Introduction to Machine Learning

Michael Kagan

SLAC

CERN Openlab Summer Student Lectures
July 5, 2024

Long History of Machine Learning

SENSORY ASSOCIATION RESPONSE
uNITS UNITS UNITS

(5-0078) an) (R-UNITS)

NETWORK OF
“MANY-TO-ONE" CONNECTIONS.
FEED-BACK LOOPS NOT SHOWN

NETWORK OF
“RANDOM® CONNECTIONS

Figure | ORGANIZATION OF THE MARK | PERCEPTRON

| USRRENNLATR 7/ B2opee RS ENBR TIU S

otherwise

\

Perceptron

Rosenblatt 1958, 1960

?”L‘ Win

N

Neural Network Activations

Considered Build/Train

A

Y Action type Delay Queued Selected units Target unit Target point
vovonovork [roscovie QN me | Poiner Network Deconw Reset

MLP
Deep LSTM :]

Legend

Connection
Neural network Skip
connection

Baseline features Scalar features Entities Minimap

AlphaStar

Vinyals et. al. 2019

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

The Power of ML

street style photo of a woman selling pho This is a picture of Barack Obama.
at a Vietnamese street market, His foot is positioned on the right side of the scale.
sunset, shot on fujifilm High-Level The scale will show a higher weight.
Concept ?
4 reconstruct high level concepts
: from low-level, high-dim data
0
i
i
i
i
i
i
I
\ 4
Low-Level

Data

Particle Physics Has Similar Goals!)

Data Analysis

f"“/ 340} ® Data2011+2012 ATLAS 1.0
= ’ f F S Hozz 4l | | ===
S 1 H i \s=7TeV ILd«=4.evb" P S, 3
N & C e Ve=8Tev JLat=207t 054 // g 3
4 PPy + h.c % 5 y)
¢ -Gy < FARYLY
N>§ 0.0 :' i ‘I\—’l I" 1"
S ! " & p
- |\
+ Yl et e -0.5 W %
fale I ~wweesld sH 0l 1PRedle TeL Oy ST
+ Bl ~ Vig) High-Level
L — -1.0 T T T
» = ¢ " oo 150 200 250 = _
Concept my Got] 1.0 05 00 0.5 1.0
fw vV2IN?

v

~\

reconstruct high level concepts
from low-level, high-dim data

L

Low-Level
Data

Simulation

Machine Learning in HEP

simulated top quark jet 5 T o e e 3 103 -
i. = — :2) [[weijets 1
anti-kt, R .0.8, T = 600 GeV . 5 R]
Particle Taggin C
[Multi-et 77 Total uncertainty -

107 4
BDTSR

Post-Fit

101 4

Background rejection 1/eg

Data / Pred.

10°

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency &5

VR(yy)

1 0.06 F ["Data" ["Truth" |
parameter 6 a t, O n B a S e d , n f ”,'H e IBUmM =—a MultiFold
> —
PN er e] C 8 o0.05f Ours]
@ observable J g
- T > | ‘g 0.04 D/T: Herwig 7.1.5 default]
i : %} Delphes 3.4.2 CMS Detector
P v § 0.03 Z+jet: pZ>200 GeV, R =0.4
{ ¥ —
—(z,20) _ . =
oy » argmin L[g] — 7(z|0) —> 8 0.02]
st e 4 ’ t(w y 2 |0) > 9 approximate g /
augmented data likelihood) z 0.01 /7 g'
ratio ;
(2
, - i i , - - { ; { 0.00 20 20 60
Simulation Machine Learning Inference Jet Mass m [GeV]
. - Classifier f Adversary 7 7
g p : X 3"\ (\ Y (f(X:05):0,) l
A EARN
T 89 v
FX0,)0 b &% a(£(X107):6,)
s i i:artzlaer?d Simulator Outputs 4 X — - ! \ Ty P(visv2,---)
P P (Non differentiable) P B - i b
rameters 2 ;"\‘ ! | J
1 ~081
B3 a1 0 1203 !
| Train - " X (\ ! A 1
I
Parameters I:;l';?splae{'?d —| Simulator surrogate —> Outputs Objective Ce E i Po, (Z|f(X;05))
(Differentiable) (\ \ | "
e 0 L(07) 0 L(05,0,)
I f I T T frUr

+ More!

