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Modern Neural Networks

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using

some form of gradient-based optimization.
-Yann LeCun, 2018




Modern Neural Networks

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using

some form of gradient-based optimization.
-Yann LeCun, 2018

* Non-linear operations of data with parameters

* Layers (set of operations) designed to perform specific
mathematical operations

 Chain together layers to perform desired computation

* Train system (with examples) for desired computation
using gradient descent



Deep Neural Networks
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As data complexity grows, need exponentially large number of neurons
in a single-hidden-layer network to capture all structure in data

Deep networks factorize learning of structure in data across layers

Large datasets, fast computing (GPU /TPU) and new training
procedures / network structures made training possible



Hierarchical Learning of Features
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https://arxiv.org/abs/2212.06727

More Complex Models — Bigger Search Space
More Data — Find Better Solutions
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The Power of Scale: Large Models, Data, Compute -
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https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1905.11946

Deep Neural Networks Loss Landscape
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OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED BY SIMPLE CURVES OVER
WHICH TRAINING AND TEST ACCURACY ARE NEARLY CONSTANT

https://arxiv.org/abs/1802.10026



https://arxiv.org/abs/1802.10026

Choosing the right function...

* We know a lot about our data
— What transformations shouldn’t affect predictions
— Symmetries, structures, geometry, ...

* Inductive Bias: we can match models to this knowledge

— Throw out irrelevant functions we know aren’t the solution
— Bias the learning process towards good solutions

Unstructured Models

A/.\ Models with

Inductive Bias



Choosing the right function...
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Convolutional Neural Networks
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Convolutional Neural Networks .

* When the structure of data includes “invariance to
translation”, a representation meaningful at a
certain location can / should be used everywhere

* Convolutional layers build on this 1dea, that the
same “local” transformation 1s applied everywhere
and preserves the signal structure

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

1D Convolutional Layer Example
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Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Convolutional Filters 5

Convolution can implement in particular differential operators, e.g.

(0,0,0,0,1,2,3,4,4,4,4)® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

W@;Lpzm

or crude “template matcher”, e.g.

B 1 v .

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

2D Convolution Over Multiple Channels .

Input
Output

Kernel

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

2D Convolution Over Multiple Channels

Input

Fleuret, Deep Learning Course

Kernels

W-—-w-+1

Output

H—-h+1



https://fleuret.org/dlc/

Shared Weights: Economic and Equivariant

17

 Parameters are shared by each neuron producing an
output in the activation map

» Dramatically reduces number of weights needed to
produce an activation map

— Data: 256x256%x3 RGB image
— Kernel: 3x3x3 = 27 weights

— Fully connected layer:
« 256X256X3 inputs = 256x256x%3 outputs = 0(101%) weights

Y. LeCun et. al. 1998


https://ieeexplore.ieee.org/document/726791

Shared Weights: Economic and Equivariant
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 Parameters are shared by each neuron producing an
output in the activation map

» Dramatically reduces number of weights needed to
produce an activation map

 Convolutional layer does pattern matching at any
location = Equivariant to translation
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Y. LeCun et. al. 1998


https://ieeexplore.ieee.org/document/726791

Pooling 1

* In each channel, find max or average value of
pixels in a pooling area of size hxw

Input

Output

rw

sh

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Pooling 20

* In each channel, find max or average value of
pixels in a pooling area of size hxw

e [nvariance to

permutation within input

pooling area L

* Invariance to local
perturbations Output T

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Convolutional Network 5

* A combination of convolution, pooling, Rel U,
and fully connected layers

convolution linear max convolution
rectification pooling

convolution layer pooling layer



Hierarchical Composition of Features

Low-Level| |Mid-Level| |High-Level Trainable

—r — — —_—
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 201 3]



Convolutional Networks
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Residual Connections

* Training very deep networks is made possible
because of the skip connections in the residual
pblocks. Gradients can shortcut the layers and
nass through without vanishing.

Activation function Activation function
A
f(x) + x
X
f(x) f(x)
——————————————————————————————
| I | I
I Weight layer : I Weight layer :
I I
[ 4 : | ) :
| | Activation function | | ! Activation function |
I I

: t I : A I
| Weight layer : | Weight layer :
: } | : 4 |

X x



https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md

Deep CNNs
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| 3x3 Max Pooling |
*

| Batch Norm |

)
| 7x7 Conv |

ResNet

(He et al, 2015)
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https://arxiv.org/abs/1905.11946

Recurrent Neural Networks

26




Sequential Data

27

* Many types of data are not fixed in size

* Many types of data have a temporal or
sequence-like structure

— Text

— Video
— Speech
— DNA

* MLP expects fixed size data

* How to deal with sequences?



