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Modern Neural Networks 2

People are now building a new kind of software by 
assembling networks of parameterized functional 
blocks and by training them from examples using 
some form of gradient-based optimization.   
        - Yann LeCun, 2018



Modern Neural Networks

• Non-linear operations of data with parameters

• Layers (set of operations) designed to perform specific 
mathematical operations

• Chain together layers to perform desired computation

• Train system (with examples) for desired computation 
using gradient descent
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People are now building a new kind of software by 
assembling networks of parameterized functional 
blocks and by training them from examples using 
some form of gradient-based optimization.   
        - Yann LeCun, 2018



Deep Neural Networks

• As data complexity grows, need exponentially large number of neurons 
in a single-hidden-layer network to capture all structure in data

• Deep networks factorize learning of structure in data across layers

• Large datasets, fast computing (GPU / TPU) and new training 
procedures / network structures made training possible
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Hierarchical Learning of Features 5

2212.06727

Depth

https://arxiv.org/abs/2212.06727


More Complex Models – Bigger Search Space
More Data – Find Better Solutions 6
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Target solution

Target solution

Target solution

Target solution



7The Power of Scale: Large Models, Data, Compute

Image credit: D. McCandless, T. Evans, P. Barton

2001.08361

1905.11946

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1905.11946


Deep Neural Networks Loss Landscape 8

https://arxiv.org/abs/1802.10026

https://arxiv.org/abs/1802.10026


Choosing the right function… 9

TargetUnstructured Models Models with
Inductive Bias

• We know a lot about our data
– What transformations shouldn’t affect predictions
– Symmetries, structures, geometry, …

• Inductive Bias: we can match models to this knowledge
– Throw out irrelevant functions we know aren’t the solution
– Bias the learning process towards good solutions



Choosing the right function… 10

Image credit: Michael Bronstein



Convolutional Neural Networks 11



Convolutional Neural Networks

• When the structure of data includes “invariance to 
translation”, a representation meaningful at a 
certain location can / should be used everywhere
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Fleuret, Deep Learning Course

• Convolutional layers build on this idea, that the 
same “local” transformation is applied everywhere 
and preserves the signal structure

https://fleuret.org/dlc/


1D Convolutional Layer Example 13

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Convolutional Filters 14

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 15

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 16

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of weights needed to 
produce an activation map
– Data: 256×256×3 RGB image
– Kernel: 3×3×3 → 27  weights
– Fully connected layer:

• 256×256×3 inputs à 256×256×3 outputs à 𝑂(10!") weights
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Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of weights needed to 
produce an activation map

• Convolutional layer does pattern matching at any 
location à Equivariant to translation

18

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Pooling

• In each channel, find max or average value of 
pixels in a pooling area of size ℎ×𝑤

19

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Pooling

• In each channel, find max or average value of 
pixels in a pooling area of size ℎ×𝑤

20

Fleuret, Deep Learning Course

• Invariance to 
permutation within 
pooling area

• Invariance to local 
perturbations

https://fleuret.org/dlc/


Convolutional Network

• A combination of convolution, pooling, ReLU, 
and fully connected layers

21



Hierarchical Composition of Features 22



Convolutional Networks 23

LeNet
(LeCun et al, 1998)

AlexNet
(Krizhevsky et al, 2012)

ImageNet Classification



Residual Connections

• Training very deep networks is made possible 
because of the skip connections in the residual 
blocks. Gradients can shortcut the layers and 
pass through without vanishing.

24

Credits: Deep Dive in Deep Learning , and G. Louppe

https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md


Deep CNNs 25

ResNet 
(He et al, 2015)

1905.11946

https://arxiv.org/abs/1905.11946


Recurrent Neural Networks 26



Sequential Data

• Many types of data are not fixed in size

• Many types of data have a temporal or 
sequence-like structure
– Text
– Video
– Speech
– DNA
– …

• MLP expects fixed size data

• How to deal with sequences?

