Introduction to Machine Learning

Michael Kagan

SLAC

CERN Openlab Summer Student Lectures
July 5, 2024

Long History of Machine Learning

Perceptron

AlphaStar

The Power of ML

This is a picture of Barack Obama.
His foot is positioned on the right side of the scale.
The scale will show a higher weight. Concept

Particle Physics Has Similar Goals!

Data Analysis

High-Level Concept

Simulation

Machine Learning in HEP

Design Optimization

$$
\begin{array}{ll}
\text { Classifier } f & \text { Adversary } r
\end{array}
$$

+ More!

What is Machine Learning?

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization
- Fitting data with complex functions
- Mathematical models learnt from data that characterize the patterns, regularities, and relationships amongst variables in the system

Artificial Intelligence, Machine Learning, Deep Learning

- AI: make computers act in an intelligent way
- Rules, reasoning, symbol manipulation
- ML: Uses data to learn "intelligent" algorithms
- Deep Learning: Approach to ML that (often) uses complex pipelines to process low level data (e.g. pixels)

Machine Learning: Models

- Key element is a mathematical model
- A mathematical characterization of system(s) of interest, typically via random variables
- Chosen model depends on the task / available data

Learning: estimate statistical model from data

- Supervised learning
- Unsupervised Learning
- Reinforcement Learning
——••
- Prediction and Inference: using statistical model to make predictions on new data points and infer properties of system(s)

Learning

Training Data

- Supervised Learning
- Classification
- Regression
- Unsupervised Learning
- Clustering
- Dimensionality reduction
- ...
- Reinforcement learning

Probability Review

- Joint distribution of two variables: $p(x, y)$
- Marginal distribution: $p(x)=\int p(x, y) d y$
- Conditional distribution: $\quad p(y \mid x)=\frac{p(x, y)}{p(x)}$
- Bayes theorem: $p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}$
- Expected value: $\quad \mathbf{E}[f(x)]=\int f(x) p(x) \mathrm{d} x$
- Normal distribution:

$$
\begin{aligned}
& \text { Normal distribution: } \\
& -x \sim N(\mu, \sigma) \quad \rightarrow \quad p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Supervised Learning

- Given N examples with observable features $\left\{\mathrm{x}_{\mathrm{i}} \in \mathcal{X}\right\}$ and prediction targets $\left\{y_{i} \in \mathcal{Y}\right\}$, learn function mapping $h(x)=y$

Classification:

y is a finite set of labels (i.e. classes) denoted with integers

Regression:
y is a real number

Unsupervised Learning

Given data $D=\left\{x_{i}\right\}$, but no labels, find structure in data
Clustering: partition the data into groups $D=\left\{D_{1} \cup D_{2} \cup D_{3} \ldots \cup D_{k}\right\}$

Dimensionality reduction: find a low dimensional (less complex) representation of the data with a mapping $Z=h(X)$

Density estimation and sampling: estimate the PDF $p(x)$, and/or learn to draw plausible new samples of x

Reinforcement Learning

- Model agents that take actions depending on state
- Actions incur rewards, and affect future states ("feedback")
- Learn to make the best sequence of decisions to achieve a given goal when feedback is often delayed until you reach the goal

Supervised Learning: How does it work?

Supervised Learning: How does it work?

- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss

Supervised Learning: How does it work?

- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss
- Use a labeled training-set to compute loss
- Adjust parameters to reduce loss function
- Repeat until parameters stabilize

Reminder: Empirical Risk Minimization

- Framework to design learning algorithms
- L is a loss function comparing prediction $h(\cdot) \mathrm{w} /$ target y
$-\Omega(\boldsymbol{w})$ is a regularizer, penalizing certain values of \mathbf{w}
- λ controls how much penalty: a hyperparameter we have to tune
- Learning is cast as an optimization problem

Example Loss Functions

- Square Error Loss: $\quad L(h(\mathbf{x} ; \mathbf{w}), y)=(h(\mathbf{x} ; \mathbf{w})-y)^{2}$
- Often used in regression
- Cross entropy:
- With $y \in\{0,1\}$

$$
\begin{aligned}
L(h(\mathbf{x} ; \mathbf{w}), y)= & -y \log h(\mathbf{x} ; \mathbf{w}) \\
& -(1-y) \log (1-h(\mathbf{x} ; \mathbf{w}))
\end{aligned}
$$

