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Long History of Machine Learning
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https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

The Power of ML
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Particle Physics Has Similar Goals! )

Data Analysis
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Machine Learning in HEP
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What is Machine Learning?

Giving computers the ability to learn without explicitly
programming them (Arthur Samuel, 1959)

Statistics + Algorithms

Computer Science + Probability + Optimization

Fitting data with complex functions

Mathematical models learnt from data that characterize
the patterns, regularities, and relationships amongst
variables in the system




Artificial Intelligence, Machine Learning, Deep Learning

* Al: make computers act in
an intelligent way

Artificial Intelligence — Rules, reasoning, symbol
manipulation

« ML: Uses data to learn
“intelligent” algorithms

* Deep Learning: Approach to

ML that (often) uses complex
Machine Learning pipelines to process low
level data (e.g. pixels)




Machine Learning: Models

» Key element is a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

» Learning: estimate statistical model from data
— Supervised learning
— Unsupervised Learning
— Reinforcement Learning

» Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)
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http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Probability Review

» Joint distribution of two variables: p(x,y)

* Marginal distribution:  p(x) = [p(x,y)dy

« Conditional distribution: p(y|z) = p(z.y)
p()
- Bayes theorem: p(y|r) = (x‘y) ( )
* Expected value: / f(z
* Normal distribution: | (¢ — )
x-Na) - () = ——exp (- 5T



Supervised Learning "

« Given N examples with observable features {x; € X} and
prediction targets {y; € Y}, learn function mapping h(x)=y

Classification: Regression:
VY is a finite set of labels (i.e. classes) VYis a real number

denoted with integers




Unsupervised Learning »

Given data D={x;}, but no labels, find structure in data

Clustering: partition the data into |~ w4 ey, 45
groups D = {D;UD,UD; ..UD,} | ¥ - | ¥

Dimensionality reduction: find a low
dimensional (less complex) representation
of the data with a mapping Z = h(X)

Density estimation and sampling: e,
estimate the PDF p(x), and/or learn to : & g# .
draw plausible new samples of x B



https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Reinforcement Learning 1

Agent
state (s[t]) Policy m: S—A
action (a[t])
reward (r[t+1])
—[Environment]% N

* Model agents that take actions depending on state
« Actions incur rewards, and affect future states (“feedback”)

* Learn to make the best sequence of decisions to achieve a given
goal when feedback is often delayed until you reach the goal

a b
Rollout policy SL policy network RL policy network Value network Policy network Value network

Py, als) v, (8
-

N?;I %3 B% § » bt . =

Human expert positions Self-play positions

Nature 529, 484—-489 (28 January 2016)
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http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Supervised Learning: How does it work?

14




Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
* Design function with adjustable
Y. Le Cun
parameters
* Design a Loss function L L(W,X)

* Find best parameters which minimize loss k

—<




Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
* Design function with adjustable
Y. Le Cun
parameters
 Design a Loss function L L(W,X)

* Find best parameters which minimize loss
— Use a labeled training-set to compute loss w
: : A
— Adjust parameters to reduce loss function

— Repeat until parameters stabilize




Reminder: Empirical Risk Minimization .

N
1
arg min — Z L(h(x:; W), y;) + AQ(w)
L =1 v J Y 1

Average expected loss Model regularization

* Framework to design learning algorithms

— L is a loss function comparing prediction h(-) w/ target y

— Q(w) is a regularizer, penalizing certain values of w

* A controls how much penalty: a hyperparameter we have to tune

* Learning is cast as an optimization problem



Example Loss Functions ,

* Square Error Loss: L(h(x;w),y) = (h(x;w) — )’
— Often used in regression
* Cross entropy: L(h(x;w),y) = — ylog h(x; w)
— With y € {0,1} — (1 —y)log(1l — h(x;w))

— Often used in classification

* Hinge Loss: E)

. - Square Error
— With y € {—1,1} - Cross Entropy
L(h(x; w),y) = max(0, 1 — yh(x; w)) zeraone

Zero-One loss |
— h(x; w) predicting label \\

L(h(X7 W)7 y) — 1y;éh(x;w)



https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Model Space and Learning Algorithms

19

* Choose type of model

— Each set of parameters is a
point in space of models Target solution

*
End

* Need to find the best
model parameters for loss

* Learning is like a search
through space of models,
guided by the data

Start
* Various possibilities
— Exhaustive search Space of Possible Models

— Closed form solutions (rare)
— Iterative optimization



Putting It All Together

20

Gather data to be used

Propose a space of
possible models

Define what “good”
means with loss function
/ learning objective

Use learning algorithm to
find best model

Learning
objective

\

Data

Learning
algorithm

!

