
Introduction to Machine Learning

Michael Kagan

SLAC

CERN Openlab Summer Student Lectures
July 5, 2024

Long History of Machine Learning 2

Vinyals et. al. 2019 Rosenblatt 1958, 1960

𝑓 𝑥 = $
1	 𝑖𝑓	(

!

𝑤!𝑥! + 𝑏	 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron AlphaStar

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

The Power of ML 3

Slide credit: L. Heinrich

Low-Level
Data

Particle Physics Has Similar Goals! 4

Slide credit: L. Heinrich
Simulation

Data Analysis

Low-Level
Data

Machine Learning in HEP 5

Particle Tagging

Simulation Based Inference

Uncertainty Mitigation

Signal Classification

Fast S
imulation

Design Optimization

+ More!

Unfolding

Anomaly Detection

What is Machine Learning?

• Giving computers the ability to learn without explicitly
programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization

• Fitting data with complex functions

• Mathematical models learnt from data that characterize
the patterns, regularities, and relationships amongst
variables in the system

6

Artificial Intelligence, Machine Learning, Deep Learning

• AI: make computers act in
an intelligent way
– Rules, reasoning, symbol

manipulation

• ML: Uses data to learn
“intelligent” algorithms

• Deep Learning: Approach to
ML that (often) uses complex
pipelines to process low
level data (e.g. pixels)

7

Deep Learning

Machine Learning

Artificial Intelligence

Slide credit: L. Heinrich

Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest,
typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data
– Supervised learning
– Unsupervised Learning
– Reinforcement Learning
– …

• Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)

8

Learning 9

• Supervised Learning
– Classification
– Regression

• Unsupervised Learning
– Clustering
– Dimensionality reduction
– …

• Reinforcement learning
Image credit: Ravikumar

http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Probability Review

• Joint distribution of two variables: 𝑝(𝑥, 𝑦)

• Marginal distribution: 𝑝 𝑥 = 	∫ 𝑝 𝑥, 𝑦 𝑑𝑦

• Conditional distribution:

• Bayes theorem:

• Expected value:

• Normal distribution:
– 𝑥~𝑁(𝜇, 𝜎) 	 →

10

p(x) =
1p
2⇡�

exp
⇣
� 1

2

(x� µ)2

�2

⌘
2

E[f(x)] =

Z
f(x)p(x)dx

p(y|x) = p(x|y)p(y)
p(x)

p(y|x) = p(x, y)

p(x)

Supervised Learning

• Given N examples with observable features {xi Î X} and
prediction targets {yi Î Y}, learn function mapping h(x)=y

11

Classification:
Y is a finite set of labels (i.e. classes)
denoted with integers

x

y

Regression:
Y is a real number

Unsupervised Learning

Given data D={xi}, but no labels, find structure in data

Clustering: partition the data into
groups 𝐷 = {𝐷1 ∪ 𝐷2 ∪ 𝐷3	 …∪ 𝐷𝑘}

12

Dimensionality reduction: find a low
dimensional (less complex) representation
of the data with a mapping 𝑍 = ℎ(𝑋)

Density estimation and sampling:
estimate the PDF 𝑝(𝑥), and/or learn to
draw plausible new samples of x

Image credit: Bishop

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Reinforcement Learning

• Model agents that take actions depending on state
• Actions incur rewards, and affect future states (“feedback”)

• Learn to make the best sequence of decisions to achieve a given
goal when feedback is often delayed until you reach the goal

13

Nature 529, 484–489 (28 January 2016)

Image credit: Ravikumar

http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Supervised Learning: How does it work? 14

Supervised Learning: How does it work?

• Design function with adjustable
parameters

• Design a Loss function

• Find best parameters which minimize loss

15

ℎ(𝒙; 	𝒘)
Function with

adjustable
parameters

Loss
Function

Compare
prediction
with true

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

𝐿(𝑾,𝑿)

Supervised Learning: How does it work?