- Often used in classification
- Hinge Loss:
- With $y \in\{-1,1\}$
$L(h(\mathbf{x} ; \mathbf{w}), y)=\max (0,1-y h(\mathbf{x} ; \mathbf{w}))$
- Zero-One loss
- $h(\boldsymbol{x} ; \boldsymbol{w})$ predicting label

$$
L(h(\mathbf{x} ; \mathbf{w}), y)=1_{y \neq h(\mathbf{x} ; \mathbf{w})}
$$

- Choose type of model
- Each set of parameters is a point in space of models
- Need to find the best model parameters for loss
- Learning is like a search through space of models, guided by the data
- Various possibilities
- Exhaustive search
- Closed form solutions (rare)
- Iterative optimization

Space of Possible Models

Putting It All Together

- Gather data to be used
- Propose a space of possible models
- Define what "good" means with loss function / learning objective
- Use learning algorithm to find best model

Linear Classification

Classification

Rectangular cuts

Linear discriminant

Nonlinear discriminant

- Learn a function to separate different classes of data
- Avoid over-fitting:
- Learning too fined details about your training sample that will not generalize to unseen data

Linear Decision Boundaries

- Separate two classes:

$$
\begin{aligned}
-\boldsymbol{x}_{i} & \in \mathbb{R}^{m} \\
-y_{i} & \in\{-1,1\}
\end{aligned}
$$

- Linear discriminant model

$$
h(\boldsymbol{x} ; \boldsymbol{w})=\boldsymbol{w}^{T} \boldsymbol{x}+b
$$

- Decision boundary defined by hyperplane

$$
h(\boldsymbol{x} ; \boldsymbol{w})=\boldsymbol{w}^{T} \boldsymbol{x}+b=0
$$

- Class predictions: Predict class - 1 if $h\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)<0$, else class 1

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\boldsymbol{x}, y) \sim p(\boldsymbol{X}, Y)$
- Features: $\quad \boldsymbol{x} \in \mathbb{R}^{m}$
- Labels: $y \in\{0,1\}$

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\boldsymbol{x}, y) \sim p(\boldsymbol{X}, Y)$
- Features: $\quad \boldsymbol{x} \in \mathbb{R}^{m}$
- Labels: $y \in\{0,1\}$
- Breakdown the joint distribution:

$$
p(x, y)=p(x \mid y) p(y)
$$

Likelihood:
Distribution of features

Prior:
Probability of each class for a given class

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\boldsymbol{x}, y) \sim p(\boldsymbol{X}, Y)$
- Features: $\boldsymbol{x} \in \mathbb{R}^{m}$
- Labels: $\quad y \in\{0,1\}$
- Breakdown the joint distribution:

$$
p(x, y)=p(x \mid y) p(y)
$$

- Assume likelihoods are Gaussian

$$
p(x \mid y)=\frac{1}{\sqrt{(2 \pi)^{m}|\Sigma|}} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{y}\right)\right)
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})
$$

- Want to build a classifier to predict the label y given and input x

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

$$
=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x} \mid y=0) p(y=0)+p(\mathbf{x} \mid y=1) p(y=1)}
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

$$
=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x} \mid y=0) p(y=0)+p(\mathbf{x} \mid y=1) p(y=1)}
$$

$$
=\frac{1}{1+\frac{p(\mathbf{x} \mid y=0) p(y=0)}{p(\mathbf{x} \mid y=1) p(y=1)}}
$$

$$
=\frac{1}{1+\exp \left(\log \frac{p(\mathbf{x} \mid y=0) p(y=0)}{p(\mathbf{x} \mid y=1) p(y=1)}\right)}
$$

Logistic Sigmoid Function

Predicting Classes with Gaussian Likelihoods

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\log \frac{p(\mathbf{x} \mid y=1)}{p(\mathbf{x} \mid y=0)}+\log \frac{p(y=1)}{p(y=0)}\right)
$$

Predicting Classes with Gaussian Likelihoods

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\log \frac{p(\mathbf{x} \mid y=1)}{p(\mathbf{x} \mid y=0)}+\log \frac{p(y=1)}{p(y=0)}\right)
$$

- For our Gaussian data:

$$
\begin{aligned}
= & \sigma(\log p(\mathbf{x} \mid y=1)-\log p(\mathbf{x} \mid y=0)+\text { const. }) \\
= & \sigma\left(-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)+\frac{1}{2}\left(\mathbf{x}-\mu_{0}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{0}\right)\right. \\
& + \text { const. }) \\
= & \sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \quad \text { Collect terms }
\end{aligned}
$$

What did we learn?

