\boldsymbol{x}; \boldsymbol{u}) = \sigma(\boldsymbol{u}_j^T \boldsymbol{x})$$

• Define the basis functions $j = \{1 \dots d\}$

$$\phi_j(\boldsymbol{x}; \boldsymbol{u}) = \sigma(\boldsymbol{u}_j^T \boldsymbol{x})$$

• Put all $\boldsymbol{u}_j \in \mathbb{R}^{1 \times m}$ vectors into matrix \boldsymbol{U}

$$\phi(\mathbf{x}; \mathbf{U}) = \sigma(\mathbf{U}\mathbf{x}) = \begin{bmatrix} \sigma(u_1^T \mathbf{x}) \\ \sigma(u_2^T \mathbf{x}) \\ \vdots \\ \sigma(u_d^T \mathbf{x}) \end{bmatrix} \in \mathbb{R}^d$$

 $-\sigma$ is a point-wise non-linearity acting on each vector element

• Define the basis functions $j = \{1 \dots d\}$

$$\phi_j(\boldsymbol{x}; \boldsymbol{u}) = \sigma(\boldsymbol{u}_j^T \boldsymbol{x})$$

• Put all $\boldsymbol{u}_j \in \mathbb{R}^{1 \times m}$ vectors into matrix \boldsymbol{U}

$$\phi(\mathbf{x}; \mathbf{U}) = \sigma(\mathbf{U}\mathbf{x}) = \begin{bmatrix} \sigma(u_1^T \mathbf{x}) \\ \sigma(u_2^T \mathbf{x}) \\ \vdots \\ \sigma(u_d^T \mathbf{x}) \end{bmatrix} \in \mathbb{R}^d$$

– σ is a point-wise non-linearity acting on each vector element

• Full model becomes $h(\mathbf{x}; \mathbf{w}, \mathbf{U}) = w^T \phi(\mathbf{x}; \mathbf{U})$

Feed Forward Neural Network

Multi-layer Neural Network

- Multilayer NN
 - Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem

- Neural Network Model: $h(\mathbf{x}) = \mathbf{w}^T \sigma(\mathbf{U}\mathbf{x})$
- **Classification**: Cross-entropy loss function $p_i = p(y_i = 1 | \mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$

$$L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

Neural Network Optimization Problem

- Neural Network Model: $h(\mathbf{x}) = \mathbf{w}^T \sigma(\mathbf{U}\mathbf{x})$
- **Classification**: Cross-entropy loss function $p_i = p(y_i = 1 | \mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$

$$L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

• **Regression**: Square error loss function

$$L(\mathbf{w}, \mathbf{U}) = \frac{1}{2} \sum_{i} (y_i - h(\mathbf{x}_i))^2$$

Neural Network Optimization Problem

- Neural Network Model: $h(\mathbf{x}) = \mathbf{w}^T \sigma(\mathbf{U}\mathbf{x})$
- **Classification**: Cross-entropy loss function $p_i = p(y_i = 1 | \mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$

$$L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

• **Regression**: Square error loss function

$$L(\mathbf{w}, \mathbf{U}) = \frac{1}{2} \sum_{i} (y_i - h(\mathbf{x}_i))^2$$

• Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

• Parameter update:

$$w \leftarrow w - \eta \frac{\partial L(w, U)}{\partial w}$$
$$\partial L(w, U)$$

$$U \leftarrow U - \eta \, \frac{\partial L(w, U)}{\partial U}$$

• How to compute gradients?

Automatic Differentiation

 Exact derivatives for gradient-based optimization come from running differentiable code via automatic differentiation

$$\begin{split} f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R} & \text{f(x) {...};} \\ & \bigvee \text{ automatic } & & \downarrow \\ & \text{differentiation } & & \downarrow \\ \nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right) & & \text{df(x) {...};} \end{split}$$

• Can compute derivatives not just of mathematical functions, but **derivatives of general purpose code** with control flow, loops, recursions, etc.

Backpropagation

- Loss function composed of layers of nonlinearity $L(\phi^N(...\phi^1(x)))$
- Forward step (f-prop)
 - Compute and save intermediate computations $\phi^N(\dots \phi^1(x))$
- Backward step (b-prop) $\frac{\partial L}{\partial \phi^a} = \sum_j \frac{\partial \phi_j^{(a+1)}}{\partial \phi_j^a} \frac{\partial L}{\partial \phi_j^{(a+1)}}$
- Compute parameter gradients $\frac{\partial L}{\partial \mathbf{w}^a} = \sum_i \frac{\partial \phi_j^a}{\partial \mathbf{w}^a} \frac{\partial L}{\partial \phi_i^a}$
Training

- Repeat gradient update of weights to reduce loss
 Each iteration through dataset is called an epoch
- Use validation set to examine for overtraining, and determine when to stop training

[[]graphic from H. Larochelle]

- Major challenge in DL: Vanishing Gradients
- Small gradients slow down / block, stochastic gradient descent → Limits ability to learn!