• Design function with adjustable
parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize

16

ℎ(𝒙; 	𝒘)
Function with

adjustable
parameters

Loss
Function

Compare
prediction
with true

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

𝐿(𝑾,𝑿)

Reminder: Empirical Risk Minimization

• Framework to design learning algorithms
– 𝐿	is a loss function comparing prediction ℎ(⋅)	w/ target 𝑦

– Ω(𝒘) is a regularizer, penalizing certain values of w
• l controls how much penalty: a hyperparameter we have to tune

• Learning is cast as an optimization problem

17

Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)

Example Loss Functions

• Square Error Loss:
– Often used in regression

• Cross entropy:
– With 𝑦 ∈ 	 {0,1}
– Often used in classification

• Hinge Loss:
– With 𝑦 ∈ 	 {−1,1}

• Zero-One loss
– ℎ(𝒙; 	𝒘) predicting label

18

L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

Image credit: Bishop

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Model Space and Learning Algorithms

• Choose type of model
– Each set of parameters is a

point in space of models

• Need to find the best
model parameters for loss

• Learning is like a search
through space of models,
guided by the data

• Various possibilities
– Exhaustive search
– Closed form solutions (rare)
– Iterative optimization

19

Target solution

Start

End

Space of Possible Models

Putting It All Together

• Gather data to be used

• Propose a space of
possible models

• Define what “good”
means with loss function
/ learning objective

• Use learning algorithm to
find best model

20

Data

Model
space

Learning
objective

Learning
algorithm

Final
Model

Linear Classification 21

Classification

• Learn a function to separate
different classes of data

• Avoid over-fitting:
– Learning too fined details about

your training sample that will
not generalize to unseen data

22

Linear discriminant Nonlinear discriminantRectangular cuts

y=0

y=1

x1

x2

x1

x2 y=0

y=1

x1

x2

y=0

y=1

x1

x2

y=0

y=1

Linear Decision Boundaries
• Separate two classes:
– 𝒙𝑖	 Î	ℝ𝑚	
– 𝑦𝑖	 Î	{−1,1}

• Linear discriminant model
 ℎ(𝒙; 	𝒘) = 𝒘𝑇𝒙 + 𝑏

23

h(x)

• Decision boundary defined by hyperplane

 ℎ(𝒙; 	𝒘) 	= 𝒘𝑇𝒙 + 𝑏 = 0

• Class predictions: Predict class -1 if ℎ(𝒙𝑖	; 	𝒘) < 0, else class 1

Image credit: Bishop

h(x) < 0

h(x) = 0

h(x) > 0

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Linear Discriminant Analysis 24

• Goal: Separate data from two classes / populations

x2

x1

Linear Discriminant Analysis 25

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦)	~	𝑝(𝑿, 𝑌)
– Features: 𝒙	 Î	ℝ𝑚	
– Labels: 𝑦	 Î	{0,1}

Red: Y=0 Blue: Y=1

x2

x1

Linear Discriminant Analysis 26

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦)	~	𝑝(𝑿, 𝑌)
– Features: 𝒙	 Î	ℝ𝑚	
– Labels: 𝑦	 Î	{0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

Likelihood:
Distribution of features
for a given class

Prior:
Probability of each class

Linear Discriminant Analysis 27

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦)	~	𝑝(𝑿, 𝑌)
– Features: 𝒙	 Î	ℝ𝑚	
– Labels: 𝑦	 Î	{0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Assume likelihoods are Gaussian

𝑝 𝑥 𝑦 =
1

2𝜋 ,|Σ|
	exp −

1
2
𝒙 − 𝝁-

.Σ/0(𝒙 − 𝝁-)

Predicting the Class

• Separating classes à Predict the class of a point x

28

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘
• Want to build a classifier to predict

the label y given and input x

Predicting the Class

• Separating classes à Predict the class of a point x

29

Bayes Rulep(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

30

Bayes Rule

Marginal
definition

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣
log p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

31

Bayes Rule

Why?

Marginal
definition

Logistic Sigmoid Function 32

Logistic Sigmoid

�(z) =
1

1 + e�z

Predicting Classes with Gaussian Likelihoods 33

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

Constant w.r.t. xLog-likelihood ratio

Predicting Classes with Gaussian Likelihoods

• For our Gaussian data:

34

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

= �
⇣
log p(x|y = 1)� log p(x|y = 0) + const.

⌘

= �
⇣
� 1

2
(x� µ1)

T⌃�1(x� µ1) +
1

2
(x� µ0)

T⌃�1(x� µ0)

+ const.
⌘

= �
⇣
wTx+ b

⌘
Collect terms

What did we learn?

• For this data, the log-likelihood ratio is linear!
– Line defines boundary to separate the classes
– Sigmoid turns distance from boundary to probability

35

Red: Y=0 Blue: Y=1

x2

x1

Logistic Regression

• What if we ignore Gaussian assumption on data?