Sequential Data

28

* Given a set X, let S(X) be the set of sequences,
where each element of the sequence x; € X

— X could reals RM, integers ZM, etc.
— Sample sequence x = {x4, x5, ..., X1}

» Tasks related to sequences:
— Classification SO ->{P|X¥ p,=1}
— Generation f: R = S(X)
— Seq.-to-seq. translation  f: S(X) = S(Y)

Credit: F. Fleuret



https://fleuret.org/dlc/

Recurrent States

29

* Input sequence x € S(R™) of variable length T (x)

* Recurrent model maintain a recurrent state h, € R4
updated at each time step t. Fort =1,...,T(x):

hi 1 = ¢(x¢, hy; 0)

— Simplest model:

¢(xt, ht, W, U) — O-(Wxt + Uht)

* Predictions can be made at any time t from the
recurrent state

Ye = Y(he; 0)

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent Neural Networks

Recurrent Model

hiy 1 = ¢(x¢, h; 0)

hoh—ﬁ’%hl

Credit: F. Fleuret



https://fleuret.org/dlc/

Recurrent Neural Networks
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Recurrent Model

hiy 1 = ¢(x¢, h; 0)

XT—1

xT

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent Neural Networks

Prediction
Y: = Y(hg; 0)

- v
1
ho |F—— ® |—>| h1 [ @ e 2|1 e >
1 1 1 1
x1 x2 XT—1 xT
» y, y, . J

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent Neural Networks .

[0.98] = Positive Sentiment

YT

f v
T Sentiment
Analysis
hoh—*b%hll#—(b cee 7 OﬁhT_lw-OHhT
1 1 1 1
X1 x2 XT —1 XT
» y. y. by, y,
The movie was great

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent Neural Networks
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Prediction per sequence element
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Credit: F. Fleuret

Although the number of steps T'(x) depends on x, this is a standard
computational graph and automatic differentiation can deal with 1t as

usual. This 1s known as “backpropagation through time” (Werbos, 1988)


https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Gating s

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

Credit: Gilles Louppe


https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Long Short Term Memory (LSTM) y

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

» LSTM: ()
— Add internal state separate G!D 5 G:D *
from output state ? L
— Add input, output, and @ Tt @

forget gating @

Credit: Gilles Louppe


https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Examples

37

Y. Wu et al, 2016

Neural machine translation
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_-~" Detoder LSTMs ™+
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https://arxiv.org/abs/1609.08144

Many Other Architectures: Graph Neural Networks -

Permutation invariant data
with geometric relationships

— Features can be local on graph,
but meaningful anywhere on graph

e ek

Graph layers can encode these
relationships on nodes & edges

Sanchez-Gonzalez et al. 2020
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https://arxiv.org/abs/2002.09405

Many Other Architectures: Transformers & Deep Sets

* Deep Sets and Transformers can process
permutation invariant sets of data

* Transformers are very adaptable:
Built using layers of attention, they can also
process sequences, images, and other data

Output
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Beyond Regression and Classification



Beyond Regression and Classification

41

 Not all tasks are predicting a label from features, as in
classification and regression

* May want to model a high-dim. signal
— Data synthesis / simulation
— Density estimation
— Anomaly detection
— Denoising, super resolution

— Data compression

» Often don’t have labels = Unsupervised Learning



Unsupervised Learning .

* Our goal is to study the data density p(x)

* Even w/o labels, aim to characterize the distribution

x2 ‘ some info about
O O O 00
O o —> S —» p(X)
000
O
>




Probability Models ;

A process | A formula

& - R2 R? > R
1 1
puz(x) = \/Wexp <—§(x — ) —ﬂ)>

Generating new samples
from randomness

Evaluating the Probability
for a given sample

"Understanding p(x)” — ability to do either or both of these



Probability Models as Sampling a Process 44

* In many cases, we don’t have a theory of the
underlying process — Can still learn to sample

* Deep learning can be very good at this!

face ~ p(face)

https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

Learning Objective s

» Unsupervised learning is more heterogeneous than
supervised learning

* Many architectures, losses, learning strategies

» Often constructed so model converges to p(x)

— Variational inference, Adversarial learning,
Self-supervision, ...

 Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe
the data



Modeling Data and Meaningful Degrees of Freedom
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[}
S 9 ]

Vv

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom
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f'
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Latent space &

[}
S 9

Vv

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom
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Latent space &

Vv

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom

49

ST

Latent space &

WV

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

AutoEncoders
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AutoEncoders
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Encoder
Network

(conv)

Compress

Decoder :
— Network = &
(deconv)

, 2
L(O,)) = Nzuxn — gw(fe (xn))H

g o f(X) (CNN, d = 16)

72/04 19969200
9015973472605
40740\3\3U72



Can We Generate Data with Decoder? .