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010). Gradients for layers far from the output vanish to zero.

Activation Functions

Vanishing gradient problem

- Derivative of sigmoid:

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

- Nearly 0 when x is far from 0!
- Can make gradient descent hard!

- Rectified Linear Unit (ReLU)
 - $\text{ReLU}(x) = \max\{0, x\}$
 - Derivative is constant!

$$\frac{\partial \operatorname{Re} LU(x)}{\partial x} = \begin{cases} 1 & \text{when } x > 0\\ 0 & \text{otherwise} \end{cases}$$

ReLU gradient doesn't vanish

Neural Network Decision Boundaries

4-class classification2-hidden layer NNReLU activationsL2 norm regularization

X₁

Universal approximation theorem

 Feed-forward neural network with a single hidden layer containing a finite number of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous functions arbitrarily well on a compact space of Rⁿ

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous functions arbitrarily well on a compact space of Rⁿ
- NOTE!
 - A better approximation requires a larger hidden layer and this theorem says nothing about the relation between the two.
 - We can make training error as low as we want by using a larger hidden layer. Result states nothing about test error
 - Doesn't say how to find the parameters for this approximation

Summary

- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- ML comes in many forms, much of which has probabilistic and statistical foundations and interpretations (i.e. *Statistical Machine Learning*)
- ML provides a powerful toolkit to analyze data
 Linear methods can help greatly in understanding data
 - Neural Networks allow us to learn nonlinear basis functions that help us solve our learning problem
 - Choosing a model for a given problem is difficult,
 - Keep in mind bias-variance tradeoff

Backup

Notation

- $\mathbf{X} \in \mathbb{R}^{mxn}$
- $\mathbf{X} \in \mathbb{R}^{n(x1)}$
- $x \in \mathbb{R}$
- X
- $\{x_i\}_1^m$
- $y \in \mathbb{I}^{(k)} / \mathbb{R}^{(k)}$

Matrices in bold upper case: Vectors in bold lower case Scalars in lower case, non-bold Sets are script Sequence of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$ Labels represented as - Integer for classes, often $\{0,1\}$. E.g. $\{Higgs, Z\}$

- Real number. E.g electron energy
- Variables = features = inputs
- Data point $\mathbf{x} = \{x_1, ..., x_n\}$ has n-features
- Typically use affine coordinates: $y = \mathbf{w}^{T}\mathbf{x} + \mathbf{w}_{0} \rightarrow \mathbf{w}^{T}\mathbf{x}$ $\rightarrow \mathbf{w} = \{w_{0}, w_{1}, \dots, w_{n}\}$ $\rightarrow \mathbf{x} = \{1, x_{1}, \dots, x_{n}\}$

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X};\mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i;\mathbf{w})$$

- Where second equality holds if data is independent and identically distributed
- Often minimize negative-log-likelihood for numerical stability
 - Same as maximizing likelihood since log is monotonic and differentiable away from zero

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X};\mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i;\mathbf{w})$$

Select parameters that make data most likely

 General strategy for parameter estimation

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \arg \min_{\mathbf{w}} - \ln \mathcal{L}(\mathbf{w}) = \arg \min_{\mathbf{w}} - \sum_{i} \ln p(y_i | \mathbf{x}_i; \mathbf{w})$$

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}; \mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i; \mathbf{w})$$

- Example: have samples $x_{1:n}$
 - Assume data comes from exponential distribution

•
$$p(x_i; \lambda) = \lambda e^{-\lambda x_i}$$

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}; \mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i; \mathbf{w})$$

- Example: have samples $x_{1:n}$
 - Assume data comes from exponential distribution

•
$$p(x_i; \lambda) = \lambda e^{-\lambda x_i}$$

- Evaluate
$$p(x_i; \lambda)$$
 for each x_i

- Describe a process behind the data
- Write down the likelihood of the observed data

$$\mathcal{L}(\mathbf{w}) = p(\mathbf{y}|\mathbf{X}; \mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i; \mathbf{w})$$

- Example: have samples $x_{1:n}$
 - Assume data comes from exponential distribution

•
$$p(x_i; \lambda) = \lambda e^{-\lambda x_i}$$

- Evaluate $p(x_i; \lambda)$ for each x_i
- Find λ to maximize $\prod_i p(x_i; \lambda)$

- Model h(x), defined over dataset, modeling random variable output y $E[y] = \bar{y}$ $E[h(x)] = \bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = E[(y - \bar{y})^{2}] + (\bar{y} - \bar{h}(x))^{2} + E[(h(x) - \bar{h}(x))^{2}]$$

= noise + (bias)² + variance

- Model h(x), defined over dataset, modeling random variable output y $E[y] = \bar{y}$ $E[h(x)] = \bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = noise \end{bmatrix} + (\bar{y} - \bar{h}(x))^{2} + E[(h(x) - \bar{h}(x))^{2}] \\ + (bias)^{2} + variance$$
Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

- Model h(x), defined over dataset, modeling random variable output y $E[y] = \bar{y}$ $E[h(x)] = \bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

• The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.