What is Machine Learning?

Giving computers the ability to learn without explicitly
programming them (Arthur Samuel, 1959)

Statistics + Algorithms

Computer Science + Probability + Optimization

Fitting data with complex functions

Mathematical models learnt from data that characterize
the patterns, regularities, and relationships amongst
variables in the system

Artificial Intelligence, Machine Learning, Deep Learning

* Al: make computers act in
an intelligent way

Artificial Intelligence — Rules, reasoning, symbol
manipulation

« ML: Uses data to learn
“intelligent” algorithms

* Deep Learning: Approach to

ML that (often) uses complex
Machine Learning pipelines to process low
level data (e.g. pixels)

Machine Learning: Models

» Key element is a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

» Learning: estimate statistical model from data
— Supervised learning
— Unsupervised Learning
— Reinforcement Learning

» Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)

Learning

raining
Data

o

~

Train

— (Voca

* Supervised Learning

— Classification
— Regression

* Unsupervised Learning

— Clustering

— Dimensionality reduction

* Reinforcement learning

Test

.

V

Test
i Data)

(

(.

Evaluation

Model

.

Ravikumar

http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Probability Review

» Joint distribution of two variables: p(x,y)

* Marginal distribution: p(x) = [p(x,y)dy

« Conditional distribution: p(y|z) = p(z.y)
p()
- Bayes theorem: p(y|r) = (x‘y) ()
* Expected value: / f(z
* Normal distribution: | (¢ —)
x-Na) - () = ——exp (- 5T

Supervised Learning "

« Given N examples with observable features {x; € X} and
prediction targets {y; € Y}, learn function mapping h(x)=y

Classification: Regression:
VY is a finite set of labels (i.e. classes) VYis a real number

denoted with integers

Unsupervised Learning »

Given data D={x;}, but no labels, find structure in data

Clustering: partition the data into |~ w4 ey, 45
groups D = {D;UD,UD; ..UD,} | ¥ - | ¥

Dimensionality reduction: find a low
dimensional (less complex) representation
of the data with a mapping Z = h(X)

Density estimation and sampling: e,
estimate the PDF p(x), and/or learn to : & g# .
draw plausible new samples of x B

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Reinforcement Learning 1

Agent
state (s[t]) Policy m: S—A
action (a[t])
reward (r[t+1])
—[Environment]% N

* Model agents that take actions depending on state
« Actions incur rewards, and affect future states (“feedback”)

* Learn to make the best sequence of decisions to achieve a given
goal when feedback is often delayed until you reach the goal

a b
Rollout policy SL policy network RL policy network Value network Policy network Value network

Py, als) v, (8
-

N?;I %3 B% § » bt . =

Human expert positions Self-play positions

Nature 529, 484—-489 (28 January 2016)

HIOMBU [BInNSN

e LEE SEDOL
b (®00:01:00

http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Supervised Learning: How does it work?

14

Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
* Design function with adjustable
Y. Le Cun
parameters
* Design a Loss function L L(W,X)

* Find best parameters which minimize loss k

—<

Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
* Design function with adjustable
Y. Le Cun
parameters
 Design a Loss function L L(W,X)

* Find best parameters which minimize loss
— Use a labeled training-set to compute loss w
: : A
— Adjust parameters to reduce loss function

— Repeat until parameters stabilize

Reminder: Empirical Risk Minimization .