 Model:

• Farther from boundary 𝒘𝑇𝒙 + 𝑏 = 0,
more certain about class

• Sigmoid converts distance to class probability

36

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)

Logistic Regression 37

p(y = 1|x) = �
⇣
wTx+ b

⌘
p(y = 1|x) = �(h(x,w))

=
1

1 + e�wTx -b

This unit is the main building block of Neural Networks!

Logistic Regression

• What if we ignore Gaussian assumption on data?

 Model:

38

• With 𝑝! ≡ 𝑝(𝑦! = 𝑦|𝒙!)

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi(1� pi)

1�yi = pi if yi=1
1-pi if yi=0

• Goal:
– Given i.i.d. dataset of pairs (𝒙𝑖, 𝑦𝑖)

find w and b that maximize likelihood of data

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)

Logistic Regression

• Negative log-likelihood

39

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Logistic Regression

• Negative log-likelihood

40

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Lo
ss

-log(pi)
-log(1-pi)

pi

Logistic Regression

• Negative log-likelihood

41

• No closed form solution to 𝑤∗ = argmin
#
− lnℒ(𝑤)

• How to solve for w?

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. current parameters: ∇'#ℒ 𝜃(

– Update parameters: 𝜃()* ← 𝜃(− 𝜂∇'#ℒ 𝜃(

– h is the learning rate, controls how big of a step to take

42

𝜃!

𝜃"

Stochastic Gradient Descent
• Loss is composed of a sum over samples:

∇1ℒ 𝜃 =
1
𝑁
'
230

4

∇1ℒ 𝑦2 , ℎ 𝑥2; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch)
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

43

Stochastic Gradient Descent
• Loss is composed of a sum over samples:

∇1ℒ 𝜃 =
1
𝑁
'
230

4

∇1ℒ 𝑦2 , ℎ 𝑥2; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch)
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

• Several updates to SGD, like momentum, ADAM, RMSprop to
– Help to speed up optimization in flat regions of loss
– Have adaptive learning rate
– Learning rate adapted for each parameter
– …

44

Step Sizes

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges

45

𝜃

ℒ(𝜃)

Small Learning rate

𝜃

ℒ(𝜃)

Large Learning rate

Gradient Descent

• Logistic Regression Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum

46

Lo
ss

L(w)

Lmin(w)

Iterationsw

Logistic Regression Example 47

p(y=1 | x)
0 1

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Basis Functions

• What if non-linear relationship between y and x?

48

Basis Functions 49

• What if non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

 ℎ(𝑥;𝑤) = 𝜎 𝑤$𝜙 𝑥

– Polynomial basis f(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

– Logistic regression on new features f(x)

• What basis functions to choose? Overfit with too much flexibility?

Basis Functions

• What if non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

 ℎ(𝑥;𝑤) = 𝜎 𝑤$𝜙 𝑥

– Polynomial basis f(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

– Logistic regression on new features f(x)

• What basis functions to choose? Overfit with too much flexibility?

50

What is Overfitting

• Models allow us to generalize from data

• Different models generalize in different ways

51

http://scikit-learn.org/

http://scikit-learn.org/

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
 (bias) (variance)

• Simple models under-fit: will deviate from data (high bias) but
will not be influenced by peculiarities of data (low variance).

• Complex models over-fit: will not deviate systematically from
data (low bias) but will be very sensitive to data (high variance).
– As dataset size grows, can reduce variance!
– Can use more complex model

52

Bias Variance Tradeoff 53

Regularization – Control Complexity

• L2 keeps weights small, L1 keeps weights sparse!

• But how to choose hyperparameter a?

54

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/

Less regularization Less regularization

http://scikit-learn.org/

How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on

independent data and tune hyper
parameters

• Test set
– final evaluation of performance

after all hyper-parameters fixed
– Needed since we tune, or “peek”,

performance with validation set

55

Training set Validation set Test set

How to Measure Generalization Error? 56

Validation Sample

Neural Networks

57

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

58

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

59

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

 𝜙(𝒙; 	𝒖)	 ℝ𝑚	 → ℝ𝑑	

– Where u is a set of parameters for the transformation

60

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

 𝜙(𝒙; 	𝒖)	 ℝ𝑚	 → ℝ𝑑	

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

61

p(y = 1|x) = 1

1 + e�wT�(x)

Neural Networks

• Define the basis functions 𝑗	 = 	 {1…𝑑}

 𝜙𝑗(𝒙; 	𝒖) 	= 𝜎(𝒖𝑗𝑇𝒙)