- Model h(x), defined over dataset, modeling random variable output y $E[y] = \bar{y}$ $E[h(x)] = \bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

- The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.
- **More Complexity** will make the model "move" more to capture the data points, and hence its **variance will be larger**.

- Model h(x), defined over dataset, modeling random variable output y $E[y] = \bar{y}$ $E[h(x)] = \bar{h}(x)$
- Examining generalization error at x, w.r.t. possible training datasets

$$E[(y - h(x))^{2}] = \begin{bmatrix} E[(y - \bar{y})^{2}] \\ = \text{noise} \end{bmatrix} + \begin{bmatrix} (\bar{y} - \bar{h}(x))^{2} \\ (\text{bias})^{2} \end{bmatrix} + \begin{bmatrix} E[(h(x) - \bar{h}(x))^{2}] \\ + \text{variance} \end{bmatrix}$$

- The **more complex the model** h(x) is, the more data points it will capture, and **the lower the bias** will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.
 - As dataset size grows, can reduce variance! Can use more complex model

Least Squares Linear Regression

Least Squares Linear Regression

- Set of input / output pairs $D = {\mathbf{x}_i, y_i}_{i=1...n}$
 - $-\mathbf{x}_i \in \mathbb{R}^m$
 - $-y_i \in \mathbb{R}$
- Assume a linear model $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T}\mathbf{x}$
- Squared Loss function:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y_i - h(\mathbf{x}_i; \mathbf{w}) \right)^2$$

• Find $\mathbf{w}^* = \arg \min_{\mathbf{w}} L(\mathbf{w})$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = {x_i, y_i}_{i=1...n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$
 - Target vector $\mathbf{y} \in \mathbb{R}^n$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,m} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D = {\mathbf{x}_i, y_i}_{i=1...n}$
 - Design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$
 - Target vector $\mathbf{y} \in \mathbb{R}^n$
- 1 • Rewrite loss:
- Minimize w.r.t. w:

$$L(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \arg\min_{\mathbf{w}} L(\mathbf{w})$$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

98

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

99

• Then $y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

100

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

• Likelihood function:

$$L(m) = p(\mathbf{y}|\mathbf{X};m) = \prod_{i} p(y_i|x_i;m)$$
$$\rightarrow -\log L(m) \sim \sum_{i} (y_i - mx_i)^2$$

- Assume $y_i = mx_i + e_i$
- Random error: $e_i \sim \mathcal{N}(0, \sigma) \rightarrow p(e_i) \propto \exp\left(\frac{1}{2}\frac{e_i^2}{\sigma^2}\right)$ - Noisy measurements, unmeasured variables, ...

101

• Then
$$y_i \sim \mathcal{N}(mx_i, \sigma) \rightarrow p(y_i | x_i; m) \propto \exp\left(\frac{1}{2} \frac{(y_i - mx_i)^2}{\sigma^2}\right)$$

• Likelihood function:

$$L(m) = p(\mathbf{y}|\mathbf{X};m) = \prod_{i} p(y_i|x_i;m)$$

$$\rightarrow -\log L(m) \sim \sum_{i} (y_i - mx_i)^2$$
Squared
loss function!

Linear Regression Example

Reconstructed Jet energy vs. Number of primary vertices

Linear Classification

Linear Classifier with Least Squares?

Why not use least squares loss with binary targets?

Linear Classifier with Least Squares?

- Why not use least squares loss with binary targets?
 - Penalized even when predict class correctly
 - Least squares is very sensitive to outliers

Logistic Regression

- Computational Graph of function
 - White node = input
 - Red node = model parameter
 - Blue node = intermediate operations

This unit is the main building block of Neural Networks!

Slide credit: G. Louppe

How to Minimize Loss $\mathcal{L}(\theta)$? Gradient Descent

• Gradient Descent:

Make a step $\theta \leftarrow \theta - \eta v$ in *direction* v with *step size* η to reduce loss

107

• How does loss change in different directions? Let λ be a perturbation along direction v

$$\frac{d}{d\lambda}\mathcal{L}(\theta+\lambda v)\bigg|_{\lambda=0} = v \cdot \nabla_{\theta}\mathcal{L}(\theta)$$

• Then Steepest Descent direction is: $v = -\nabla_{\theta} \mathcal{L}(\theta)$

Multiclass Classification?

• What if there is more than two classes?

- Softmax \rightarrow multi-class generalization of logistic loss
 - Have N classes { $c_1, ..., c_N$ }
 - Model target $\mathbf{y}_k = (0, \dots, 1, \dots, 0)$ kth element in vector

$$p(c_k|x) = \frac{\exp(\mathbf{w}_k x)}{\sum_j \exp(\mathbf{w}_j x)}$$

– Gradient descent for each of the weights \mathbf{w}_k