N
1
arg min — Z L(h(x:; W), y;) + AQ(w)
L =1 v J Y 1

Average expected loss Model regularization

* Framework to design learning algorithms

— L is a loss function comparing prediction h(-) w/ target y

— Q(w) is a regularizer, penalizing certain values of w

* A controls how much penalty: a hyperparameter we have to tune

* Learning is cast as an optimization problem

Example Loss Functions ,

* Square Error Loss: L(h(x;w),y) = (h(x;w) —)’
— Often used in regression
* Cross entropy: L(h(x;w),y) = — ylog h(x; w)
— With y € {0,1} — (1 —y)log(1l — h(x;w))

— Often used in classification

* Hinge Loss: E)

. - Square Error
— With y € {—1,1} - Cross Entropy
L(h(x; w),y) = max(0, 1 — yh(x; w)) zeraone

Zero-One loss |
— h(x; w) predicting label \\

L(h(X7 W)7 y) — 1y;éh(x;w)

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Model Space and Learning Algorithms

19

* Choose type of model

— Each set of parameters is a
point in space of models Target solution

*
End

* Need to find the best
model parameters for loss

* Learning is like a search
through space of models,
guided by the data

Start
* Various possibilities
— Exhaustive search Space of Possible Models

— Closed form solutions (rare)
— Iterative optimization

Putting It All Together

20

Gather data to be used

Propose a space of
possible models

Define what “good”
means with loss function
/ learning objective

Use learning algorithm to
find best model

Learning
objective

\

Data

Learning
algorithm

!

Final
Model

Model
space

/

Linear Classification

21

Classification

Linear discriminant

Rectangular cuts

* Learn a function to separate
different classes of data

» Avoid over-fitting: —

— Learning too fined details about
your training sample that will
not generalize to unseen data

X3

>

Linear Decision Boundaries
* Separate two classes: Moo @
h(x) =0

— X; € R™ h(x) <0 R1
Ro
-y €{—11}

e Linear discriminant model
h(x; w) =wlx+b

* Decision boundary defined by hyperplane

hix; w) =wix+b =0

A

X1

* Class predictions: Predict class -1 if h(x;; w) < 0, else class 1

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Linear Discriminant Analysis

24

* Goal: Separate data from two classes / populations

Linear Discriminant Analysis

25

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

Linear Discriminant Analysis y

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x y) =pxly)p(y)

N\

Likelihood: Prior:
Distribution of features Probability of each class
for a given class

Linear Discriminant Analysis

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x,y) = plx|y)p(y)

 Assume likelihoods are Gaussian

1 1 N\Teo1
e ol Hew)

p(xly) =

Predicting the Class

28

* Separating classes = Predict the class of a point x

p(y = 1]x)

* Want to build a classifier to predict
the label y given and 1nput x

Predicting the Class

29

* Separating classes = Predict the class of a point x

p(X|y — 1)p(y — 1) Bayes Rule
p(x)

ply = 1]x) =

Predicting the Class .

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|y =0)p(y =0) +p(x|ly = 1)p(y = 1) definition

Predicting the Class

* Separating classes = Predict the class of a point x

p(y = HX) = p(X|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|ly =0)p(y =0) + p(x|ly = 1)p(y = 1) definition

1

P (<ly=0)p(5=0)
T pxly=Dp(y=1)

1

(x|y=0)p(y=0 Why?
L exp (bg 5(x|§=1§§8=1§)

Logistic Sigmoid Function

09

Logistic Sigmoid

08 1
7(2) = 14+e %

0.7

06

g(2)

05

041

03

02

01

Predicting Classes with Gaussian Likelihoods

33

p(xly =1) ply =1)
p(x|y = 0) +log p(y = 0)>

/ \

Log-likelihood ratio Constant w.r.t. x

Pl = 1) = o 1o

Predicting Classes with Gaussian Likelihoods y

+ log

p(y = 1))
p(y = 0)

— 1|X) =0 OpX :1)
ply =100 =108 1, =

e For our Gaussian data:

= a(logp(x\y =1) —logp(x|ly =0) + const.)