27



Sequential Data

• Given a set 𝒳, let 𝑆 𝒳  be the set of sequences, 
where each element of the sequence 𝑥+ ∈ 𝒳
– 𝒳	could reals ℝ!, integers ℤ!, etc.
– Sample sequence 𝑥 = {𝑥", 𝑥#, … , 𝑥$}

• Tasks related to sequences:
– Classification                    𝑓: 	𝑆 𝒳 → {𝒑	| ∑%&"' 𝑝( = 1}
– Generation                       𝑓:	ℝ) → 𝑆 𝒳
– Seq.-to-seq. translation    𝑓: 	𝑆 𝒳 → 𝑆 𝒴

28

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent States

• Input sequence 𝑥 ∈ 𝑆(ℝ,) of variable length 𝑇(𝑥)

• Recurrent model maintain a recurrent state 𝒉- ∈ ℝ. 
updated at each time step 𝑡.  For 𝑡 = 1,… , 𝑇 𝑥 :

𝒉-/0 = 𝜙(𝒙- , 𝒉-; 𝜃)

– Simplest model: 

𝜙 𝒙*, 𝒉*;𝑊, 𝑈 = 𝜎(𝑊𝒙* + 𝑈𝒉*)

• Predictions can be made at any time 𝑡 from the 
recurrent state

𝒚- = 𝜓(𝒉-; 𝜃)

29

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 30

Credit: F. Fleuret

Recurrent	Model

𝒉*+" = 𝜙(𝒙*, 𝒉*; 𝜃)

https://fleuret.org/dlc/


Recurrent Neural Networks 31

Credit: F. Fleuret

Recurrent	Model

𝒉*+" = 𝜙(𝒙*, 𝒉*; 𝜃)

https://fleuret.org/dlc/


Recurrent Neural Networks 32

Credit: F. Fleuret

Prediction
𝒚* = 𝜓(𝒉*; 𝜃)

https://fleuret.org/dlc/


Recurrent Neural Networks 33

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 34

Credit: F. Fleuret

Prediction per sequence element

Although the number of  steps 𝑇(𝑥) depends on 𝑥, this is a standard 
computational graph and automatic differentiation can deal with it as 
usual. This is known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf


• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

Gating 35

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

• LSTM: 
– Add internal state separate 

from output state
– Add input, output, and 

forget gating

Long Short Term Memory (LSTM) 36
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Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


Examples 37

Y. Wu et al, 2016

https://arxiv.org/abs/1609.08144


Many Other Architectures: Graph Neural Networks

• Permutation invariant data 
with geometric relationships
– Features can be local on graph, 

but meaningful anywhere on graph

• Graph layers can encode these 
relationships on nodes & edges

38

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


Many Other Architectures: Transformers & Deep Sets

• Deep Sets and Transformers can process 
permutation invariant sets of data

• Transformers are very adaptable: 
Built using layers of attention, they can also 
process sequences, images, and other data

39



Beyond Regression and Classification

40



Beyond Regression and Classification

• Not all tasks are predicting a label from features, as in 
classification and regression

• May want to model a high-dim. signal
– Data synthesis / simulation

– Density estimation

– Anomaly detection

– Denoising, super resolution

– Data compression

– …

• Often don’t have labels à Unsupervised Learning

41



Unsupervised Learning 42

• Our goal is to study the data density 𝑝(𝑥)

• Even w/o labels, aim to characterize the distribution

Image credit: L. Heinrich



Probability Models 43

"Understanding 𝑝(𝑥)” – ability to do either or both of these 

Image credit: L. Heinrich



Probability Models as Sampling a Process 44

• In many cases, we don’t have a theory of the 
underlying process → Can still learn to sample

• Deep learning can be very good at this!

https://thispersondoesnotexist.com/

face	~	𝑝(face)

https://thispersondoesnotexist.com/


Learning Objective

• Unsupervised learning is more heterogeneous than 
supervised learning

• Many architectures, losses, learning strategies

• Often constructed so model converges to 𝑝(𝑥)
– Variational inference, Adversarial learning, 

Self-supervision, …

• Often framed as modeling the lower dimensional 
“meaningful degrees of freedom” that describe 
the data

45



Modeling Data and Meaningful Degrees of Freedom 46

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Modeling Data and Meaningful Degrees of Freedom 47

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Modeling Data and Meaningful Degrees of Freedom 48

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Modeling Data and Meaningful Degrees of Freedom 49

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


AutoEncoders 50
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AutoEncoders 51
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Can We Generate Data with Decoder?

• Don’t know the right latent space density

52

• Can we sample in latent space 
and decode to generate data?

• What distribution to sample from 
in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Generative Models Goal

A generative model is a probabilistic model 𝑞 that can be 
used as a simulator of the data. 