Final
Model

Model
space

/



Linear Classification

21




Classification

Linear discriminant

Rectangular cuts

* Learn a function to separate
different classes of data

» Avoid over-fitting: —

— Learning too fined details about
your training sample that will
not generalize to unseen data

X3

>




Linear Decision Boundaries
* Separate two classes: Moo @
h(x) =0

— X; € R™ h(x) <0 R1
Ro
-y €{—11}

e Linear discriminant model
h(x; w) =wlx+b

* Decision boundary defined by hyperplane

hix; w) =wix+b =0

A

X1

* Class predictions: Predict class -1 if h(x;; w) < 0, else class 1


https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Linear Discriminant Analysis

24

* Goal: Separate data from two classes / populations




Linear Discriminant Analysis

25

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}




Linear Discriminant Analysis y

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x y) =pxly)p(y)

N\

Likelihood: Prior:
Distribution of features Probability of each class
for a given class



Linear Discriminant Analysis

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x,y) = plx|y)p(y)

 Assume likelihoods are Gaussian

1 1 N\Teo1
e ol Hew )

p(xly) =




Predicting the Class

28

* Separating classes = Predict the class of a point x

p(y = 1]x)

* Want to build a classifier to predict
the label y given and 1nput x



Predicting the Class

29

* Separating classes = Predict the class of a point x

p(X|y — 1)p(y — 1) Bayes Rule
p(x)

ply = 1]x) =



Predicting the Class .

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|y =0)p(y =0) +p(x|ly = 1)p(y = 1) definition



Predicting the Class

* Separating classes = Predict the class of a point x

p(y = HX) = p(X|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|ly =0)p(y =0) + p(x|ly = 1)p(y = 1) definition

1

P (<ly=0)p(5=0)
T pxly=Dp(y=1)

1

(x|y=0)p(y=0 Why?
L exp (bg 5(x|§=1§§8=1§)




Logistic Sigmoid Function

09

Logistic Sigmoid

08 1
7(2) = 14+e %

0.7

06

g(2)

05

041

03

02

01




Predicting Classes with Gaussian Likelihoods

33

p(xly =1) ply =1)
p(x|y = 0) +log p(y = 0)>

/ \

Log-likelihood ratio Constant w.r.t. x

Pl = 1) = o 1o



Predicting Classes with Gaussian Likelihoods y

+ log

p(y = 1))
p(y = 0)

— 1|X) =0 OpX :1)
ply =100 =108 1, =

e For our Gaussian data:

= a(logp(x\y =1) —logp(x|ly =0) + const.)

= o~ e )" S o ) + 3 (x — o) S (x — o)

+ const.)

T
= O(W X + b) Collect terms



What did we learn? .

» For this data, the log-likelihood ratio is linear!
— Line defines boundary to separate the classes
— Sigmoid turns distance from boundary to probability




Logistic Regression

36

» What if we ignore Gaussian assumption on data?

Model:  p(y =1|x) = O'(WTX + b) = h(x; W)

* Farther from boundary wix + b = 0,
more certain about class

» Sigmoid converts distance to class probability



Logistic Regression .

= 1|x) = O'(WTX—l— b)

1 +e-wixb

This unit 1s the main building block of Neural Networks!




Logistic Regression

38

» What if we ignore Gaussian assumption on data?

Model:  p(y =1|x) = O'(WTX + b) = h(x; W)

* With p; = p(y; = ylx;)

P(y; = y|z;) = Bernoulli(p;) = (p;)¥* (1 — p;)t ¥ :{

e Goal:

— Given 1.1.d. dataset of pairs (x;, y;)
find w and b that maximize likelihood ot data

p’1 lf yizl
1-p; 1f y;=0



Logistic Regression

39

* Negative log-likelihood

—InL=—In][@) 1 -p)¥

7



Logistic Regression

40

* Negative log-likelihood

—InL

- H(pi)yi (1—pi)' ¥

— Zyz In(p;) + (1 —y;) In(1 — p;)

-log(pi)
-log(1-p;)

|

binary cross entropy loss function!