- For this data, the log-likelihood ratio is linear!
- Line defines boundary to separate the classes
- Sigmoid turns distance from boundary to probability

Logistic Regression

- What if we ignore Gaussian assumption on data?

Model: $\quad p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \equiv h(\mathbf{x} ; \mathbf{w})$

- Farther from boundary $\boldsymbol{w}^{T} \boldsymbol{x}+b=0$, more certain about class
- Sigmoid converts distance to class probability

Logistic Regression

This unit is the main building block of Neural Networks!

Logistic Regression

- What if we ignore Gaussian assumption on data?

Model: $\quad p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \equiv h(\mathbf{x} ; \mathbf{w})$

- With $p_{i} \equiv p\left(y_{i}=y \mid \boldsymbol{x}_{i}\right)$
$P\left(y_{i}=y \mid x_{i}\right)=\operatorname{Bernoulli}\left(p_{i}\right)=\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}= \begin{cases}p_{i} & \text { if } y_{i}=1 \\ 1-p_{i} & \text { if } y_{i}=0\end{cases}$
- Goal:
- Given i.i.d. dataset of pairs ($\boldsymbol{x}_{\boldsymbol{i}}, y_{i}$) find \mathbf{w} and b that maximize likelihood of data

Logistic Regression

- Negative log-likelihood

$$
-\ln \mathcal{L}=-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}
$$

Logistic Regression

- Negative log-likelihood

$$
\begin{aligned}
-\ln \mathcal{L} & =-\ln \prod_{i}\left(p_{i}\right)^{y_{i}\left(1-p_{i}\right)^{1-y_{i}}} \\
& =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)^{\text {binary cross entropy loss function! }}
\end{aligned}
$$

Logistic Regression

- Negative log-likelihood

$$
\begin{aligned}
-\ln \mathcal{L} & =-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \quad \text { binany coss entropyl } \text { Iss } \\
& =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right) \\
& =\sum_{i} y_{i} \ln \left(1+e^{-\mathbf{w}^{T} \mathbf{x}}\right)+\left(1-y_{i}\right) \ln \left(1+e^{\mathbf{w}^{T} \mathbf{x}}\right)
\end{aligned}
$$

- No closed form solution to $w^{*}=\arg \min _{w}-\ln \mathcal{L}(w)$
- How to solve for \mathbf{w} ?

Gradient Descent

- Minimize loss by repeated gradient steps
- Compute gradient w.r.t. current parameters: $\nabla_{\theta_{i}} \mathcal{L}\left(\theta_{i}\right)$
- Update parameters: $\quad \theta_{i+1} \leftarrow \theta_{i}-\eta \nabla_{\theta_{i}} \mathcal{L}\left(\theta_{i}\right)$
$-\eta$ is the learning rate, controls how big of a step to take

Stochastic Gradient Descent

- Loss is composed of a sum over samples:

$$
\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}\left(y_{i}, h\left(x_{i} ; \theta\right)\right)
$$

- Computing gradient grows linearly with N !
- (Mini-Batch) Stochastic Gradient Descent
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent

Batch gradient descent

Stochastic gradient descent

Stochastic Gradient Descent

- Loss is composed of a sum over samples:

$$
\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}\left(y_{i}, h\left(x_{i} ; \theta\right)\right)
$$

- Computing gradient grows linearly with N !
- (Mini-Batch) Stochastic Gradient Descent
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent
- Several updates to SGD, like momentum, ADAM, RMSprop to
- Help to speed up optimization in flat regions of loss
- Have adaptive learning rate
- Learning rate adapted for each parameter
- ...