Goal: generate synthetic, realistic high-dimensional data

𝑥~𝑞(𝑥; 𝜃)

that is as close as possible to the unknown data 
distribution 𝑝(𝑥) for which we have empirical samples.

i.e. want to recreate the raw data distribution 
(such as the distribution of natural images).

53



Generative Models Are Everywhere These Days 54

street style photo of a woman 
selling pho   at a Vietnamese 
street market,  sunset, 
shot on fujifilm 

Prompt:



Deep Generative Model Examples in Science 55

Learning cosmological models 
(Rodriguez et al, 2018)

Design of new molecules with desired chemical properties.
(Gomez-Bombarelli et al, 2016)

Deep Generative Model of Rainfall (Ravuri et. al. 2021)



What Deep Generative Models Are There? 56

Image from Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Variational AutoEncoders 57

Choose known distribution for latent space and learn map to data space



Generative Adversarial Networks (GAN)

• Generator creates data from noise, trained to trick 
Discriminator that classifies data as real or fake 

58Goodfellow et. al., 2014

Known Noise Distribution

Image credit: 1705.02355 2109.02551

Fleuret, Deep Learning Course

G

2005.05334

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/2109.02551
https://fleuret.org/dlc/
https://arxiv.org/abs/2005.05334


Generative Adversarial Networks (GAN)

• Generator creates data from noise, trained to trick 
Discriminator that classifies data as real or fake 

59Goodfellow et. al., 2014

Known Noise Distribution
Fleuret, Deep Learning Course

G

Shirbokov, MK, et al., NeurIPS 33, 14650-14662 (2020)

Optimization of the magnet system
For the SHiP experiment

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://fleuret.org/dlc/
https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html


Normalizing Flows 60

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

𝑝# 𝒙 = 𝑝$ 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

%!Explicit density estimation
We can evaluate density 𝑝(𝑥)

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Event Generation with Normalizing Flows 61

Example: Learning 𝒆!𝒆" → 𝟑𝒋

Slide credit: C. Krause

arXiv: 2001.05486, ML:ST
arXiv: 2001.10028, PRD

https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf


Diffusion Models

• Iteratively add noise to data,
Train model to learn how to denoise step by step

62

Image credit: Lilian Weng

noise data

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Wrapping Up

63



Since Tim Berners-Lee Invented the World Wide Web… 64

1989

Slide credit: L. Heinrich



Still Early for Deep Learning, Where Will We be in 25 Years? 65

Prompt: Several giant wooly 
mammoths approach treading 
through a snowy meadow […] 
OpenAI Sora

?

2012

Slide credit: L. Heinrich

https://openai.com/sora


Do These Models Know Physics?... Maybe Not Yet 66

Credit: Jim Fan + Sora

https://twitter.com/DrJimFan/status/1758549500585808071?t=G2zRCc37yEQOR2gXVLQ-ww


Summary

• Deep neural networks allow us to learn complex 
function by hierarchically structuring the feature 
learning

• We can express our inductive bias about a system in 
terms of model design, and can be adapted to a many 
types of data

• Many neural networks structures are available for 
training models on a wide array of data types.

• Beyond classification and regression, deep neural 
networks allow for powerful generative models to 
enable us to model and generate data

67



Backup 68



Deep Neural Networks

69



Neural Network Zoo

• Structure of the networks, and 
the node connectivity can be 
adapted for problem at hand

• Moving inductive bias from 
feature engineering to model 
design 

– Inductive bias:
Knowledge about the problem 

– Feature engineering:
Hand crafted variables 

– Model design:
The data representation and the 
structure of the machine 
learning model / network 

70

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/


Neural Network Zoo – “Optimization” Perspective 71

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 72

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

\

Belkin et. al. 2018

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf


Neural Network Zoo – “Optimization” Perspective 73

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 74

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

• Major part of deep learning is choosing the right function

– Need to make gradient descent work, even if substantial 
engineering required 

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Convolutional Neural Networks

75



1D Convolutional Layers

• Data:                                                  𝑥 ∈ ℝ!

• Convolutional kernel of width k:      𝑢 ∈ ℝ"  

• Convolution 𝑥 ⊛ 𝑢 is vector of size M-k+1

76

𝑥 ⊛ u ( = V
6&7

89"

𝑥(+6𝑢6

• Scan across data and multiply by kernel elements 



2D Convolutional Layer

• Input data (tensor) x of size C×𝐻×𝑊 
– C channels (e.g. RGB in images)

• Learnable Kernel u of size C×ℎ×𝑤 
– The size ℎ×𝑤 is the receptive field

77

• Output size (𝐻 − ℎ + 1)×(𝑊 −𝑤 + 1) for each kernel 
– Often called Activation Map or Output Feature Map

𝒙⊛ 𝒖 (,; = V
%&7

<9"

𝒙%⊛𝒖% (,; = V
%&7

<9"

V
=&7

>9"

V
?&7

@9"

𝒙%,=+(,?+;𝒖%,=,?