« Can we sample in latent space
g
and decode to generate data? . /\\@

— Latent space &

Original space &

« What distribution to sample from

Autoencoder sampling (d = 16)

in latent space? R 2323353604
— Try Gaussian with mean and 0345237 %5534 60
variance from data 3 ¢HhoR2DLFTSESBE

* Don't know the right latent space density

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Generative Models Goa N

A generative model is a probabilistic model g that can be
used as a simulator of the data.

Goal: generate synthetic, realistic high-dimensional data

x~q(x;0)

that is as close as possible to the unknown data
distribution p(x) for which we have empirical samples.

I.e. want to recreate the raw data distribution
(such as the distribution of natural images).



Generative Models Are Everywhere These Days

54

Stable Diffusion

& GitHub Copilot

Prompt:

street style photo of a woman
selling pho at a Vietnamese
street market, sunset,

shot on fujifilm
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Deep Generative Model Examples in Science

(a) (b)

SMILES input @

cleccect

M
ENCODER 0000OC (o)

Neural Network = Property
=

2
CONTINUOUS W ' ; ‘
MOLECULAR &o
REPRESENTATION : f(z)
(Latent Space) —

PROPERTY
PREDICTION

N-body simulation samples
L g T

DECODER
Neural Network
Most Probable Decoding

argmax p(*lz)

SMILES output

clececel

Design of new molecules with desired chemical properties.
(Gomez-Bombarelli et al, 2016)

Figure 1: Samples from N-body simulation and from GAN for the box size of 500 Mpc. Note
that the transformation in Equation 3.1 with a = 20 was applied to the images shown above
for better clarity.

Learning cosmological models
(Rodriguez et al, 2018)

Deep Generative Model of Rainfall (Ravuri et. al. 2021)



What Deep Generative Models Are There?

GAN: Adversarial < | | x |_|>serminator ” Generator |
training D(x) G(z)
VAE: maximize x |__,| Encoder 7 _

variational lower bound q¢(z|x)

Flow-based models: X > Flow > Z > Inllfrse >
Invertible transform of f(x) f (=)
distributions
Diffusion models:_ X0 - X1 - Xo - >
Gradually add Gaussian -« - -- - - - - - *-------q
noise and then reverse

Image from Lilian Weng


https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Variational AutoEncoders .

Probabilistic
Decoder

Probabilistic
Encoder

N
7

Latent space &

WV

Original space &

Choose known distribution for latent space and learn map to data space



Generative Adversarial Networks (GAN)

Goodfellow et. al., 2014 58

WV

L

7

Known Noise Distribution

Vv

“real,l

llfa ke"

What D wants

Fleuret, Deep Learning Course

* Generator creates data from noise, trained to trick

Discriminator that ¢
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https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/2109.02551
https://fleuret.org/dlc/
https://arxiv.org/abs/2005.05334

Generative Adversarial Networks (GAN)

WV

“real”

What D wants

Vv

llfa ke'I

7

Known Noise Distribution

* Generator creates data from noise, trained to trick
Discriminator that classifies data as real or fake

Fleuret, Deep Learning Course

Optimization of the magnet system 200
For the SHiP experiment lr 500
O 0 S
>
—200 <
—-400
0 500 1000 1500 2000 2500 3000
Z,cm

Shirbokov, MK, et al., NeurlPS 33, 14650-14662 (2020)



https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://fleuret.org/dlc/
https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Normalizing Flows

Explicit density estimation
We can evaluate density p(x)

~1
px(x) = p,(2) |det <a¢(Z))

dz

é )
Invertible
¢ (Z ) .~ &

z Tractable X
7 Jacobian ‘
p(x)
81 8i 8it1 8n
- | —_ e
|\ J
Y

Many simple layers
composed to produce ¢

Approximates

Easil led
aslly sample desired dist.

Slide credit: G. Kanwar



https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Event Generation with Normalizing Flows y
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< 4 of decaying fermion with beam

< cos ¥ of decay

+ ¢ of decay

< propagator of decaying fermion

£ < multichannel
0@5\) ;



https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf

Diffusion Models .

Use variational lower bound

Lilian Weng

» lteratively add noise to data,
Train model to learn how to denoise step by step



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Wrapping Up



Since Tim Berners-Lee Invented the World Wide Web...

64

Vagee  Eur e Ry %,

CERN DD/OC Tim Bemers-Lee,

Information Management: A Pr

Information Management: ‘Toposal

Abstract

This proposal concems the management of general information abost accelerators and cxperiments at
CERN. It discasses the problems of loss of information about complex evolving systems and derives &
solution based on a distribared hyperiex: ytstem.

~10 years

Kepwords: Hyperc, Compuir confraciag., Document reirs, Informaion rmamagemen, Project

Google!

B ET

Search the web using Google

Google Search I I'm feeling lucky I

49
More Google!

Copyright ©1999 Google Inc.

