

The CMS High-Level Trigger for LHC Run-3

THIAGO R. F. P. TOMEI FOR THE CMS COLLABORATION

SPRACE

The Triple Challenge of the HLT

Efficiency

- Select the events of interest
- Generalist vs. specialized triggers

Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

Timing

- Quasi-real time analysis
- Dependent on HLT farm size

The Triple Challenge of the HLT

Efficiency

- □ Select the events of interest
- Generalist vs. specialized triggers

Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

Timing

- Quasi-real time analysis
- Dependent on HLT farm size

The Triple Challenge of the HLT

Efficiency

- Select the events of interest
- Generalist vs. specialized triggers

Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

Timing

- Quasi-real time analysis
- Dependent on HLT farm size

LHC Run 3 (2022) status

Delivered 42.0 fb⁻¹

- CMS recorded: 38.5 fb⁻¹
- Regular running at 20 Hz/nb
- Price: even higher pileup
 Run2: (μ) = 34
 2022: (μ) = 46 (+35% increase
- Different modus operandi
 - Beta* levelling in first5-6 hours of every fill.

LHC Run 3 (2022) status

Price: even higher pileup **Q** Run2: $\langle \mu \rangle = 34$ \Box 2022: $\langle \mu \rangle$ = 46 (+35% increase!)

LHC Run 3 (2022) status

Delivered 42.0 fb⁻¹
 CMS recorded: 38.5 fb⁻¹
 Regular running at 20 Hz/nb
 Price: even higher pileup
 Run2: (μ) = 34
 2022: (μ) = 46 (+35% increase!)

Different modus operandi

Beta* levelling in first5-6 hours of every fill.

CMS Run 3 Trigger Strategy

Standard Physics

- □ Offline reconstruction in 48 hours
- Average 2 kHz

Data Parking

- Offline reconstruction dependent on computing resources availability
- Average 3 kHz

Data Scouting

- □ No offline reconstruction no RAW!
 - Analysis with HLT information
 - 7 kB/event vs 1 MB/event
- Average 20 kHz

HLT Farm 2022

200 nodes – AMD EPYC 7763 "Milan"

- G4 cores/processor, 2 processors/node
- 256 GB RAM/node
- **Two NVIDIA T4 GPUs**, each with:
 - 40 multiprocessors
 - 2560 CUDA "threads"
- Measured 3224 HS/node

- HLT performance known to be ~linear with HS number.

Heterogeneous Computing at the HLT

Array of Structures

X ₀	Y ₀	Z ₀	Х ₁	Y ₁	Z ₁	X ₂	Y ₂	Z ₂	Х ₃	Y ₃	Z ₃
X ₀	X ₁	X ₂	X ₃	Y ₀	Y ₁	Y ₂	Y ₃	Z ₀	Z ₁	Z ₂	Z ₃

Structure of Arrays

CMSSW architecture

- Fully multithreaded
- Offload to GPUs new for Run3

First application: HLT

- Dual implementation: CPU-only, CPU+GPU
- HLT in GPU ~ 40% faster
- Reproducibility + validation of results
- Z₃ Z₃ Current offloadings
 - ECAL local RECO
 - HCAL local RECO
 - Pixel tracking and vertexing

Heterogeneous Computing at the HLT

11

CMMSW architecture

Fully multithreaded

Offload to GPUs – new for Run3

First application: HLT

- Dual implementation: CPU-only, CPU+GPU
- HLT in GPU ~ 40% faster
- Reproducibility + validation of results

Current offloadings

- ECAL local RECO
- HCAL local RECO
- Pixel tracking and vertexing

Heterogeneous Computing at the HLT

CMMSW architecture

- Fully multithreaded
- Offload to GPUs new for Run3

First application: HLT

- Dual implementation: CPU-only, CPU+GPU
- HLT in GPU ~ 40% faster
- Reproducibility + validation of results

Current offloadings

- ECAL local RECO
- HCAL local RECO
- Pixel tracking and vertexing

Tracking at HLT

Single Combinatorial Kalman Filter iteration

- Seeds: Patatrack pixel tracks
 - \geq 3 pixel hits
 - p_T > 0.3 GeV
 - Consistent with leading pixel vertex

Muons at HLT

ML-based Improvements

- DNN: higher efficiency
 - Improved track seeding in

outside-in reconstruction.