Dilation 78



Stride – Step Size When Moving Kernel Across Input 79

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Padding – Size of Zero Frame Around Input 80

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Normalization

• Maintaining proper statistics of the activations and derivatives is 
a critical issue to allow the training of deep architectures

“Training Deep Neural Networks is complicated by the fact that 
the distribution of each layer’s inputs changes during training, 
as the parameters of the previous layers change. This slows 
down the training by requiring lower learning rates and careful 
parameter initialization …”

81

Ioffe, Szegedy, 
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018



Batch Normalization
• During training batch normalization shifts and rescales 

according to the mean and variance estimated on the batch.
– During test, use empirical moments estimated during training

• Per-component mean and variance on the batch

• Normalize and compute output ∀𝑏 = 1…𝐵

– 𝛾 and 𝛽 are parameters to optimize

82
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RNN

83



Stacked RNN 84

𝒙!:#

𝒘

𝑹𝑵𝑵 𝒉!:# 𝑹𝑵𝑵 𝒉!:%
(𝟐) … 𝑹𝑵𝑵 𝒉!:%

(𝑵)



Stacked RNN 85

𝜙(")ℎ$
(") ℎ%

(") … 𝜙(") ℎ&'%
(") 𝜙(") ℎ&

(")

𝒙!:#

𝒘

𝑹𝑵𝑵 𝒉!:# 𝑹𝑵𝑵 𝒉!:%
(𝟐) … 𝑹𝑵𝑵 𝒉!:%

(𝑵)

Two Stacked LSTM Layers

1st RNN Layer

2nd  RNN Layer

Zoom in



Bi-Directional RNN 86
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Backward in time RNN Layer

Forward in time RNN Layer



Comparison on Toy Problem 87

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md


Examples 88

Self-driving Mario Kart with RNN: YouTube video

https://youtu.be/Ipi40cb_RsI


Examples 89

Shen et al., 2017

https://arxiv.org/abs/1712.05884


Deep Sets

90



What if our data has no time structure? 

• Data may be variable in length but have no 
temporal structure à Data are sets of values 

• One option: If we know about the data domain, 
could try to impose an ordering, then use RNN

• Better option: use system that can operate on 
variable length sets in permutation invariant way

– Why permutation invariant à so order doesn’t matter

91



Deep Sets 92
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Deep Sets 94
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Deep Sets 95

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

Oℎ):-
Permutation invariant
operation: Sum, Max, …



Deep Sets 96
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Examples 97

M. Zaheer et. al 2017

Outlier detection

Medical Imaging

M. Ilse et al., 2018

With more complex architecture

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712


Transformers

98



Challenges of Long Sequences

• Gradients may not explode or vanish, but managing a 
meaningful context over a long sequence is challenging.

• Bottleneck: fixed length array in model with long input

99

RNN Encoder-DecoderBi-Directional



Additive Attention Mechanism

• Idea: allow RNN to look at all the hidden state sequence when 
producing an output. Output is generated from context 𝑐

10
0

1409.0473

𝑐( = ∑;&"$ 𝛼(;ℎ;  where  𝛼(; = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝛽(; QRST	; 

     and  𝛽(; = 𝑈	tanh(𝑊𝑠(9" + j𝑊ℎ; + 𝑏()

https://arxiv.org/abs/1409.0473


Transformers

• Idea: Get rid of the RNN and only use attention

10
1



Scaled Dot-Product Attention

• Project the input “query” onto a “key” to compute the 
weights for the corresponding “value”

• Return the weighted value

10
2

where

Query Key Value



Scaled Dot-Product Attention

• Self-Attention: using input 𝑋 to define Q,K,V

𝑄 = 𝑋𝑊!   𝐾 = 𝑋𝑊"   𝑉 = 𝑋𝑊#

10
3

where

Image credit: Wikipedia

https://en.wikipedia.org/wiki/Attention_(machine_learning)


10
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• Lets look at a single query