Step Sizes

- Too small a learning rate, convergence very slow
- Too large a learning rate, algorithm diverges

Large Learning rate

Gradient Descent

- Logistic Regression Loss is convex
- Single global minimum
- Iterations lower loss and move toward minimum

Logistic Regression Example

Basis Functions

- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?

Basis Functions

$\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ \sqrt{2} x_{1} x_{2}\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?
- Can choose basis functions $\phi(x)$ to form new features

$$
h(x ; w)=\sigma\left(w^{T} \phi(x)\right)
$$

- Polynomial basis $\phi(x) \sim\left\{1, x, x^{2}, x^{3}, \ldots\right\}$, Gaussian basis, ...
- Logistic regression on new features $\phi(x)$

Basis Functions

$$
\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?
- Can choose basis functions $\phi(x)$ to form new features

$$
h(x ; w)=\sigma\left(w^{T} \phi(x)\right)
$$

- Polynomial basis $\phi(x) \sim\left\{1, x, x^{2}, x^{3}, \ldots\right\}$, Gaussian basis, ...
- Logistic regression on new features $\phi(x)$
- What basis functions to choose? Overfit with too much flexibility?

What is Overfitting

Underfitting

Overfitting
http://scikit-learn.org/

- Models allow us to generalize from data
- Different models generalize in different ways

Bias Variance Tradeoff

- generalization error = systematic error + sensitivity of prediction (bias) (variance)
- Simple models under-fit: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).
- Complex models over-fit: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).
- As dataset size grows, can reduce variance!
- Can use more complex model

Bias Variance Tradeoff

Regularization - Control Complexity

$$
\begin{gathered}
L(\mathbf{w})=\frac{1}{2}(\mathbf{y}-\mathbf{X} \mathbf{w})^{2}+\alpha \Omega(\mathbf{w}) \\
L 2: \quad \Omega(\mathbf{w})=\|\mathbf{w}\|^{2} \quad L 1: \quad \Omega(\mathbf{w})=\|\mathbf{w}\|
\end{gathered}
$$

- L2 keeps weights small, L1 keeps weights sparse!
- But how to choose hyperparameter α ?

How to Measure Generalization Error?

- Split dataset into multiple parts
- Training set
- Used to fit model parameters
- Validation set
- Used to check performance on independent data and tune hyper parameters
- Test set
- final evaluation of performance after all hyper-parameters fixed
- Needed since we tune, or "peek", performance with validation set

How to Measure Generalization Error?

Neural Networks

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(x) \sim\left\{x^{2}, \sin (x), \log (x), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

$$
\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(x) \sim\left\{x^{2}, \sin (x), \log (x), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?

Adding non-linearity

-What if we want a non-linear decision boundary?

- Choose basis functions, e.g: $\quad \phi(x) \sim\left\{x^{2}, \sin (x), \log (x), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

$$
\phi(\boldsymbol{x} ; \boldsymbol{u}) \quad \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}
$$

- Where \mathbf{u} is a set of parameters for the transformation

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(x) \sim\left\{x^{2}, \sin (x), \log (x), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

$$
\phi(\boldsymbol{x} ; \boldsymbol{u}) \quad \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}
$$

- Where \mathbf{u} is a set of parameters for the transformation
- Combines basis selection \& learning \rightarrow Representation Learning
- Several different approaches, focus here on neural networks
- Complicates the optimization

Neural Networks

- Define the basis functions $j=\{1 \ldots d\}$

$$
\phi_{j}(\boldsymbol{x} ; \boldsymbol{u})=\sigma\left(\boldsymbol{u}_{j}^{T} \boldsymbol{x}\right)
$$

Neural Networks

- Define the basis functions $j=\{1 \ldots d\}$

$$
\phi_{j}(\boldsymbol{x} ; \boldsymbol{u})=\sigma\left(\boldsymbol{u}_{j}^{T} \boldsymbol{x}\right)
$$

- Put all $\boldsymbol{u}_{j} \in \mathbb{R}^{1 \times m}$ vectors into matrix \boldsymbol{U}

$$
\phi(\boldsymbol{x} ; \boldsymbol{U})=\sigma(\boldsymbol{U} \boldsymbol{x})=\left[\begin{array}{c}
\sigma\left(u_{1}^{T} x\right) \\
\sigma\left(u_{2}^{T} x\right) \\
\vdots \\
\sigma\left(u_{d}^{T} x\right)
\end{array}\right] \in \mathbb{R}^{d}
$$