-



Logistic Regression

41

* Negative log-likelihood

~InL=—In]]@)Q-p) ¥

= — Zyz In(p;) + (1 —y;) In(1 — p;)

binary cross entropy loss function!

-

=Y Tyl +e™ X) + (1 —y,)In(1 + eV ¥)

* No closed form solution to w* = arg min — In L(w)
w

e How to solve for w?



Gradient Descent

42

* Minimize loss by repeated gradient steps
— Compute gradient w.r.t. current parameters: Vg L(6;)
— Update parameters:  6;;4 « 6; —nVg L(6;)

— 1 is the learning rate, controls how big of a step to take

0,




Stochastic Gradient Descent .

* Loss is composed of a sum over samples:
N
1
VoL(0) = Nz Vo L(vi, h(x;80))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

= E=

Batch gradient descent Stochastic gradient descent



Stochastic Gradient Descent y

* Loss is composed of a sum over samples:
N
1
VgL(0) = Nz Vo L(vi, h(x;0))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

» Several updates to SGD, like momentum, ADAM, RMSprop to
— Help to speed up optimization in flat regions of loss
— Have adaptive learning rate
— Learning rate adapted for each parameter



Step Sizes

* Too small a learning rate, convergence very slow

* Too large a learning rate, algorithm diverges

Small Learning rate Large Learning rate
- 7




Gradient Descent 5

Starting

L(W)A / Point

>\ lteration 3

Loss

Iteration 4

Convergence

L n(w)

mi

l 1 I |
gt — HH > 0 200 400 600 800 1000

w lterations

* Logistic Regression Loss Is convex
— Single global minimum

e lterations lower loss and move toward minimum



Logistic Regression Example

47

25

True decision boundary
=== Fitted decision boundary
@89 Outcome 1
o8¢ Outcome 0

3 - 5

= Fitted decision boundary

00@ Predicted probability

I

~

3

4

5 6

Image source


https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Basis Functions

48

0 1

* What if non-linear relationship between y and x?



Basis Functions

49

N =100 1

0 i
* What if non-linear relationship between y and x?

« Can choose basis functions ¢(x) to form new features

h(w) = a(wTg(x))

— Polynomial basis ¢(x) ~ {1, x, x?, x3, ...},
Gaussian basis, ...

— Logistic regression on new features ¢(x)




Basis Functions

50

N =100 1

(‘) 1
* What if non-linear relationship between y and x?

« Can choose basis functions ¢(x) to form new features

h(w) = a(wTg(x))

— Polynomial basis ¢(x) ~ {1, x, x?, x3, ...},
Gaussian basis, ...

— Logistic regression on new features ¢(x)

* What basis functions to choose? Overfit with too much flexibility?




What is Overfitting ’

Degree 1 Degree 4 Degree 15

—  Model —  Model —  Model

. True function : True function True function

> e*e Samples *e Samples *e Samples
o

Underfitting Overfitting

http://scikit-learn.org/

* Models allow us to generalize from data

» Different models generalize in different ways


http://scikit-learn.org/

Bias Variance Tradeoff

52

 generalization error = systematic error + sensitivity of prediction
(bias) (variance)

 Simple models under-fit: will deviate from data (high bias) but
will not be influenced by peculiarities of data (low variance).

« Complex models over-fit: will not deviate systematically from

data (low bias) but will be very sensitive to data (high variance).

— As dataset size grows, can reduce variance!
— Can use more complex model



Bias Variance Tradeoff

Total Error

Variance

Optimum Model Complexity

Error

- -
Model Complexity




Regularization — Control Complexity

54

L(w) = 3y — Xw)’ + af(w)

L2: Q(w)=|lwl]| L1: Q(w)=||w||
Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths
25}
200 1 20 |
15+
100 + /
8 10f
£ / 5
2 s &
[ —
S . g 5
—— oL
-5
-100 |+
—10H — Les -~
Elas
1072 1073 10+ 10° 106 107 108 107 1010 -1.5 -1.0 -0.5 0.0 0.5
o alpha o -Log(alpha)
Less regularization > Less regularization >

» L2 keeps weights small, L1 keeps weights sparse!