• Generalize input to length 𝑛



Graph Neural Networks

10
5



Graph Data

• Sequential data has single (directed) connections 
from data at current time to data at next time

• What about data with more complex 
dependencies  

10
6

x1 x2 x3 xT…

Image Credit: I. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654


Graphs

• Adjacency matrix: 𝐴(; = 𝛿(𝑒𝑑𝑔𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑣𝑒𝑟𝑡𝑒𝑥	𝑖	𝑎𝑛𝑑	𝑗)

• Each node can have features

• Each edge can have features, e.g. distance between nodes

10
7

Vertex / node

Edge

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 10
8

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 10
9

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 11
0

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 11
1

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 11
2

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Examples 11
3

Schutt et al. 2017

https://www.nature.com/articles/ncomms13890


Examples 11
4

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


Deep Generative Model Examples 11
5

BigGan Single Image Super-Resolution (Ledig et al, 2016)

Image-to-Image Translation with CycleGAN
Zhu et. al. 2017

Text-to-Image Synthesis 
with StackGAN
(Zhang et. al. 2017)

Simulate future 
trajectories of 
environments 
based on actions 
for planning. 
(Finn et al, 
2016)

https://arxiv.org/abs/1703.10593


Generative Models

11
6



Different Kinds of Generative Models

Scientific Simulators
• Built from science knowledge

• Relatively few parameters, 
often interpretable

• High Fidelity,
often computationally costly

11
7

Machine Learning
• Fit to data, inductive bias in 

model design / optimization

• Can have >106 parameters, 
often not interpretable

• Often slow to train,
fast to evaluate

Generative Models approximate and simulate 
the data generation process



GANs for Detector Design

• GAN to emulate detector simulation k𝑥 = 𝑔(𝑧|𝜓) 
given detector parameters 𝜓 (e.g. magnet shape below)

• Design objective 𝐶 to minimize: min
V
𝔼 WX[𝐶 k𝑥 = 𝑔 𝑧 𝜓 ]

• GAN is differentiable à Minimize with gradient descent

11
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NeurIPS 33, 14650-14662 (2020)

Magnet Optimization

https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html


Variational Autoencoders

11
9



Denoising Autoencoders

• Learn a mapping from corrupted data space 6𝒳 
back to original data space

–Mapping 𝜙C C𝒳 = 𝒳
– 𝜙C will be a neural network with parameters 𝑤

• Loss: 

L =
1
𝑁
<
#

𝑥# − 𝜙$(𝑥# + 𝜖#)

12
0

Perturbation, e.g. Gaussian noise



Denoising Autoencoders Examples 12
1

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Denoising Autoencoders Examples 12
2

Fleuret, Deep Learning Course

• Autoencoder learns 
the average behavior

• What if we care about 
these variations?

• Can we add a notion of 
variation in the 
autoencoder?

https://fleuret.org/dlc/


Autoencoder 12
3

*

⋆

*
x



Variational Autoencoder 12
4

*

⋆

*
x



Variational Autoencoder 12
5

*

⋆

Draw sample*
x



Latent Variable Models 12
6

• Observed random variable 𝑥 depends on unobserved 
latent random variable 𝑧

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is stochastic generation process from 𝑧 → 𝑥

𝑧 𝑥



From Deterministic to Probabilistic Autoencoder 12
7

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥 	
$%&'()

	 𝑧	 → 𝑝(𝑥|𝑧)

– Encoder: Learn what latents can produced data:  𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent:  𝑝(𝑥|𝑧)

• Probabilistic relationship between data and latents

𝑥, 𝑧	~	𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)



Variational Autoencoder

• Close-by points must decode to similar images

12
8

Image credit: L. Heinrich



How do we design Encoder and Decoder

• Classification / regression models make single 
predictions… 

  How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of density depend on conditioned variable

• Use neural network to model density parameters

12
9

𝜇(𝑏)

𝜎(𝑏)
𝑏

𝑝(𝑎|𝑏 = 𝑏!) 𝑝(𝑎|𝑏 = 𝑏")

𝑎

𝑝(
𝑎|
𝑏)

𝜇(𝑏!)

𝜎(𝑏!)