2149 —
@ enwikipediad®@

~25 years

‘‘‘‘‘

» YouTube

Richard Feynman on Quantum Mechanics Part 1

Photons Corpuscles of Light



Still Early for Deep Learning, Where Will We be in 25 Years? .

Che New Jork Times

fl Chatbots > OpenAl Unveils GPT-4  What GPT-4 Can and Can't Do Funding Frenzy Escalates  How

Scientists See Promise in Deep-
Learning Programs

£ Gretisatice &> []

A voice recognition program translated a speech given by Richard F. Rashid,

Microsoft’s top scientist, into Mandarin Chinese. Hao Zhang/The New York Times

2012

. ~25 years

o

Prompt: Several giant wooly
mammoths approach treading
through a snowy meadow [..]

OpenAl Sora


https://openai.com/sora

Do These Models Know Physics?... Maybe Not Yet

66

n

Credit: Jim Fan + Sora


https://twitter.com/DrJimFan/status/1758549500585808071?t=G2zRCc37yEQOR2gXVLQ-ww

Summary .

* Deep neural networks allow us to learn complex
function by hierarchically structuring the feature
learning

* We can express our inductive bias about a system in
terms of model design, and can be adapted to a many
types of data

. Many neural networks structures are available for
training models on a wide array of data types.

» Beyond classification and regression, deep neural
networks allow for powerful generative models to
enable us to model and generate data
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Deep Neural Networks



Neural Network Zoo

70

 Structure of the networks, and
the node connectivity can be
adapted for problem at hand

* Moving inductive bias from
feature engineering to model
design

— Inductive bias:
Knowledge about the problem

— feature engineerin
Hand crafted variables

— Model design:
The data representation and the
structure of the machine
learning model / network

Image credit: neural-network-zoo
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Markov Chain (MC)

IXIXTX X

Input Cell

Backfed Input Cell
Noisy Input Cell

Hidden Cell

Probablistic Hidden Cell
Spiking Hidden Cell
Capsule Cell

Output Cell

Match Input Output Cell

Recurrent Cell

Auto Encoder (AE)

Memory Cell
Gated Memory Cell
Kernel

Convolution or Pool

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Perceptron (P)

B

Recurrent Neural Network (RNN)
o o

Feed Forward (FF)

Variational AE (VAE)

o

Long / Short Term Memory (LSTM)
Qo

WY
RGN

]

Radial Basis Network (RBF)

Denoising AE (DAE)

Deep Feed Forward (DFF)

TAYAN

XA
o
VAV

Gated Recurrent Unit (GRU)
o o

NV
EB

Sparse AE (SAE)

Hopfield Network (HN) ~ Boltzmann Machine (BM)  Restricted BM (RBM)

Generative Adversarial Network (GAN)

AW
§

e eveee

[ XX XX

O,
N aYaYaY
A

Deep Residual Network (DRN)

Capsule Network (CN)

Deconvolutional Network (DN)

Liquid State Machine (LSM)

| XXX X
AWAWAN

Extreme Learning Machine (ELM)

Differentiable Neural Computer (DNC)
o o o

7

Kohonen Network (KN)

s

<\

,A
SO
\W/

Deep Belief Network (DBN)

Y
/3

Deep Convolutional Inverse Graphics Network (DCIGN)

Echo State Network (ESN)

i

Neural Turing Machine (NTM)

Attention Network (AN)

ek


http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Zoo — “Optimization” Perspective
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* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

Fleuret, Deep Learning Course



https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective .

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output
— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

under-fitting . over-fitting under-parameterized /\ over-parameterized

. Test risk Test risk
i ﬁ ":fj “classical” “modern”
Belkin et. al. 2018 & D",_a: regime interpolating regime

N Z .

> o Training risk ~ Training risk:

sweet spot\: - _ S~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity
function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

Fleuret, Deep Learning Course



https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
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Neural Network Zoo — “Optimization” Perspective

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

— But we must control that:
 Gradients don’t vanish
 Gradient amplitude is homogeneous across network
 Gradients are under control when weights change

Fleuret, Deep Learning Course



https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective
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* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

* Major part of deep learning is choosing the right function
— Need to make gradient descent work, even if substantial

engineering required

Fleuret, Deep Learning Course



https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
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Convolutional Neural Networks



1D Convolutional Layers

76

e Data: x € RM
« Convolutional kernel of width k: 1 € R¥

e Convolution x & u is vector of size M-k+1

k-1

(x®u); = 2 Xi+pUp

b=0

* Scan across data and multiply by kernel elements



2D Convolutional Layer

77

* Input data (tensor) x of size CXHXW
— C channels (e.g. RGB in images)

* Learnable Kernel u of size CxhXw
— The size hXw is the receptive field

C-1h-1w-1

(x® u)l] E(xc@)uc)u Zzzxcn+lm+]ucnm

c=0n=0m=0

* Output size (H—h+ ))x(W —w + 1) for each kernel
— Often called Activation Map or Output Feature Map



Dilation

78




Stride — Step Size When Moving Kernel Across Input

79

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Padding — Size of Zero Frame Around Input

80

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Normalization .