= o~ e)" S o) + 3 (x — o) S (x — o)

+ const.)

T
= O(W X + b) Collect terms

What did we learn? .

» For this data, the log-likelihood ratio is linear!
— Line defines boundary to separate the classes
— Sigmoid turns distance from boundary to probability

Logistic Regression

36

» What if we ignore Gaussian assumption on data?

Model: p(y =1|x) = O'(WTX + b) = h(x; W)

* Farther from boundary wix + b = 0,
more certain about class

» Sigmoid converts distance to class probability

Logistic Regression .

= 1|x) = O'(WTX—l— b)

1 +e-wixb

This unit 1s the main building block of Neural Networks!

Logistic Regression

38

» What if we ignore Gaussian assumption on data?

Model: p(y =1|x) = O'(WTX + b) = h(x; W)

* With p; = p(y; = ylx;)

P(y; = y|z;) = Bernoulli(p;) = (p;)¥* (1 — p;)t ¥ :{

e Goal:

— Given 1.1.d. dataset of pairs (x;, y;)
find w and b that maximize likelihood ot data

p’1 lf yizl
1-p; 1f y;=0

Logistic Regression

39

* Negative log-likelihood

—InL=—In][@) 1 -p)¥

7

Logistic Regression

40

* Negative log-likelihood

—InL

- H(pi)yi (1—pi)' ¥

— Zyz In(p;) + (1 —y;) In(1 — p;)

-log(pi)
-log(1-p;)

|

binary cross entropy loss function!

-

Logistic Regression

41

* Negative log-likelihood

~InL=—In]]@)Q-p) ¥

= — Zyz In(p;) + (1 —y;) In(1 — p;)

binary cross entropy loss function!

-

=Y Tyl +e™ X) + (1 —y,)In(1 + eV ¥)

* No closed form solution to w* = arg min — In L(w)
w

e How to solve for w?

Gradient Descent

42

* Minimize loss by repeated gradient steps
— Compute gradient w.r.t. current parameters: Vg L(6;)
— Update parameters: 6;;4 « 6; —nVg L(6;)

— 1 is the learning rate, controls how big of a step to take

0,

Stochastic Gradient Descent .

* Loss is composed of a sum over samples:
N
1
VoL(0) = Nz Vo L(vi, h(x;80))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

= E=

Batch gradient descent Stochastic gradient descent

Stochastic Gradient Descent y

* Loss is composed of a sum over samples:
N
1
VgL(0) = Nz Vo L(vi, h(x;0))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

» Several updates to SGD, like momentum, ADAM, RMSprop to
— Help to speed up optimization in flat regions of loss
— Have adaptive learning rate
— Learning rate adapted for each parameter

Step Sizes

* Too small a learning rate, convergence very slow

* Too large a learning rate, algorithm diverges

Small Learning rate Large Learning rate
- 7

Gradient Descent 5

Starting

L(W)A / Point

>\ lteration 3

Loss

Iteration 4

Convergence

L n(w)

mi

l 1 I |
gt — HH > 0 200 400 600 800 1000

w lterations

* Logistic Regression Loss Is convex
— Single global minimum

e lterations lower loss and move toward minimum

Logistic Regression Example

47

25

True decision boundary
=== Fitted decision boundary
@89 Outcome 1
o8¢ Outcome 0

3 - 5

= Fitted decision boundary

00@ Predicted probability

I

~

3

4

5 6

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Basis Functions

48

0 1

* What if non-linear relationship between y and x?

Basis Functions

49

N =100 1

0 i
* What if non-linear relationship between y and x?

« Can choose basis functions ¢(x) to form new features

h(w) = a(wTg(x))

— Polynomial basis ¢(x) ~ {1, x, x?, x3, ...},
Gaussian basis, ...

— Logistic regression on new features ¢(x)

Basis Functions

50

N =100 1

(‘) 1
* What if non-linear relationship between y and x?