Encoding 13
0

• Typical encoder maps input 𝑥 to “average” point in latent space

𝑓 𝑥 = 𝜇(𝑥)



• A VAE Encoder has two outputs: mean & variance function 

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎!" 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧	 𝜇! 𝑥 , 𝜎! 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 	 𝜖~𝑁(0, 𝐼)

Encoding 13
1

Density

𝜓 are parameters of the NN

Re-parameterization trick



• A VAE Encoder has two outputs: mean & variance function 

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎!" 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧	 𝜇! 𝑥 , 𝜎!" 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 	 𝜖~𝑁(0, 𝐼)

Encoding 13
2

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

Could choose different density
Gaussian is easiest



Re-parameterization trick

• Given 𝑥~𝑝(𝑥|𝜃)   

• Sometimes, we can rewrite 𝑥 as a function of 
the parameters and a simpler distribution 
without parameter dependence

𝑥 = 𝑔 𝜖, 𝜃 	 𝜖~𝑝(𝜖)

• Example:

𝑥~𝑁 𝑥 𝜇, 𝜎 	→ 	 𝑥 = 𝜎 ∗ 𝜖 + 𝜇	 with	 𝜖~𝑁(0,1)	

13
3



Encoding 13
4

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function 

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎!" 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧	 𝜇! 𝑥 , 𝜎!" 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 	 𝜖~𝑁(0, 𝐼)

Could choose different density
Gaussian is easiest



13
5

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝜖
~𝒩 0,1
𝜖

𝑧~𝑝*(𝑧|𝑥)

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082


Decoding 13
6

• Same as autoencoder
𝑔! 𝑧 ≡ 𝜇! 𝑧

• Likelihood of an observation 𝑥
𝑝! 𝑥 𝑧 = 𝑁 𝑥	 𝜇! 𝑧 , 𝐼)

𝜃 are parameters of the NN

Gaussian Density



Decoding 13
7

• Same as autoencoder
𝑔! 𝑧 ≡ 𝜇! 𝑧

• Likelihood of an observation 𝑥
𝑝! 𝑥 𝑧 = 𝑁 𝑥	 𝜇! 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿TS%Q = 𝔼^~`(^|X) log 𝑝 𝑥 𝑧 ≈
1
𝑁

V
^(~`(^|X)

log𝑁 𝑥	 𝑔a 𝑧( , 𝐼)



Decoding 13
8

• Same as autoencoder
𝑔! 𝑧 ≡ 𝜇! 𝑧

• Likelihood of an observation 𝑥
𝑝! 𝑥 𝑧 = 𝑁 𝑥	 𝜇! 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿TS%Q = 𝔼^~`(^|X) log 𝑝 𝑥 𝑧 ≈
1
𝑁

V
^(~`(^|X)

log𝑁 𝑥	 𝑔a 𝑧( , 𝐼)



Decoding 13
9

• Same as autoencoder
𝑔! 𝑧 ≡ 𝜇! 𝑧

• Likelihood of an observation 𝑥
𝑝! 𝑥 𝑧 = 𝑁 𝑥	 𝜇! 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿TS%Q = 𝔼^~`(^|X) log 𝑝 𝑥 𝑧 ≈
1
𝑁

V
^(~`(^|X)

log𝑁 𝑥	 𝑔a 𝑧( , 𝐼)−
1
𝑁 V
^(~`(^|X)

𝑥 − 𝑔a 𝑧(
#
	

Same as the autoencoder loss



Variational Autoencoder Training Loss

• How do we make sure system doesn’t collapse to an 
autoencoder (i.e. VAE encoder only predicts mean)?

14
0



Variational Autoencoder Training Loss

• Use prior 𝑝 𝑧  for the latent space distribution, 
need to ensure the encoder is consistent with prior

14
1

• How do we make sure system doesn’t collapse to an 
autoencoder (i.e. VAE encoder only predicts mean)?



Variational Autoencoder Training Loss 14
2

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= /𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷bc[𝑞|𝑝] ≥ 0   and is only 0 when 𝑞 = 𝑝



Variational Autoencoder Training Loss 14
3

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= /𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷bc[𝑞|𝑝] ≥ 0   and is only 0 when 𝑞 = 𝑝

• VAE full objective

max
a,V

𝐿 𝜃, 𝜓 = max
a,V

𝔼`) 𝑧 𝑥 log 𝑝a(𝑥|𝑧) − 𝐷bc[𝑞V 𝑧 𝑥 |𝑝(𝑧)]

Reconstruction Loss Regularization of Encoder



Examples 14
4

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf


Comparing Latent Spaces 14
5

Autoencoder Variational Autoencoder

Data: MNIST data set of hand-written digits