* Maintaining proper statistics of the activations and derivatives is
a critical issue to allow the training of deep architectures

“Training Deep Neural Networks is complicated by the fact that
the distribution of each layer’s inputs changes during training,
as the parameters of the previous layers change. This slows
down the training by requiring lower learning rates and careful
parameter initialization ...”

loffe, Szegedy,
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018



Batch Normalization .

* During training batch normalization shifts and rescales
according to the mean and variance estimated on the batch.

— During test, use empirical moments estimated during training

* Per-component mean and variance on the batch

B
1
Mpatch = B Xb
b=1

1 B
— 2
Ubatch = E § (xb - mbatch)
1

* Normalize and compute output Vb =1 ...B

081

_ Xp — Mpqatch
Zb - Vv + E ,++ ,. .
D .
batch osifi.
= = =Inception
o - = BN-Baseline
0.5(-1 - BN-x5
= : —— BN-x30
yb - VQZb + ﬁ 4 + BN—iS—Sigmoid
: 4 Steps to match Inception
o4 5M 10M 15M 20M 25M 30M

d . . Figure 2: Single crop validation accuracy of Inception
- y an ﬁ are paramete 'S tO Optl mize and its batch-normalized variants, vs. the number of

training steps.



83

RNN



Stacked RNN

84

X1.1 |_ RNN éhl:T

RNN

(2)
h'l:T

RNN

(V)
hl:T




Stacked RNN
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Two Stacked LSTM Layers

(2) | p (N)
h'l:T RNN hl:T
Zoom in
h(()Z) ¢(2) ) r® »®@ ) h(T) : ¢(2) h(T2>
ho Oﬁhllﬁ—‘b °%hT—1|7'°%hT
X1 x2 XT—1 xT
Z Z

2"d RNN Layer

1t RNN Layer



Bi-Directional RNN

—>
Forward in time RNN Layer

h” | ¢® —> |n || ¢ 9O > |2, | F——1® [—> | n{’
w X1 X2 XT-1 X7
Ol P e I IO $@ $@ ] |1, | €=—¢@ |—— |

Backward in time RNN Layer
6—-



Comparison on Toy Problem

Learn to recognize palindrome
Sequence size between 1 to 10

x Y
(1,2,3,2,1) 1
(2,1,2) 1
(3,4,1,2) 0
(0) 1
(1,4) 0

Slide credit: G. Louppe

. —— RNN

' - -~ Stacked RNN
] —-- BiRNN

e —— LSTM

Cross-entropy
o
w
I

o
B
1

0.3 -

Epoch


https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples

MariFlow - Self-Driving Marlo Kart w/Recu

Thiy 35 a Saurrers
neural network that I've
trained to play mario
Kart like me. This NN is
very different from
mMarI/o, because its goal
§lis not to win, but rather
jto predict what
icontroller inputs I would
use in any given
situation. The display on
the bottom shows what the
neural network sees, and
its internal state and
controller predictions.

\‘"u .-.- = l :*-.-.I . - b.. It's currently trying

'. every cup in 50cc on

repeat. The goal is to
AN JT‘? "ﬁ"'-'- fi:-f't'i— T e
- actually present. If you

%.:r--. L 'L. 'J-!‘.r..- see something interesting

---L- o clip it so I can see it

-3 ‘- 11‘-£ FM later and potentially
MORE VIDEOS 'f """" r t

include it in my video!

- N1 =-=4- ES

") 5347550 2 YouTube

Self-driving Mario Kart with RNN: YouTube video



https://youtu.be/Ipi40cb_RsI

Examples

89

Text-to-speech synthesis

Waveform
Mel Spectrogram Samples
5 Conv Layer WaveNet
Post-Net 5 MoL !
l [ Linear
[ 2 Layer 2 LSTM ]< Projection
Pre-Net Layers @ : B
Ll.nea'r Stop Token
| Projection |
Locatlon
Sensitive
Attention

T A Character 3 Conv
P Embedding Layers

Shen et al., 2017

Bidirectional
LSTM



https://arxiv.org/abs/1712.05884
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Deep Sets



What if our data has no time structure?

91

» Data may be variable in length but have no
temporal structure = Data are sets of values

* One option: If we know about the data domain,
could try to impose an ordering, then use RNN

* Better option: use system that can operate on
variable length sets in permutation invariant way

— Why permutation invariant = so order doesn’t matter



Deep Sets

92




Deep Sets
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Deep Sets
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Xt




Deep Sets
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— &

X2

Permutation invariant

/ operation: Sum, Max, ...