- σ is a point-wise non-linearity acting on each vector element

Neural Networks

- Define the basis functions $j=\{1 \ldots d\}$

$$
\phi_{j}(\boldsymbol{x} ; \boldsymbol{u})=\sigma\left(\boldsymbol{u}_{j}^{T} \boldsymbol{x}\right)
$$

- Put all $\boldsymbol{u}_{j} \in \mathbb{R}^{1 \times m}$ vectors into matrix \boldsymbol{U}

$$
\phi(\boldsymbol{x} ; \boldsymbol{U})=\sigma(\boldsymbol{U x})=\left[\begin{array}{c}
\sigma\left(u_{1}^{T} x\right) \\
\sigma\left(u_{2}^{T} x\right) \\
\vdots \\
\sigma\left(u_{d}^{T} x\right)
\end{array}\right] \quad \in \mathbb{R}^{d}
$$

$-\sigma$ is a point-wise non-linearity acting on each vector element

- Full model becomes

$$
h(\boldsymbol{x} ; \boldsymbol{w}, \boldsymbol{U})=w^{T} \phi(\boldsymbol{x} ; \boldsymbol{U})
$$

Feed Forward Neural Network

Multi-layer Neural Network

- Multilayer NN
- Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

Regression: Square error loss function

$$
L(\mathbf{w}, \mathbf{U})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

- Regression: Square error loss function

$$
L(\mathbf{w}, \mathbf{U})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

- Parameter update:

$$
\begin{gathered}
w \leftarrow w-\eta \frac{\partial L(w, U)}{\partial w} \\
U \leftarrow U-\eta \frac{\partial L(w, U)}{\partial U}
\end{gathered}
$$

- How to compute gradients?

Automatic Differentiation

- Exact derivatives for gradient-based optimization come from running differentiable code via automatic differentiation

$$
\begin{array}{ll}
f(\mathbf{x}) & : \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\downarrow & \mathrm{f}(\mathrm{x})\{\ldots\} ; \\
\text { automatic } \\
\text { differentiation } & \\
\nabla f(\mathrm{x})=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) & \mathrm{df}(\mathrm{x})\{\ldots\} ;
\end{array}
$$

- Can compute derivatives not just of mathematical functions, but derivatives of general purpose code with control flow, loops, recursions, etc.

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

- Backward step (b-prop) $\frac{\partial L}{\partial \phi^{a}}=\sum_{j} \frac{\partial \phi_{j}^{(a+1)}}{\partial \phi_{j}^{a}} \frac{\partial L}{\partial \phi_{j}^{(a+1)}}$
- Compute parameter gradients $\frac{\partial L}{\partial \mathbf{w}^{a}}=\sum_{j} \frac{\partial \phi_{j}^{a}}{\partial \mathbf{w}^{a}} \frac{\partial L}{\partial \phi_{j}^{a}}$

Training

- Repeat gradient update of weights to reduce loss - Each iteration through dataset is called an epoch
- Use validation set to examine for overtraining, and determine when to stop training

Vanishing Gradients

- Major challenge in DL: Vanishing Gradients
- Small gradients slow down / block, stochastic gradient descent \rightarrow Limits ability to learn!

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.

Activation Functions

- Vanishing gradient problem
- Derivative of sigmoid:

$$
\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))
$$

- Nearly 0 when x is far from 0 !
- Can make gradient descent hard!
- Rectified Linear Unit (ReLU)
$-\operatorname{ReLU}(\mathrm{x})=\max \{0, \mathrm{x}\}$
- Derivative is constant!

$$
\frac{\partial \operatorname{Re} L U(x)}{\partial x}=\left\{\begin{array}{cc}
1 & \text { when } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- ReLU gradient doesn't vanish