• Put all 𝒖𝑗	Î	ℝ$×&	vectors into matrix 𝑼

 𝜙 𝒙; 	𝑼 = 𝜎(𝑼𝒙) 	=

𝜎 𝑢$'𝑥
𝜎 𝑢('𝑥

⋮
𝜎 𝑢)'𝑥

	 Îℝ)

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
 ℎ(𝒙; 	𝒘,𝑼) 	= 	𝒘𝑇𝜙(𝒙; 	𝑼)

62

Neural Networks

• Define the basis functions 𝑗	 = 	 {1…𝑑}

 𝜙𝑗(𝒙; 	𝒖) 	= 𝜎(𝒖𝑗𝑇𝒙)

• Put all 𝒖𝑗	Î	ℝ$×&	vectors into matrix 𝑼

 𝜙 𝒙; 	𝑼 = 𝜎(𝑼𝒙) 	=

𝜎 𝑢$'𝑥
𝜎 𝑢('𝑥

⋮
𝜎 𝑢)'𝑥

	 Îℝ)

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
 ℎ(𝒙; 	𝒘,𝑼) 	= 	𝒘𝑇𝜙(𝒙; 	𝑼)

63

Neural Networks

• Define the basis functions 𝑗	 = 	 {1…𝑑}

 𝜙𝑗(𝒙; 	𝒖) 	= 𝜎(𝒖𝑗𝑇𝒙)

• Put all 𝒖𝑗	Î	ℝ$×&	vectors into matrix 𝑼

 𝜙 𝒙; 	𝑼 = 𝜎(𝑼𝒙) 	=

𝜎 𝑢$'𝑥
𝜎 𝑢('𝑥

⋮
𝜎 𝑢)'𝑥

	 Îℝ)

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
 ℎ(𝒙; 	𝒘,𝑼) 	= 𝑤'𝜙(𝒙; 	𝑼)

64

Feed Forward Neural Network 65

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

f(…) often called the
activation function

Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

66

U V

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

67

h(x) = wT�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

68

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U

69

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?

70

Automatic Differentiation

• Exact derivatives for gradient-based optimization come
from running differentiable code via automatic
differentiation

71

f(x) {…};

df(x) {…};

• Can compute derivatives not just of mathematical
functions, but derivatives of general purpose code with
control flow, loops, recursions, etc.

Backpropagation
• Loss function composed of layers of

nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients

72

@L

@�a
=

X

j

@�(a+1)
j

@�a
j

@L

@�(a+1)
j

@L

@wa
=

X

j

@�a
j

@wa

@L

@�a
j

𝐿 𝜙* …𝜙$ 𝑥

𝜙* …𝜙$ 𝑥

Training

• Repeat gradient update of weights to reduce loss
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and
determine when to stop training

73

[graphic from H. Larochelle]

Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic
gradient descent à Limits ability to learn!

74

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

• Vanishing gradient problem
– Derivative of sigmoid:

– Nearly 0 when x is far from 0!
– Can make gradient descent hard!

75

∂σ (x)
∂x

=σ (x)(1−σ (x))

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$

Neural Network Decision Boundaries 76

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem

• Feed-forward neural network with a single hidden
layer containing a finite number of non-linear neurons
(ReLU, Sigmoid, and others) can approximate
continuous functions arbitrarily well on a compact
space of ℝ+

77

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem

• Feed-forward neural network with a single hidden
layer containing a finite number of non-linear neurons
(ReLU, Sigmoid, and others) can approximate
continuous functions arbitrarily well on a compact
space of ℝ+

78

• NOTE!
– A better approximation requires a larger hidden layer and this

theorem says nothing about the relation between the two.

– We can make training error as low as we want by using a larger
hidden layer. Result states nothing about test error

– Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Summary

• Machine learning uses mathematical and statistical
models learned from data to characterize patterns
and relations between inputs, and use this for
inference / prediction

• ML comes in many forms, much of which has
probabilistic and statistical foundations and
interpretations (i.e. Statistical Machine Learning)

• ML provides a powerful toolkit to analyze data
– Linear methods can help greatly in understanding data
– Neural Networks allow us to learn nonlinear basis

functions that help us solve our learning problem
– Choosing a model for a given problem is difficult,
– Keep in mind bias-variance tradeoff

79

Backup

80

Notation

• X Î Rmxn

• x Î Rn(x1)

• x Î R
• X
• {xi}1m

• y Î I(k) / R(k)

81

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script
Sequence of vectors x1, …, xm
Labels represented as
 - Integer for classes, often {0,1}. E.g. {Higgs, Z}
 - Real number. E.g electron energy