— &

Xt




Deep Sets
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F — vy
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Examples
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Medical Imaging

With more complex architecture

Outlier detection

e :
s

) 455

s

1R ,*.“*u"“”
Ep“ﬁ faﬂ‘:" -

(<) (d)

Figure 5. (a) H&E stained histology image. (b) 27x27 patches
centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Heatmap: Every patch from (b)
multiplied by its corresponding attention weight, we rescaled the
attention weights using aj, = (ax —min(a))/(max(a) —min(a)).

black hair &
brown hair

M. Zaheer et. al 2017

M. llse et al., 2018


https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712
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Transformers



Challenges of Long Sequences -

 Gradients may not explode or vanish, but managing a
meaningful context over a long sequence is challenging.

» Bottleneck: fixed length array in model with long input

Bi-Directional RNN Encoder-Decoder



Additive Attention Mechanism 10

* Idea: allow RNN to look at all the hidden state sequence when
producing an output. Output is generated from context c

— \'T —
Ci = j=1 (leh] where aij = Softmax(ﬁij)overj

and 'BU =U tanh(WSi_l + Wh] + bl)

reement

el
7}
c

Ry
(9]

in
August
1992
<end>

accord

. : zone
10H — RNNsearch-50 f................ e S ] éconorlnique
----- RNNsearch-30 | : o NN europeenne

N - a

3P == RNNemes0 o S T |
- RNNenc-30 [ : :
I

BLEU score

été

signé

1 1 L 1
0 10 20 30 40 50 60 en

ao(t
Sentence length
K ) 1992

<end>

1409.0473


https://arxiv.org/abs/1409.0473

Transformers

* Idea: Get rid of the RNN and only use attention

ﬁ Layer Norm.

ﬁ Feed-Forward g 7

ﬁ Layer Norm. Q

Attention

o > o

ﬁ Multi-Head

—

ﬁ Layer Norm. g

—

Multi-Head
Attention

SINE

Encoder

ﬁmoom-mogm&g /

ﬁ Layer Norm. w

Masked

Multi-Head >
; S
Attention Wu
I =
Z
___________________________________________ x

k=)

5}



Scaled Dot-Product Attention 10

Q = Rnxd
' Q KT ” mXxd
Attention (Q, K, V') = softmax V where K € R™*¢
\/a V € R"”de
Query Key Value
qQ (1) U1
I/ nxd \km) mxd Um mXdy

» Project the input “query” onto a “key” to compute the
weights for the corresponding “value”

 Return the weighted value



Scaled Dot-Product Attention 10

Q c R" X d
) V where K € RmXxd
V € R'n‘z.xdv

QK"
Vd

Attention (Q, K, V') = softmax (

« Self-Attention: using input X to define Q,K,V

(A) attention

X = "that" 6
> . R—
X a = soft
O weights
X " — -
X R Context q K A
—— = Q| | . o
1 5 il - . W,) * (XW;
g > E softmax (2Wq) * ( ) XW,
+/100
S
a 6 Legend
E wv V = XW x = word vector for "that"
—— - Bl > E v A = 3 neural networks in parallel
[ E— a = vector of soft weights for "that".
300 wide 9 — = softmax( XW XW T / sqrt(100) )
100 wide : Bl

X = word vectors stacked together as

Wiki[gedia sentence matrix


https://en.wikipedia.org/wiki/Attention_(machine_learning)

» Lets look at a single query

Vd

gKT (¢ -k (j’l'k_é”. ¢k
vd Vd T

m )
1xm

T ex q1-k;
qK . p
softmax (W) = (p1, po, ---apm)1><m =p where p; = \/a(ﬁ 7
m hg
2.j=10XP g

K']’ n
Attention(q, K, V') = softmax (Q ) V =pV = Z iU

Vd

* Generalize input to length n

P11U1 + p12vs + -+ - + PimUm

. P21U1 + p22U2 + -+ + P2amUnm
Attention(Q, K, T) = ,

Pni1l1 + Pn2v2 + -+ PnmUm

1=1

™m -
Zi P1iv;
™m -
Zi P2iU;

m —
Zi PniVi n X dy



Graph Neural Networks



Graph Data 1

h

 Sequential data has single (directed) connections
from data at current time to data at next time

» What about data with more complex
dependencies

Image Credit: |. Henrion Image credit: N. Wang et al., 2018


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

Graphs

Edge

|

Vertex / node

* Adjacency matrix: A;; = §(edge between vertex i and j)
* Each node can have features

 Each edge can have features, e.g. distance between nodes

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Image Credit: |. Henrion



https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

myF

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

m;_,; = o(A;m;)

ht = GRU(h' 1, X;m!

