Radiotherapie et accelerateurs de particules

Elena Benedetto, Tera-Care Association Particle Therapy MasterClass, 15th Mar 2024, CERN

…@ right place!?!

SEE

Proton (hadron) radiation therapy

DOI:10.1016/j.ijrobp.2016.06.2446

photons IMRT protons

Bragg Peak: hadrons deposit energy @ specific depth, depending on the beam energy

3D beam scanning

Particle therapy facilities in clinical operation

110 particle - proton therapy facilities, 30 in Europe (Vs. 14'000 X-ray facilities)

 $27m$

Synchrotron

HITACHI Synchrotron

IBA SynchroCyclotron

Proteus ONE 12.16 m

Rotating gantry

Beam transport

 $29m$

Why Carbon ions?

Single-strand breaks (easy to repair) vs. double-strand breaks (not reparable)

- \checkmark 3x more damage (RBE)
- \checkmark also in oxygen-depleted "radioresistant" tumours

Which particle? Which energy?

Protons: 60 - 250 MeV Carbon: 100 – 430 MeV/u

Beam "rigidity" ~2.7x

@ CERN Next Ion Medical Machine Next Ion Medical Machine Study (NIMMS)nimms

PIMMS: collaboration CERN, TERA, MedAustron, TDR in 2000

 \triangleright C-ion ring, 75 m circumference

NIMMS: collaboration CERN, Tera-Care, SEEIIST, Riga U., et al., started 2018

- ➢ Higher (x 20) beam intensity stored: for flexible extraction (and FLASH)
- ➢ Reduce dimensions, weight (and cost) ~30 m length

Synchrotrons

Hitachi p-therapy , < 27 m

LHC, circumference 27 km

RF cavities to accelerate the beam (~1billion turns) **Dipole magnets** to bend **Quadrupole magnets** to focus (e.g. lenses) Special magnets for beam dynamics **Injection/Extraction** systems Beam monitors, power supplies, controls, vacuum… Safety, reliability, reproducibility,…

 \overline{C}

Medical environment Cheap, robust, easy to operate No 24/7 experts availability

Dipole Magnets and Beam rigidity

Centrifugal force: $F = m v² / r$

Beam "rigidity" Bp = how difficult it is to bend

Dipole Magnets & Beam rigidity

Range: 3mm to 300 mm (Bragg Peak)

Protons: $60 - 220$ MeV (max. $Bp = 2.4$ Tm) Carbon: 100 - 400 MeV/u (max. $B_p = 6.3$ Tm) Helium: $60 - 220$ MeV (max. $B_p = 4.5$ Tm)

 $B\rho =$ beam rigidity, how difficult it is to bend

Size (cost!) matters…

Varian X-ray linac

HIT carbon gantry

(600 tons)

Reduce size, cost, complexity!

"Light ions"

Superconductivity

An example: Helium-theraphy synchrotron

Layout by D.Kaprinis, architect

- ➢ Two beamlines for treatment, one for research.
- ➢ Rotating superconducting gantry (HITRIplus /SIG collaborations).
- ➢ Linac for parallel radioisotope production (211At for targeted alpha therapy)
- ➢ Surface ~2,200 m2

Sources

Linac injector

Injection in the synchrotron

Synchrotron: magnets and optics

➢ Dipole field of 1.65 T with window-frame magnets

 \triangleright Main challenge is compactness: how to place all the equipment, keeping flexibility in working point and optics functions

Synchrotron: injection/extraction equipment

Beam Delivery