Neural Network Decision Boundaries

Three neurons

Five neurons

Fifty neurons

Four neurons

Twenty neurons

4-class classification 2-hidden layer NN ReLU activations
L2 norm regularization

2-class classification 1-hidden layer NN
L2 norm regularization

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}
- NOTE!
- A better approximation requires a larger hidden layer and this theorem says nothing about the relation between the two.
- We can make training error as low as we want by using a larger hidden layer. Result states nothing about test error
- Doesn't say how to find the parameters for this approximation
- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- ML comes in many forms, much of which has probabilistic and statistical foundations and interpretations (i.e. Statistical Machine Learning)
- ML provides a powerful toolkit to analyze data
- Linear methods can help greatly in understanding data
- Neural Networks allow us to learn nonlinear basis functions that help us solve our learning problem
- Choosing a model for a given problem is difficult,
- Keep in mind bias-variance tradeoff

Backup

Notation

- $\mathbf{X} \in \mathbb{R}^{m \times n}$
- $\mathbf{x} \in \mathbb{R}^{\mathrm{n}(\times 1)}$
- $x \in \mathbb{R}$
- χ
- $\left\{\mathbf{x}_{i}\right\}_{1}{ }^{m}$
- $y \in \mathbb{I}^{(k)} / \mathbb{R}^{(k)}$

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script
Sequence of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{m}}$
Labels represented as

- Integer for classes, often $\{0,1\}$. E.g. $\{$ Higgs, $Z\}$
- Real number. E.g electron energy
- Variables $=$ features $=$ inputs
- Data point $\mathbf{x}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ has n -features
- Typically use affine coordinates:

$$
\begin{aligned}
\mathrm{y}=\mathbf{w}^{\mathrm{T}} \mathbf{x}+\mathrm{w}_{0} & \rightarrow \mathbf{w}^{\mathrm{T}} \mathbf{x} \\
& \rightarrow \mathbf{w}=\left\{\mathrm{w}_{0}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} \\
& \rightarrow \mathbf{x}=\left\{1, \mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}
\end{aligned}
$$

Maximum Likelihood

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$
\mathcal{L}(\mathbf{w})=p(\mathbf{y} \mid \mathbf{X} ; \mathbf{w})=\prod_{i} p\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

- Where second equality holds if data is independent and identically distributed
- Often minimize negative-log-likelihood for numerical stability
- Same as maximizing likelihood since log is monotonic and differentiable away from zero

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$
\mathcal{L}(\mathbf{w})=p(\mathbf{y} \mid \mathbf{X} ; \mathbf{w})=\prod_{i} p\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

- Select parameters that make data most likely
- General strategy for parameter estimation
$\mathbf{w}^{*}=\arg \max _{\mathbf{w}} \mathcal{L}(\mathbf{w})=\arg \min _{\mathbf{w}}-\ln \mathcal{L}(\mathbf{w})=\arg \min _{\mathbf{w}}-\sum_{i} \ln p\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)$

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$
\mathcal{L}(\mathbf{w})=p(\mathbf{y} \mid \mathbf{X} ; \mathbf{w})=\prod_{i} p\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

- Example: have samples $x_{1: n}$
- Assume data comes from exponential distribution
- $p\left(x_{i} ; \lambda\right)=\lambda e^{-\lambda x_{i}}$

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$
\mathcal{L}(\mathbf{w})=p(\mathbf{y} \mid \mathbf{X} ; \mathbf{w})=\prod_{i} p\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

- Example: have samples $x_{1: n}$
- Assume data comes from exponential distribution
- $p\left(x_{i} ; \lambda\right)=\lambda e^{-\lambda x_{i}}$
- Evaluate $p\left(x_{i} ; \lambda\right)$ for each x_{i}

Maximum Likelihood

- Describe a process behind the data
- Write down the likelihood of the observed data

$$
\mathcal{L}(\mathbf{w})=p(\mathbf{y} \mid \mathbf{X} ; \mathbf{w})=\prod_{i} p\left(y_{i} \mid \mathbf{x}_{i} ; \mathbf{w}\right)
$$

- Example: have samples $x_{1: n}$
- Assume data comes from exponential distribution
- $p\left(x_{i} ; \lambda\right)=\lambda e^{-\lambda x_{i}}$
- Evaluate $p\left(x_{i} ; \lambda\right)$ for each x_{i}
- Find λ to maximize $\prod_{i} p\left(x_{i} ; \lambda\right)$