_[—)I

Image Credit: |. Henrion

)


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h «<—Embed(x)

fort=1,..., T do
m < Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples 1

Quantum chemistry with graph networks

c
-’: - Molecules with = 20 atoms
- © 2=z, 2 2. 5 30 o™
3 o
D,, Dy, D,, -8 25 S”
o m— Dy Dy D,, < 20 i o
b : £ 18 L 2,500 5,000
O/ . & # add. calcs. < 15 atoms
Dnl Dm Dm § 1.0
€ o0s
g 0.0
b # atoms
d
oo I
[=]
£
o g
2 B
E §
)
& B -0 4 r .
0 100 200

Gaussian expansion
@ Hyperbolic tangent
@ Element-wise product

@/ @ Element-wise sum

Schutt et al. 2017


https://www.nature.com/articles/ncomms13890

Examples

Learning to simulate physics with graph networks

(@ X'

(b) ENCODER

— (0

X—

(¢) Construct graph

© X
© & . e?,j
© 0 x; S\4
¢ © ¢
©

Learned simulator, sy

G

2l —1

PROCESSOR

GN!

>(+)> Gl ... GM-1 r

DECODER

G.M >

(d) Pass messages

_>Y

(e)  Extract dynamics info
C

Yy

1

©

C
@ —> [ )
V!u © (™
C
C

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dy, and a fixed update procedure.
(b) The dp uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X . (¢) The ENCODER
constructs latent graph, G°, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent
graphs, G*, ..., G™. (e) The DECODER extracts dynamics information, Y, from the final latent graph, G*.

Sanchez-Gonzalez et al. 2020


https://arxiv.org/abs/2002.09405

Deep Generative Model Examples 1

5

Image-to-Image Translation with CycleGAN
Zhu et. al. 2017

Single Image Super-Resolution (Ledig et al, 2016)

SRGAN

bicubic
: (21.59dB/0.6423)

original

Simulate future
trajectories of
environments
based on actions
for planning.
(Finn et al,

The bird is
Text This birdisred  shortand
o and brown in stubby with
description g :
color, with a yellow on its

stubby beak

body

Text-to-Image Synthesis
with StackGAN
(Zhang et. al. 2017)

64x64
GAN-INT-CLS

128x128
GAWWN

256x256
StackGAN-v1



https://arxiv.org/abs/1703.10593

Generative Models



Different Kinds of Generative Models "

Generative Models approximate and simulate
the data generation process

Scientific Simulators

Built from science knowledge

Relatively few parameters,
often interpretable

High Fidelity,
often computationally costly

Training SEtﬁ// 1 Discriminator
4 D@E
e

Machine Learning

* Fit to data, inductive bias in
model design / optimization

 Can have >10° parameters,
often not interpretable

« Often slow to train,
fast to evaluate



GAN:Ss for Detector Design

* GAN to emulate detector simulation ¥ = g(z|y)
given detector parameters 1) (e.g. magnet shape below)

« Design objective C to minimize: mlgn Ex[C(% = g(z|[¥))]

* GAN is differentiable = Minimize with gradient descent

NeurlIPS 33, 14650-14662 (2020)

2000



https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Variational Autoencoders



Denoising Autoencoders >

» Learn a mapping from corrupted data space X
back to original data space

— Mapping ¢,,(X) = X
— ¢, will be a neural network with parameters w

e Loss:

1
L =2 [l = b G + €0
/

Perturbation, e.g. Gaussian noise



Denoising Autoencoders Examples

:4)

b
N
B
3
Q
=3
fus
=
(e]
)

Reconstructed

ning Course

Fleuret, Deep Lear



https://fleuret.org/dlc/

Denoising Autoencoders Examples 2

e Autoencoder learns

the average behavior
ﬂ 9%\,:. \V:i : é’ % eSS .
& N  What if we care about

A TA ’f{/// . .
/ Q\’gx/ these variations?

 Can we add a notion of
variation in the
autoencoder?

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Autoencoder

f A
\\
/] T — *
A / g \*
X — Latent space #

WV

Original space &



Variational Autoencoder "

N
7

Latent space #

WV

Original space &



Variational Autoencoder "

f N
—
Draw sample
N

7

Latent space #

WV

Original space &



| atent Variable Models

a0

* Observed random variable x depends on unobserved
latent random variable z

* Joint probability: p(x,z) = p(x|2)p(2)

* p(x|z) is stochastic generation process from z = x



From Deterministic to Probabilistic Autoencoder

* Probabilistic relationship between data and latents

x,z~p(x,z) =plx|z)p(z)

* Autoencoding

x = q(z]x) z - p(x]z)

sample

— Encoder: Learn what latents can produced data: q(z|x)
— Decoder: Learn what data is produced by latent: p(x|z)



Variational Autoencoder

resampling

latent space

p(2)

* Close-by points must decode to similar images



How do we design Encoder and Decoder 2

» Classification / regression models make single

predictions...

How to model a conditional density p(a|b) ?