* But how to choose hyperparameter o.?

http://scikit-learn.org/



http://scikit-learn.org/

How to Measure Generalization Error? N

Training set Validation set Test set

 Split dataset into multiple parts

* Training set
— Used to fit model parameters

y, output

 Validation set

— Used to check performance on .
independent data and tune hyper X, input
parameters

10 I I

—e— validation
—— {rain

e Test set

— final evaluation of performance
after all hyper-parameters fixed

— Needed since we tune, or “peek”,
performance with validation set

Mean square error

O N
0 5 10 15
p, polynomial order



How to Measure Generalization Error?

56

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ——————— e e e —— .

Validation Sample

/

/

Training Sample

Low High
Model Complexity



57

Neural Networks



Adding non-linearity

58

» What if we want a non-linear decision boundary?

— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...

1

py = 1|x) =

1+ e~ Wl o(x)




Adding non-linearity

59

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

« What if we don’t know what basis functions we want?



Adding non-linearity

60

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

p(y = 1|x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data

¢(x; u) R™ - R4

— Where u is a set of parameters for the transformation



Adding non-linearity o

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data
¢(x; u) R™ - R4
— Where u is a set of parameters for the transformation

— Combines basis selection & learning—Representation Learning
— Several different approaches, focus here on neural networks
— Complicates the optimization



Neural Networks

62

* Define the basis functions j = {1...d}

¢;(x; u) =o(uw'x)



Neural Networks

63

* Define the basis functions j = {1...d}
¢i(x; u) =o(u'x)
» Putall u; e R™™ vectors into matrix U

o(ul x)
o(ulx)

o (ul).

— o is a point-wise non-linearity acting on each vector element

d(x; U) = a(Ux) = cR?




Neural Networks

64

* Define the basis functions j = {1...d}
¢i(x; u) =o(u'x)
» Putall u; e R™™ vectors into matrix U

o(ul x)

d(x; U) = a(Ux) = a(uzgx) cR?

_O'(ugx)_
— o is a point-wise non-linearity acting on each vector element

* Full model becomes
h(x; w,U) =wlop(x; U)



Feed Forward Neural Network

— Hidden layer

Composed of neurons

¢(...) often called the
activation function




Multi-layer Neural Network

» Multilayer NN

— Each layer adapts basis functions based on previous layer



Neural Network Optimization Problem

67

* Neural Network Model:  h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(yi = 1x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)



Neural Network Optimization Problem

68

* Neural Network Model:  h(x) = w!o(Ux)

» Classification: Cross-entropy loss function
pi = p(yi = 1|x) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = 5 3 (i — h(x,))?

1



Neural Network Optimization Problem

69

* Neural Network Model:  h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1

* Minimize loss with respect to weights w, U



Minimizing loss with gradient descent:

70

 Parameter update:

dL(w,U)
AL D)
e —
T3u

* How to compute gradients?



Automatic Differentiation

71

 Exact derivatives for gradient-based optimization come
from running differentiable code via automatic
differentiation

f(x) R" 5 R f(x) {..};
automatic
l differentiation
_(9r 9 df(x) {.};
Vf(x)—(axl,...,axn) X

« Can compute derivatives not just of mathematical
functions, but derivatives of general purpose code with
control flow, loops, recursions, etc.



Backpropagation

72

* Loss function composed of layers of
nonlinearity LV (.. 6" () )

» Forward step (f-prop)

— Compute and save intermediate computations

PN (.. ¢ (x))

o (a+1)
» Backward step (b-prop) Z % oL

005 gpletV

oL _Zé‘qb? OL
owae - oW 09



Training 73

* Repeat gradient update of weights to reduce loss
— Each iteration through dataset is called an epoch

 Use validation set to examine for overtraining, and
determine when to stop training

O Training O Validation
0.5
04 underfitting overfitting
0.3
0.2

0.1

: O

number of epochs

[graphic from H. Larochelle]



Vanishing Gradients

74

* Major challenge in DL: Vanishing Gradients

» Small gradients slow down / block, stochastic
gradient descent = Limits ability to learn!

100 | | I | |
Sigmoid Gradient — Layer 1
Layer 2
— Layer 3
50 —Layer 4|
o S i _ Layer 5
0 | . » —d‘m‘\ . i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Slide credit: G. Louppe Gradients for layers far from the output vanish to zero.


https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions
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ReLU(z)
1/(1+e")
tanh(z) |[]

* Vanishing gradient problem

— Derivative of sigmoid:

00(x)
0x

=o(x)(1-0(x))

— Nearly 0 when x is far from 0!
— Can make gradient descent hard!