Bias-Variance Tradeoff

Bias Variance Tradeoff

- Model h(x), defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rlrl}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & & +(\bar{y}-\bar{h}(x))^{2} \\
& & +E\left[(h(x)-\bar{h}(x))^{2}\right] \\
& =\text { noise } & & +(\text { bias })^{2}
\end{array} \quad \begin{aligned}
&
\end{aligned}
$$

Bias Variance Tradeoff

- Model h(x), defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rlll}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & +(\bar{y}-\bar{h}(x))^{2} & \\
& +E\left[(h(x)-\bar{h}(x))^{2}\right] \\
& =\text { noise } & +(\text { bias })^{2} & \\
& + \text { variance }
\end{array}
$$

Bias Variance Tradeoff

- Model h(x), defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{aligned}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] \\
& + \text { noise }
\end{aligned}+\begin{array}{ll}
(\bar{y}-\bar{h}(x))^{2} & +E\left[(h(x)-\bar{h}(x))^{2}\right] \\
(\text { bias })^{2} & + \text { variance }
\end{array}
$$

- The more complex the model $\mathrm{h}(\mathrm{x})$ is, the more data points it will capture, and the lower the bias will be.

Bias Variance Tradeoff

- Model h(x), defined over dataset, modeling random variable output y

$$
E[y]=\bar{y}
$$

$$
E[h(x)]=\bar{h}(x)
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{array}{rll}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] & +\sum_{(\bar{y}-\bar{h}(x))^{2}} \\
& + \text { noise } & +\begin{array}{l}
E\left[(h(x)-\bar{h}(x))^{2}\right] \\
(\text { bias })^{2}
\end{array} \\
& + \text { variance }
\end{array}
$$

- The more complex the model $h(x)$ is, the more data points it will capture, and the lower the bias will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.

Bias Variance Tradeoff

- Model h(x), defined over dataset, modeling random variable output y

$$
\begin{aligned}
E[y] & =\bar{y} \\
E[h(x)] & =\bar{h}(x)
\end{aligned}
$$

- Examining generalization error at x, w.r.t. possible training datasets

$$
\begin{aligned}
E\left[(y-h(x))^{2}\right] & =E\left[(y-\bar{y})^{2}\right] \\
& +\sum_{\text {noise }}^{(\bar{y}-\bar{h}(x))^{2}} \\
+\begin{array}{l}
+ \text { bias })^{2}
\end{array} & + \text { variance }
\end{aligned}
$$

- The more complex the model $h(x)$ is, the more data points it will capture, and the lower the bias will be.
- More Complexity will make the model "move" more to capture the data points, and hence its variance will be larger.
- As dataset size grows, can reduce variance! Can use more complex model

Least Squares Linear Regression

Least Squares Linear Regression

- Set of input / output pairs $D=\left\{\mathbf{x}_{\mathrm{i}}, y_{i}\right\}_{i=1 \ldots, . . n}$
$-\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$
$-y_{i} \in \mathbb{R}$
- Assume a linear model $\mathrm{h}(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\top} \mathbf{x}$
- Squared Loss function:

$$
L(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

- Find $\mathbf{w}^{*}=\arg \min _{\mathbf{w}} \mathrm{L}(\mathbf{w})$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D=\left\{\mathbf{x}_{\mathrm{i}}, y_{i}\right\}_{i=1 \ldots, \ldots n}$
- Design matrix $\mathbf{X} \in \mathbb{R}^{\mathrm{nxm}}$
- Target vector $\mathbf{y} \in \mathbb{R}^{\mathrm{n}}$

$$
\mathbf{X}=\left[\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, m} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, m}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Least Squares Linear Regression: Matrix Form

- Set of input / output pairs $D=\left\{\mathbf{x}_{\mathrm{i}}, y_{i}\right\}_{\mathrm{i}=1 \ldots \mathrm{n}}$
- Design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$
- Target vector $\mathbf{y} \in \mathbb{R}^{\mathrm{n}}$
- Rewrite loss:

$$
L(\mathbf{w})=\frac{1}{2}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

- Minimize w.r.t. $\mathbf{w}: \quad \mathbf{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\arg \min _{\mathbf{w}} L(\mathbf{w})$

Linear Regression - Probabilistic Interpretation

- Assume $y_{i}=m x_{i}+e_{i}$
- Random error: $e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...