» Assume a known form of density, e.g. normal
p(alb) = N (a; u(b), o (b))

— Parameters of density depend on conditioned variable

* Use neural network to model density parameters

p(alb)

p(alb =b;)  p(alb=Dby)

A{I(bl)

u(by) a



Encoding

 Typical encoder maps input x to “average” point in latent space

B
TN

f(x) = p(x)
f /
7

Original space &

7

Latent space #



Encoding

* AVAE Encoder has two outputs: mean & variance function

fip(x) = {1y (%), o, (x

)} 1) are parameters of the NN

N

M — Density

N

Draw sample

N

Original space &

7

Latent space



Encoding

* AVAE Encoder has two outputs: mean & variance function

fp (o) = {1y (x), o (x

)} 1) are parameters of the NN

* What is the probability of a point in latent space?

pw (le) = N(Z | ‘Lll/) (X), O-IIZJ (X)) Could choose different density

Gaussian is easiest

N

M — Gaussian Density

N

Draw sample

N

Original space &

7

Latent space #



Re-parameterization trick

* Given x~p(x|0)

e Sometimes, we can rewrite x as a function of
the parameters and a simpler distribution
without parameter dependence

x = g(g0) e~p(€)
» Example:

x~N(x|u,0) - x=0*€e+u with e~N(0,1)



Encoding

* AVAE Encoder has two outputs: mean & variance function

fp (o) = {1y (x), o (x

)} 1) are parameters of the NN

* What is the probability of a point in latent space?

pw (le) = N(Z | ‘Lll/) (X), O-IIZJ (X)) Could choose different density

Gaussian is easiest

* How do we draw a sample in latent space?

Z 0-1/) (X) €+ ,Ll¢ (X) € (O’ ) Re-parameterization trick
f N
M — Gaussian Density
N

g

/\ N

Draw sample
— Latent space #

Original space &



\

' Probabilistic
Bor X Encoder

—

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

—

Probabilistic
Decoder

z~p¢,(z|x)

\



https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082

Decoding s

« Same as autoencoder
g@ (Z) = ,ng (Z) 6 are parameters of the NN

e Likelihood of an observation x
pg(x|z) = N(x | ug(2),1)

/]
Gaussian Density
N
g

N

Draw sample

7

= Latent space F

Original space &



Decoding

 Same as autoencoder
9go(z) = ug(2)

e Likelihood of an observation x
pe(x|z) = N(x | ug(2),1)

¢ “Reconstruction Loss”: Maximum likelihood

Lyeco = Ezeqiz1x) llog p(x[2)]



Decoding

 Same as autoencoder
9go(z) = ug(2)

e Likelihood of an observation x
pe(x|z) = N(x | ug(2),1)

¢ “Reconstruction Loss”: Maximum likelihood

1

Lyeco = Ezeqiz1x) llogp(x|z)] = N

> logN (x| go(z), 1)

zi~q(z|x)



Decoding

 Same as autoencoder
9go(z) = ug(2)

e Likelihood of an observation x
pe(x|z) = N(x | ug(2),1)

¢ “Reconstruction Loss”: Maximum likelihood

1

2
Lyeco = Ezeqiz1x) llogp(x|z)] = N 2 (x — gH(Zi))

zi~q(z|x)



Variational Autoencoder Training Loss

* How do we make sure system doesn’t collapse to an
autoencoder (i.e. VAE encoder only predicts mean)?



Variational Autoencoder Training Loss 1

* How do we make sure system doesn’t collapse to an
autoencoder (i.e. VAE encoder only predicts mean)?

 Use prior p(z) for the latent space distribution,
need to ensure the encoder is consistent with prior

f AN

@

N
7

— Latent space #

WV

Original space &



Variational Autoencoder Training Loss 1

* Constrain difference between distributions with
Kullback-Leibler divergence

q(z|x)

Dgrla(z|X)|p(2)] = Eqz1x) [log () ] = ] q(z]x) logq

(z]x)
p(z) dz

— Dgilglp] =2 0 andisonly O whenqg =p



Variational Autoencoder Training Loss 1

* Constrain difference between distributions with
Kullback-Leibler divergence

q(ZIx)] ] q(z|x)
D z|x)|p(z)] = E lo = Z|x)lo dz
xla0Ip(2)] q(zlx)[ 850G | = ) 1 loem s
 VAE fU” ObjeCtive Reconstruction Loss Regularization of Encoder

| |

max L(6,y) = max [Eqw(ZIx) [log pe (x|2)] — D, [qu(Z|X)IP(Z)]]



Examples
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(b) emotion (smile)

(c) hair (fringe)

Higgins et al., 2017


https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Comparing Latent Spaces

14

component 2

1.0 1

0.8 1

0.6 4

0.4 4

0.2 1

0.0 1

Autoencoder Variational Autoencoder

component 2
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Data: MNIST data set of hand-written digits