- BDT: reduced timing
 - Improved seed choice in

inside-out reconstruction.

Electrons at HLT

Focus ID on high-purity Isolation

- Tracker-ECAL matching
- Tracker, ECAL, HCAL
- ECAL deposit shape
- **Energy regression**
- Reject HCAL deposits
- BDT-based

B-tagging and Taus at HLT

Increased PU in Run 3 \rightarrow more advanced mitigations

B-tagging: ParticleNet tagger instead of DeepCSV and DeepJet

Tau ID: DeepTau instead of Hadron-Plus-Strip + MVA isolation.

Jets and Energy Sums at HLT

Mitigations soon to be added to the HLT:

- □ Charged Hadron Subtraction (CHS), OR
- PileUp Per-Particle Identification (PUPPI)

Long-Lived Particles (LLPs) at the HLT

- LLPs signatures may escape conventional triggers
- New Run 3 strategies
 - Displaced jet triggers
 - Modified tracking for light LLPs
 - HCAL depth segmentation
 - Delayed jet triggers
 - ECAL and HCAL timing
 - CSC high multiplicity triggers
 - Displaced muons at L1

The HLT Run 3 Menu

Standard Physics

(Rates scaled to 2E34 cm⁻² s⁻¹)

HLT algorithm	Rate
Isolated muon with $p_{\rm T} > 24 {\rm GeV}$	250 Hz
Isolated electron with $E_{\rm T} > 32 {\rm GeV}$	182 Hz
Particle flow (PF) based $p_{\rm T}^{\rm miss} > 110 {\rm GeV}$	81 Hz
4 PF jets with $p_{\rm T} > 70/50/40/35$ GeV with 2 b tag	57 Hz
Two isolated tau leptons with $p_{\rm T} > 35 {\rm GeV}$	54 Hz
Muon with $p_{\rm T} > 50 {\rm GeV}$	51 Hz
Two electrons with $E_{\rm T} > 25 {\rm GeV}$	21 Hz
AK4 PF jet with $p_{\rm T} > 500 {\rm GeV}$	16 Hz
Two same-sign muons with $p_{\rm T} > 18/9 {\rm GeV}$	10 Hz

~ 600 paths

Additional HLT Data Streams: Scouting

Only reconstructed HLT data saved

- no RAW data!
- □ Active in CMS since Run 1

Run 3 scouting

- Dimuon
- Electrons
- Jets / missing p_T

Run 3 dimuon scouting

- Save OR of L1 dimuon seeds
- Pixel-only particle flow
- p_⊤ resolution in 1—2% range

Additional HLT Data Streams: Scouting

Only reconstructed HLT data saved

- no RAW data!
- Active in CMS since Run 1

Run 3 scouting

- Dimuon
- Electrons
- □ Jets / missing p_T

Run 3 dimuon scouting

- Save OR of L1 dimuon seeds
- Pixel-only particle flow
- p_⊤ resolution in 1—2% range

Additional HLT Data Streams: Scouting

RMS ($\frac{p_T^{scout}-p_T^{off}}{p_T^{off}}$

0.025

0.02

Run 3 dimuon scouting

- Save OR of L1 dimuon seeds
- Pixel-only particle flow
- p_{T} resolution in 1–2% range

Additional HLT Data Streams: Parking

Trade prompt data reconstruction for increased rate and acceptance.

Run 3 example: Higgs parking

- Target HH and HHH signatures
 - Multi b-jets
- 2022 configuration: 60 Hz @ 2E34
 - 4 jets p_T > 70, 50, 40, 35 GeV
 - PNet@AK4 (mean 2 highest b-tag score) > 0.65
- 2023 configuration: 180 Hz @ 2E34
 - H_T > 280 GeV
 - 4 jets with p_T > 30 GeV
 - PNet@AK4 (mean 2 highest b-tag score) > 0.55

Conclusions

Run 3 LHC conditions much harsher than before.

- □ Higher pileup, sustained for longer time.
- □ Challenges in trigger and data acquisition.

Mitigation strategies at the CMS High-Level Trigger.

- GPU-equipped nodes + SoA data + task offloading.
- Advanced algorithms: Patatrack, PUPPI, ParticleNet, DeepTau.

Physics program extension.

- □ Long-lived particles.
- Alternative data streams: scouting, parking.
- Others to come...

CMS is ready and running for Run 3!