« Can choose basis functions ¢(x) to form new features

h(w) = a(wTg(x))

— Polynomial basis ¢(x) ~ {1, x, x?, x3, ...},
Gaussian basis, ...

— Logistic regression on new features ¢(x)

* What basis functions to choose? Overfit with too much flexibility?

What is Overfitting ’

Degree 1 Degree 4 Degree 15

— Model — Model — Model

. True function : True function True function

> e*e Samples *e Samples *e Samples
o

Underfitting Overfitting

http://scikit-learn.org/

* Models allow us to generalize from data

» Different models generalize in different ways

http://scikit-learn.org/

Bias Variance Tradeoff

52

 generalization error = systematic error + sensitivity of prediction
(bias) (variance)

 Simple models under-fit: will deviate from data (high bias) but
will not be influenced by peculiarities of data (low variance).

« Complex models over-fit: will not deviate systematically from

data (low bias) but will be very sensitive to data (high variance).

— As dataset size grows, can reduce variance!
— Can use more complex model

Bias Variance Tradeoff

Total Error

Variance

Optimum Model Complexity

Error

- -
Model Complexity

Regularization — Control Complexity

54

L(w) = 3y — Xw)’ + af(w)

L2: Q(w)=|lwl]| L1: Q(w)=||w||
Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths
25}
200 1 20 |
15+
100 + /
8 10f
£ / 5
2 s &
[—
S . g 5
—— oL
-5
-100 |+
—10H — Les -~
Elas
1072 1073 10+ 10° 106 107 108 107 1010 -1.5 -1.0 -0.5 0.0 0.5
o alpha o -Log(alpha)
Less regularization > Less regularization >

» L2 keeps weights small, L1 keeps weights sparse!

* But how to choose hyperparameter o.?

http://scikit-learn.org/

http://scikit-learn.org/

How to Measure Generalization Error? N

Training set Validation set Test set

 Split dataset into multiple parts

* Training set
— Used to fit model parameters

y, output

 Validation set

— Used to check performance on .
independent data and tune hyper X, input
parameters

10 I I

—e— validation
—— {rain

e Test set

— final evaluation of performance
after all hyper-parameters fixed

— Needed since we tune, or “peek”,
performance with validation set

Mean square error

O N
0 5 10 15
p, polynomial order

How to Measure Generalization Error?

56

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ——————— e e e —— .

Validation Sample

/

/

Training Sample

Low High
Model Complexity

57

Neural Networks

Adding non-linearity

58

» What if we want a non-linear decision boundary?

— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...

1

py = 1|x) =

1+ e~ Wl o(x)

Adding non-linearity

59

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

« What if we don’t know what basis functions we want?

Adding non-linearity

60

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

p(y = 1|x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data

¢(x; u) R™ - R4

— Where u is a set of parameters for the transformation

Adding non-linearity o

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data
¢(x; u) R™ - R4
— Where u is a set of parameters for the transformation

— Combines basis selection & learning—Representation Learning
— Several different approaches, focus here on neural networks
— Complicates the optimization

Neural Networks

62

* Define the basis functions j = {1...d}

¢;(x; u) =o(uw'x)

Neural Networks

63

* Define the basis functions j = {1...d}
¢i(x; u) =o(u'x)
» Putall u; e R™™ vectors into matrix U

o(ul x)
o(ulx)

o (ul).

— o is a point-wise non-linearity acting on each vector element

d(x; U) = a(Ux) = cR?

Neural Networks

64

* Define the basis functions j = {1...d}
¢i(x; u) =o(u'x)
» Putall u; e R™™ vectors into matrix U

o(ul x)

d(x; U) = a(Ux) = a(uzgx) cR?

O'(ugx)
— o is a point-wise non-linearity acting on each vector element

* Full model becomes
h(x; w,U) =wlop(x; U)

Feed Forward Neural Network

— Hidden layer

Composed of neurons

¢(...) often called the
activation function

Multi-layer Neural Network

» Multilayer NN

— Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem

67

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(yi = 1x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

Neural Network Optimization Problem

68

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function
pi = p(yi = 1|x) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = 5 3 (i — h(x,))?