5 ] ; }
* Rectified Linear Unit (ReLU)
— ReLU(x) = max{o, x}
— Derivative 1s constant!

9Re LU(x) _{ | when x>0

0x 0  otherwise

— ReLU gradient doesn’t vanish



Neural Network Decision Boundaries .

One neuron

Two neuron

-2 -1 2

Three neurons

-2 -1 [ 1 2

Four neurons

-2 1 0 1 2

Five neurons

-2 1 0 1 2

Twenty neurons

15

10

05

00

-05

-2 0 1 2

Fifty neurons

0 1 2

-2 -1
Image source
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http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem .

» Feed-forward neural network with a single hidden
layer containing a finite number of non-linear neurons
(ReLU, Sigmoid, and others) can approximate
continuous functions arbitrarily well on a compact

space of R"

f(x) = o(wix + b1) + o(wox + b)) + o(wsx + b3) + ...

N

AV N

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Universal approximation theorem ,

» Feed-forward neural network with a single hidden
layer containing a finite number of non-linear neurons
(ReLU, Sigmoid, and others) can approximate
continuous functions arbitrarily well on a compact
space of R"

 NOTE!

— A better approximation requires a larger hidden layer and this
theorem says nothing about the relation between the two.

— We can make training error as low as we want by using a larger
hidden layer. Result states nothing about test error

— Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Summary e

* Machine learning uses mathematical and statistical
models learned from data to characterize patterns
and relations between inputs, and use this for
inference / prediction

* ML comes in many forms, much of which has
probabilistic and statistical foundations and
Interpretations (i.e. Statistical Machine Learning)

* ML provides a powerful toolkit to analyze data
— Linear methods can help greatly in understanding data

— Neural Networks allow us to learn nonlinear basis
functions that help us solve our learning problem

— Choosing a model for a given problem is difficult,
— Keep in mind bias-variance tradeoff
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Backup



Notation

81

X c Rmxn
X € Rnix1)

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script

Sequence of vectors x,, ..., X,

Labels represented as

- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

Variables = teatures = inputs

Data point x = {x,, ..

., X,} has n-features

Typically use affine coordinates:

y—W

T

X+ w,— Wwix

— W ={Wy, Wy, ..., W}
— X ={1, Xy, .., X,}
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Maximum Likelihood



Maximum Likelihood

83

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Where second equality holds if data is independent and
identically distributed

 Often minimize negative-log-likelihood for numerical
stability

— Same as maximizing likelihood since log is monotonic and
differentiable away from zero



Maximum Likelihood

84

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X; w) Hp Yi|Xi; W

* Select parameters that make data most likely
— General strategy for parameter estimation

w* = argmax L(wW) = arg m“i’n —In L(w) = arg m“ifn — Z In p(y;|xi; w)

%%



Maximum Likelihood
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* Describe a process behind the data

 Write down the likelihood of the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Example: have samples x4.,

— Assume data comes from
exponential distribution

e p(x;; 1) = Ae i

p(x; 1) = le ™™

—-—A\=1
A=15




Maximum Likelihood

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Example: have samples x4.,

. — —Ax

— Assume data comes from o posl) =A™ —

exponential distribution 125} o

A=15
L4 ’ A = /1 —AXi 1.00
p(xl ) e - —%xl)
— Evaluate p(x;; A) for each x; "} P
0.25F \ p(x3)




Maximum Likelihood

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X; w) Hp Yi|Xi; W

* Example: have samples x4.,

x; ) = e M
— Assume data comes from p(x;4) = e

exponential distribution

o . v — —Ax; 1.00
p(xl) A) - Ae . “-—.— —%xl)
— Evaluate p(x;; A) for each x; "} P

RN

\ p(x3)
— Find A to maximize [[; p(x;; 1) s SR
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Bias-Variance Tradeoff



Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

(5= h(x)*  + El(h(z) - h(z))’]

(bias)® + wvariance

El(y — h(=))"] = E[(y — )]

= noise



Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Nagl

~h(z))?  + E[(h(z)— h(z))?]