Linear Regression - Probabilistic Interpretation

- Assume $y_{i}=m x_{i}+e_{i}$
- Random error: $e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...
- Then $y_{i} \sim \mathcal{N}\left(m x_{i}, \sigma\right) \rightarrow p\left(y_{i} \mid x_{i} ; m\right) \propto \exp \left(\frac{1}{2} \frac{\left(y_{i}-m x_{i}\right)^{2}}{\sigma^{2}}\right)$

Linear Regression - Probabilistic Interpretation

- Assume $y_{i}=m x_{i}+e_{i}$
- Random error: $e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...
- Then $y_{i} \sim \mathcal{N}\left(m x_{i}, \sigma\right) \rightarrow p\left(y_{i} \mid x_{i} ; m\right) \propto \exp \left(\frac{1}{2} \frac{\left(y_{i}-m x_{i}\right)^{2}}{\sigma^{2}}\right)$
- Likelihood function:

$$
\begin{array}{r}
L(m)=p(\mathbf{y} \mid \mathbf{X} ; m)=\prod_{i} p\left(y_{i} \mid x_{i} ; m\right) \\
\rightarrow-\log L(m) \sim \sum_{i}\left(y_{i}-m x_{i}\right)^{2}
\end{array}
$$

Linear Regression - Probabilistic Interpretation

- Assume $y_{i}=m x_{i}+e_{i}$
- Random error: $e_{i} \sim \mathcal{N}(0, \sigma) \rightarrow p\left(e_{i}\right) \propto \exp \left(\frac{1}{2} \frac{e_{i}^{2}}{\sigma^{2}}\right)$
- Noisy measurements, unmeasured variables, ...
- Then $y_{i} \sim \mathcal{N}\left(m x_{i}, \sigma\right) \rightarrow p\left(y_{i} \mid x_{i} ; m\right) \propto \exp \left(\frac{1}{2} \frac{\left(y_{i}-m x_{i}\right)^{2}}{\sigma^{2}}\right)$
- Likelihood function:

$$
\begin{array}{r}
L(m)=p(\mathbf{y} \mid \mathbf{X} ; m)=\prod_{i} p\left(y_{i} \mid x_{i} ; m\right) \\
\rightarrow-\log L(m) \sim \sum_{i}\left(y_{i}-m x_{i}\right)^{2}
\end{array}
$$

Squared
loss function!

Linear Regression Example

- Reconstructed Jet energy vs. Number of primary vertices

Linear Classification

Linear Classifier with Least Squares?

$$
L(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

[Bishop]

- Why not use least squares loss with binary targets?

Linear Classifier with Least Squares?

$$
L(\mathbf{w})=\frac{1}{2} \sum_{i}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

-Why not use least squares loss with binary targets?

- Penalized even when predict class correctly
- Least squares is very sensitive to outliers

Logistic Regression

- Computational Graph of function
- White node = input
- Red node = model parameter
- Blue node = intermediate operations

This unit is the main building block of Neural Networks!

How to Minimize Loss $\mathcal{L}(\theta)$? Gradient Descent

- Gradient Descent:

Make a step $\theta \leftarrow \theta-\eta v$ in direction v with step size η to reduce loss

- How does loss change in different directions? Let λ be a perturbation along direction v

$$
\left.\frac{d}{d \lambda} \mathcal{L}(\theta+\lambda v)\right|_{\lambda=0}=v \cdot \nabla_{\theta} \mathcal{L}(\theta)
$$

- Then Steepest Descent direction is: $v=-\nabla_{\theta} \mathcal{L}(\theta)$

Multiclass Classification?

- What if there is more than two classes?

- Softmax \rightarrow multi-class generalization of logistic loss
- Have N classes $\left\{c_{1}, \ldots, c_{N}\right\}$
- Model target $\mathbf{y}_{\mathrm{k}}=\left(0, \ldots, \underset{\mathrm{k}^{\mathrm{th}}}{1, \ldots 0)} \sqrt{\mathrm{k}^{\text {e }}}\right.$ element in vector

$$
p\left(c_{k} \mid x\right)=\frac{\exp \left(\mathbf{w}_{k} x\right)}{\sum_{j} \exp \left(\mathbf{w}_{j} x\right)}
$$

- Gradient descent for each of the weights \mathbf{w}_{k}