1

Neural Network Optimization Problem

69

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1

* Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

70

 Parameter update:

dL(w,U)
AL D)
e —
T3u

* How to compute gradients?

Automatic Differentiation

71

 Exact derivatives for gradient-based optimization come
from running differentiable code via automatic
differentiation

f(x) R" 5 R f(x) {..};
automatic
l differentiation
_(9r 9 df(x) {.};
Vf(x)—(axl,...,axn) X

« Can compute derivatives not just of mathematical
functions, but derivatives of general purpose code with
control flow, loops, recursions, etc.

Backpropagation

72

* Loss function composed of layers of
nonlinearity LV (.. 6" ())

» Forward step (f-prop)

— Compute and save intermediate computations

PN (.. ¢ (x))

o (a+1)
» Backward step (b-prop) Z % oL

005 gpletV

oL _Zé‘qb? OL
owae - oW 09

Training 73

* Repeat gradient update of weights to reduce loss
— Each iteration through dataset is called an epoch

 Use validation set to examine for overtraining, and
determine when to stop training

O Training O Validation
0.5
04 underfitting overfitting
0.3
0.2

0.1

: O

number of epochs

[graphic from H. Larochelle]

Vanishing Gradients

74

* Major challenge in DL: Vanishing Gradients

» Small gradients slow down / block, stochastic
gradient descent = Limits ability to learn!

100 | | I | |
Sigmoid Gradient — Layer 1
Layer 2
— Layer 3
50 —Layer 4|
o S i _ Layer 5
0 | . » —d‘m‘\ . i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Slide credit: G. Louppe Gradients for layers far from the output vanish to zero.

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

75

ReLU(z)
1/(1+e")
tanh(z) |[]

* Vanishing gradient problem

— Derivative of sigmoid:

00(x)
0x

=o(x)(1-0(x))

— Nearly 0 when x is far from 0!
— Can make gradient descent hard!

5] ; }
* Rectified Linear Unit (ReLU)
— ReLU(x) = max{o, x}
— Derivative 1s constant!

9Re LU(x) _{ | when x>0

0x 0 otherwise

— ReLU gradient doesn’t vanish

Neural Network Decision Boundaries .

One neuron

Two neuron

-2 -1 2

Three neurons

-2 -1 [1 2

Four neurons

-2 1 0 1 2

Five neurons

-2 1 0 1 2

Twenty neurons

15

10

05

00

-05

-2 0 1 2

Fifty neurons

0 1 2

-2 -1
Image source

sy
. .
B
w, oo
AR a2
. o% .
oo do02 e
. A
LaE 3 oo
e
e 1
o, 00
B LA
o .'{"‘-‘. oof
* o
o L 4
=5

"

4-class classification
2-hidden layer NN
RelLU activations

L2 norm regularization

X o o
2 ® .’:’.. <]
... ® b .‘.. o0
o'.. ° 00. Py
's o 05”;::. .‘ % .z %o o
¥ oo® Y % e’
AR R@?L "«~°.
] °0~.: 00” ® ® 0o © .’..*.0 ®,
o Yoo \..’ = > o"‘g. ‘.~°
oo W2 'W%' : °s
°® ..o°o . .n..g * @ A
°*, °o~ ® ® S A 'Oo 0‘.
... ‘ ." o0 .’ $ * @ (Y
oo0 < ’:’ @ ” 3¢ ° LR 1
YL T ."{: ¥®o '..f oo o
..0.. "
“ :.... .‘:Q.é. :‘0.0
®e8 o, 8 o o000 ©
. >3
« og "
X1

2-class classification
1-hidden layer NN
L2 norm regularization

Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem .

» Feed-forward neural network with a single hidden
layer containing a finite number of non-linear neurons
(ReLU, Sigmoid, and others) can approximate
continuous functions arbitrarily well on a compact

space of R"

f(x) = o(wix + b1) + o(wox + b)) + o(wsx + b3) + ...

N

AV N

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem ,

» Feed-forward neural network with a single hidden
layer containing a finite number of non-linear neurons
(ReLU, Sigmoid, and others) can approximate
continuous functions arbitrarily well on a compact
space of R"

 NOTE!

— A better approximation requires a larger hidden layer and this
theorem says nothing about the relation between the two.

— We can make training error as low as we want by using a larger
hidden layer. Result states nothing about test error

— Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Summary e

* Machine learning uses mathematical and statistical
models learned from data to characterize patterns
and relations between inputs, and use this for
inference / prediction

* ML comes in many forms, much of which has
probabilistic and statistical foundations and
Interpretations (i.e. Statistical Machine Learning)

* ML provides a powerful toolkit to analyze data
— Linear methods can help greatly in understanding data

— Neural Networks allow us to learn nonlinear basis
functions that help us solve our learning problem

— Choosing a model for a given problem is difficult,
— Keep in mind bias-variance tradeoff

80

Backup

Notation

81

X c Rmxn
X € Rnix1)

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script

Sequence of vectors x,, ..., X,

Labels represented as

- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

Variables = teatures = inputs

Data point x = {x,, ..

., X,} has n-features

Typically use affine coordinates:

y—W

T

X+ w,— Wwix

— W ={Wy, Wy, ..., W}
— X ={1, Xy, .., X,}

82

Maximum Likelihood

Maximum Likelihood

83

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Where second equality holds if data is independent and
identically distributed

 Often minimize negative-log-likelihood for numerical
stability

— Same as maximizing likelihood since log is monotonic and
differentiable away from zero

Maximum Likelihood

84

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X; w) Hp Yi|Xi; W

* Select parameters that make data most likely
— General strategy for parameter estimation

w* = argmax L(wW) = arg m“i’n —In L(w) = arg m“ifn — Z In p(y;|xi; w)

%%

Maximum Likelihood

85

* Describe a process behind the data

 Write down the likelihood of the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Example: have samples x4.,

— Assume data comes from
exponential distribution

e p(x;; 1) = Ae i

p(x; 1) = le ™™

—-—A\=1
A=15

Maximum Likelihood

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Example: have samples x4.,

. — —Ax

— Assume data comes from o posl) =A™ —

exponential distribution 125} o

A=15
L4 ’ A = /1 —AXi 1.00
p(xl) e - —%xl)
— Evaluate p(x;; A) for each x; "} P
0.25F \ p(x3)

Maximum Likelihood

* Describe a process behind the data
» Write down the likelihood of the observed data

L(w) = p(y|X; w) Hp Yi|Xi; W

* Example: have samples x4.,

x;) = e M
— Assume data comes from p(x;4) = e

exponential distribution

o . v — —Ax; 1.00
p(xl) A) - Ae . “-—.— —%xl)
— Evaluate p(x;; A) for each x; "} P

RN

\ p(x3)
— Find A to maximize [[; p(x;; 1) s SR

88

Bias-Variance Tradeoff

Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

(5= h(x)* + El(h(z) - h(z))’]

(bias)® + wvariance

El(y — h(=))"] = E[(y —)]

= noise

Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Nagl

~h(z))? + E[(h(z)— h(z))?]