Elly = h())*] = Elly -9+ (
+ (bias) + wvariance

= noise

|

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

/N




Bias Variance Tradeoff 5

* Model h(x), defined over dataset, modeling random variable
outputy Ely] = ¢
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + E[(h(z)-h(=))"]
)2

-+ variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.



Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

-+ |variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.



Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

-+ |variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

— As dataset size grows, can reduce variance! Can use more complex model
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Least Squares Linear Regression



Least Squares Linear Regression

» Set of input / output pairs D = {x;, Yi}i=1_»

—Xi ERm

housing prices

-y €R

e Assume a linear model
h(x; w) = wlx

price (in $1000)

 Squared Loss function:

Liw) = 3 3" (s — hxisw))’

1

* Find w" = arg min,, L(w)



Least Squares Linear Regression: Matrix Form

» Set of input / output pairs D = {x;, Yi}i=1_»
— Design matrix X e Rm™m
— Target vectory e R

11 Ti12 ' Tim U1

T21 T22 ' IT2m Y2




Least Squares Linear Regression: Matrix Form
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» Set of input / output pairs D = {x;, Yi}i=1_»
— Design matrix X e Rm™m
— Target vectory e R

° 1 . 1
Rewrite loss: L(w) = 5(}, —Xw)T(y — Xw)
* Minimize w.r.t. w: w* = (XTX) X'y = arg min L(w)

wW



Linear Regression — Probabilistic Interpretation

98

* Assume y; = mx; + e

1 e?
* Random error: e; ~ N (0,0) — ple;) x exp | z—5
— Noisy measurements, unmeasured variables, ...



Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—7“2)
o)
— Noisy measurements, unmeasured variables, ...
1 (ys — mwz‘)z)

e Then yi ~ N(mzi,0) — p(yi|zi;m) o< exp (5 52




Linear Regression — Probabilistic Interpretation |,

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—2)
o)
— Noisy measurements, unmeasured variables, ...

. )2
e Then y; ~ N(mxz;,0) — p(y;|zi;m) o< exp (l(yZ mi) )

2 o2

e Likelihood function:

L(m) = p(y|X;m) = Hp(yz-\:vi; m)

— —log L(m) ~ Z(yz — ma;)’

1



Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—2)
o)
— Noisy measurements, unmeasured variables, ...
1 (ys — mxi)z)

e Then yi ~ N(mzi,0) — p(yi|zi;m) o< exp (5 52

e Likelihood function:

L(m) = p(y|X;m) = Hp(yz-\ﬂfz-; m)

Squared

sy logL(m) N Z(yl B m:z:i)Q .~ |loss function!

1




Linear Regression Example
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50

[GeV]

45

T.EM

jet

40

P

35
30
25
20
15
10

- ATLAS Simulation

[ —e— 20< ptTrlJth <25 GeV
- —a— 25< ptTrUth < 30 GeV
— —a— 30<p"" < 35 GeV
—v— 35< ptTruth < 40 GeV

o 40< ptTruth < 45 GeV

\s=7TeV
Pythia Dijet, an’[i-kt R=0.
ml<21,75<u<8.5

Average Slope = 0.288%0.003 GeV/N,,

4

Eur. Phys. J. C (2015) 75:17

Number of primary vertices (N

| I
10

PV)

 Reconstructed Jet energy vs. Number of primary vertices
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Linear Classification



Linear Classifier with Least Squares?

[Bishop]

* Why not use least squares loss with binary targets?



Linear Classifier with Least Squares?

[Bishop]

* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly
— Least squares is very sensitive to outliers



Logistic Regression

» Computational Graph of function side crei . ounes
— White node = input
— Red node = model parameter
— Blue node = intermediate operations
dot —» add O

This unit 1s the main building block of Neural Networks!



https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

How to Minimize Loss £(8)? Gradient Descent

* Gradient Descent:

Make a step 8 « 8 — nv in direction v with step
size 1 to reduce loss

* How does loss change in different directions?

Let A be a perturbation along direction v

d
= L(6 + v) = Vo L(6)

» Then Steepest Descent direction is: v = =V L(0)



Multiclass Classification?

« What if there is more than two classes?

2
000000

2000
0

Tim service (in days)

 Softmax — multi-class generalization of logistic loss

— Have N classes {c, ..., c\}
— Model targety, =, ..., 1, ...0)
u

kth element in vector

exp(Wgx)
Zj exp(w; )
— Gradient descent for each of the weights w

p(cklr) =