• Variables = features = inputs
• Data point x = {x1, …, xn} has n-features

• Typically use affine coordinates:
 y = wTx + w0 → wTx
 → w ={w0, w1, ... , wn}

→ x ={1, x1, ... , xn}

Maximum Likelihood

82

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

• Where second equality holds if data is independent and
identically distributed

• Often minimize negative-log-likelihood for numerical
stability
– Same as maximizing likelihood since log is monotonic and

differentiable away from zero

83

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

• Select parameters that make data most likely
– General strategy for parameter estimation

84

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

w⇤ = argmax
w

L(w) = argmin
w

� lnL(w) = argmin
w

�
X

i

ln p(yi|xi;w)

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

85

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

𝑝 𝑥; 𝜆 = 𝜆𝑒!"#
• Example: have samples 𝑥!:#
– Assume data comes from

exponential distribution
• 𝑝 𝑥2; 𝜆 = 𝜆𝑒/>?!

𝑥$ 𝑥% 𝑥&

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

86

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

𝑝 𝑥; 𝜆 = 𝜆𝑒!"#

𝑥$

𝑝(𝑥$)

𝑥%

𝑝(𝑥%)

𝑥&

𝑝(𝑥&)

• Example: have samples 𝑥!:#
– Assume data comes from

exponential distribution
• 𝑝 𝑥2; 𝜆 = 𝜆𝑒/>?!

– Evaluate 𝑝 𝑥!; 𝜆 for each 𝑥!

Maximum Likelihood

• Describe a process behind the data
• Write down the likelihood of the observed data

87

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

𝑝 𝑥; 𝜆 = 𝜆𝑒!"#

𝑥$

𝑝(𝑥$)

𝑥%

𝑝(𝑥%)

𝑥&

𝑝(𝑥&)

• Example: have samples 𝑥!:#
– Assume data comes from

exponential distribution
• 𝑝 𝑥2; 𝜆 = 𝜆𝑒/>?!

– Evaluate 𝑝 𝑥!; 𝜆 for each 𝑥!

– Find 𝜆 to maximize ∏! 𝑝 𝑥!; 𝜆

Bias-Variance Tradeoff

88

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable

output y

89

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable

output y

90

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable

output y

91

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable

output y

92

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

• More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable

output y

93

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

• More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.
– As dataset size grows, can reduce variance! Can use more complex model

Least Squares Linear Regression

94

Least Squares Linear Regression

• Set of input / output pairs D = {xi , yi}i=1…n
– xi Î Rm
– yi Î R

• Assume a linear model
 h(x; w) = wTx

• Squared Loss function:

• Find w* = arg minw L(w)

95

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n
– Design matrix X Î Rnxm
– Target vector y Î Rn

96

• Rewrite loss:

• Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n
– Design matrix X Î Rnxm
– Target vector y Î Rn

97

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

98

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

99

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

• Likelihood function:

100

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

• Likelihood function:

101

Squared
loss function!

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆

Linear Regression Example

• Reconstructed Jet energy vs. Number of primary vertices

102

Eur. Phys. J. C (2015) 75:17

Linear Classification

103

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?

104

L(w) =
1

2

X

i

(yi �wTxi)
2

[Bishop]

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

105

L(w) =
1

2

X

i

(yi �wTxi)
2

What you want

What you get

[Bishop]

Logistic Regression 106

• Computational Graph of function
– White node = input
– Red node = model parameter
– Blue node = intermediate operations

Slide credit: G. Louppe

This unit is the main building block of Neural Networks!

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

How to Minimize Loss ℒ 𝜃 ? Gradient Descent

• Gradient Descent:

Make a step 𝜃 ← 𝜃 − 𝜂𝑣 in direction 𝑣 with step
size 𝜂 to reduce loss

• How does loss change in different directions?

Let 𝜆 be a perturbation along direction 𝑣

'
𝑑
𝑑𝜆
ℒ 𝜃 + 𝜆𝑣

!"#
= 𝑣 ⋅ ∇$ℒ 𝜃

• Then Steepest Descent direction is: 𝑣 = −∇$ℒ 𝜃

107

Multiclass Classification?
• What if there is more than two classes?

• Softmax → multi-class generalization of logistic loss
– Have N classes {c1, …, cN}
– Model target yk = (0, …, 1, …0)

– Gradient descent for each of the weights wk

108

kth element in vector

p(ck|x) =
exp(wkx)P
j exp(wjx)