Elly = h())*] = Elly -9+ (
+ (bias) + wvariance

= noise

|

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

/N

Bias Variance Tradeoff 5

* Model h(x), defined over dataset, modeling random variable
outputy Ely] = ¢
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + E[(h(z)-h(=))"]
)2

-+ variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

-+ |variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

-+ |variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

— As dataset size grows, can reduce variance! Can use more complex model

94

Least Squares Linear Regression

Least Squares Linear Regression

» Set of input / output pairs D = {x;, Yi}i=1_»

—Xi ERm

housing prices

-y €R

e Assume a linear model
h(x; w) = wlx

price (in $1000)

 Squared Loss function:

Liw) = 3 3" (s — hxisw))’

1

* Find w" = arg min,, L(w)

Least Squares Linear Regression: Matrix Form

» Set of input / output pairs D = {x;, Yi}i=1_»
— Design matrix X e Rm™m
— Target vectory e R

11 Ti12 ' Tim U1

T21 T22 ' IT2m Y2

Least Squares Linear Regression: Matrix Form

97

» Set of input / output pairs D = {x;, Yi}i=1_»
— Design matrix X e Rm™m
— Target vectory e R

° 1 . 1
Rewrite loss: L(w) = 5(}, —Xw)T(y — Xw)
* Minimize w.r.t. w: w* = (XTX) X'y = arg min L(w)

wW

Linear Regression — Probabilistic Interpretation

98

* Assume y; = mx; + e

1 e?
* Random error: e; ~ N (0,0) — ple;) x exp | z—5
— Noisy measurements, unmeasured variables, ...

Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—7“2)
o)
— Noisy measurements, unmeasured variables, ...
1 (ys — mwz‘)z)

e Then yi ~ N(mzi,0) — p(yi|zi;m) o< exp (5 52

Linear Regression — Probabilistic Interpretation |,

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—2)
o)
— Noisy measurements, unmeasured variables, ...

.)2
e Then y; ~ N(mxz;,0) — p(y;|zi;m) o< exp (l(yZ mi))

2 o2

e Likelihood function:

L(m) = p(y|X;m) = Hp(yz-\:vi; m)

— —log L(m) ~ Z(yz — ma;)’

1

Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—2)
o)
— Noisy measurements, unmeasured variables, ...
1 (ys — mxi)z)

e Then yi ~ N(mzi,0) — p(yi|zi;m) o< exp (5 52

e Likelihood function:

L(m) = p(y|X;m) = Hp(yz-\ﬂfz-; m)

Squared

sy logL(m) N Z(yl B m:z:i)Q .~ |loss function!

1

Linear Regression Example

102

50

[GeV]

45

T.EM

jet

40

P

35
30
25
20
15
10

- ATLAS Simulation

[—e— 20< ptTrlJth <25 GeV
- —a— 25< ptTrUth < 30 GeV
— —a— 30<p"" < 35 GeV
—v— 35< ptTruth < 40 GeV

o 40< ptTruth < 45 GeV

\s=7TeV
Pythia Dijet, an’[i-kt R=0.
ml<21,75<u<8.5

Average Slope = 0.288%0.003 GeV/N,,

4

Eur. Phys. J. C (2015) 75:17

Number of primary vertices (N

| I
10

PV)

 Reconstructed Jet energy vs. Number of primary vertices

103

Linear Classification

Linear Classifier with Least Squares?

[Bishop]

* Why not use least squares loss with binary targets?

Linear Classifier with Least Squares?

[Bishop]

* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly
— Least squares is very sensitive to outliers

Logistic Regression

» Computational Graph of function side crei . ounes
— White node = input
— Red node = model parameter
— Blue node = intermediate operations
dot —» add O

This unit 1s the main building block of Neural Networks!

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

How to Minimize Loss £(8)? Gradient Descent

* Gradient Descent:

Make a step 8 « 8 — nv in direction v with step
size 1 to reduce loss

* How does loss change in different directions?

Let A be a perturbation along direction v

d
= L(6 + v) = Vo L(6)

» Then Steepest Descent direction is: v = =V L(0)

Multiclass Classification?

« What if there is more than two classes?

2
000000

2000
0

Tim service (in days)

 Softmax — multi-class generalization of logistic loss

— Have N classes {c, ..., c\}
— Model targety, =, ..., 1, ...0)
u

kth element in vector

exp(Wgx)
Zj exp(w;)
— Gradient descent for each of the weights w

p(cklr) =

