PARTICLE THERAPY MASTERCLASS 2024

Session pratique avec le logiciel matRad

Instructions détaillés étape par étape

Luca Garolfi

Gantries

Salle de traitement

Courtesy L. Piacentini (CERN, RTU), E. Felcini, M. Pullia (CNAO)

4 aimants, rotation a 45°, 360°

Développement d'un gantry toroidal (Gatoroid) au CERN.

Développement

pour les ions

 CERN-INFN-CNAO-MedAustron: aimants, dose delivery, range

verification, systeme de

(CNAO, RTU, SEEIIST,

HITRIplus projet EU

CERN: design de

l'optique et de la mechanique

carbone :

scanning

d'un gantry Supra-

conducteur rotatif

- Etude des différentes versions pour proton and ion carbone.
- concentré sur une version nonsupra pour électrons à tester avec des protons a faible énergie

Version VHEE du Gatoroid gantry, basée sur des aimants non-supra. Capabilité de la thérapie FLASH avec des traitements multidirectionnels. Design su CERN.

(image courtesy T. Lehtinen, L. Bottura)

<u>1^{er} Exercise</mark></u>

• Premiers pas sur le fantôme TG119

- Traitement par radiothérapie:
 - photons vs. protons vs. ions de carbone
- Analyser et comparer les résultats

L'interface Graphique matRad

matRadGUI	- 6)	\times
≓ 🖩 ଈ 🍳 🌯 🐙 픞 🗉 🧧			
Opérations Rafraichir Charger donnée •.mat Calc. matrice influence Optimiser Sauvegarder figures Recalculer Recalculer Recalculer Sauvegarder figures Recalculer Recalculer Recalculer Recalculer Recalculer Recalculer Recalculer Sauvegarder figures Recalculer Recalc			
1 2 4 Affichage	min max	:	
Status: Aucune donnée 1	Set IsoD	ose Lev]
Plan Largeur pixel [mm] 5 Angle de la gantry [°] 0 Angle du lit [°] 0 Run Sequencing Niveaux de stratification Machine Generic 7 IsoCentre [mm] 000 Auto. 7 Type d'optimisation none 0.9 - <th>Viewer Opti None No available Mindow Cel Mindow Win Range bone Lock Se</th> <th>ons</th> <th>).5</th>	Viewer Opti None No available Mindow Cel Mindow Win Range bone Lock Se	ons).5
Objectifs & contraintes 0.6 -	Dose opacit 0	N:	2 1
0.5 - 0.4 - 0.3 -	Structure Vi	isibilty — ed	^
Visualisation 0.2 -			
Tranche Image: Imag	nfo v3.0.0 aithub.com A pr	- edu 1/e0404/n opos	nat
n = 2 O = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	09:03 26/02/202	21	20

1. Charger le fantôme TG119 via le bouton Load *.mat data (TG119.mat)

🖆 📙 📾 🔍 🔍 👋 🖳 🔳 🔳

2. Analyse des contraintes et des objectives

🖆 🛃 🛳 🔍 🔍 👋 🖳 🔳 🚺

Concept à retenir

100	VOI name	1	VOI type	priority	obj. / const.		penalty	dose
1	Core	-	OAR 🚽	2	square overdosing	•	300	25
2	OuterTarget	÷	TARGET 🚽	1	square deviation	•	1000	50
31	BODY	-	OAR 🚽	3	square overdosing	-	100	30

- VOI: volume d'intérêt
- **OAR**: organ at risk = organe à risque
- **TARGET** = cible

- Gross Tumour Volume (GTV) =
 Volume tumoral visible sur les images
- Clinical Target Volume (CTV) =

Le volume du tissu, y compris la GTV et les régions où le tissu tumoral invisible est attendu

Planning Target Volume (PTV) =

Comprend la GTV et la CTV ainsi qu'une marge de sécurité pour tenir compte des incertitudes.

Concept à retenir

	VOI name		VOI type	priority	obj. / const.		penalt	dose
1	Core	-	OAR 🚽	2	square overdosing	•	300	25
2	OuterTarget	÷	TARGET 🚽	1	square deviation	•	1000	50
3	BODY	-	OAR -	3	square overdosing	-	100	30

- Dose absorbée : énergie ionisante absorbée par unité de masse.
 Elle est mesurée en Gray (1 J/kg = 1 Gy)
- Modulation d'intensité pour les photons avec pencil beams
 "Pencil beams" forment un « pixel » dans la section transversale du faisceau (ou "fluence")

= "bixel" (Beam + Pixel)
 Nous pondérons tous les pencil beams (plus/moins de photons)
 différemment

• **RBE : Efficacité biologique relative.** Facteur qui compare l'efficacité biologique (les dommages biologiques causés par) un type de rayonnement ionisant (p. ex., le rayonnement des particules) à l'efficacité biologique d'un rayonnement de référence (p. ex., le rayonnement de photons)

3. Régler la modalité de rayonnement sur Photons et définir un angle de faisceau (angle du gantry)

The second								
📁 🛃 🛍	•	🖌 👋 🧏						
Washflam								
Defreeb	Load	t mat data	Calo influor	oo My	Ontimizo		Save to CIII	1
Keiresii	Load	d DICOM	Calc. Influer	Ce MX	Pecale		Export	
	Import	from Rin			Recalc			
	import	ITOITI DIII					iiport bose	J
			Status:	ready for do	se calculatio	on		
Dian								
- Fidi	in frank	10		•				
Cantor An	in (mm) de in °	0			se MC (VMC+	++) dose (calculations	
Couch And	ole in °	0		U U U	un Sequenci	10		
Radiation	Mode	photons		Stre	tification Lev	els		
Machi	ine	Generic			7	013		
IsoCenter	in (mm)	251.3 236.4 1	162.6 🗸 Auto.	💿 R	un Direct Ap	erture Opt	timizat	
# Fracti	ons	30						
Type of optim	ization	none	- Set Tis	sue				
Objectives &	constrai	nts						
Γ								
VOIn	name	VOI type	priority o	bi. / const.	penalty	dose	EUD volume	ro
1 Core	.	OAR 🚽	2 square	overdosing 🔒	, 300	25	NaN NaN	no +
2 OuterTar	get 💂	TARGET 🚽	1 square	deviation 🚽	, 1000	50	NaN NaN	no
3 BODY	•	OAR 🚽	3 square	overdosing 🚽	, 100	30	NaN NaN	no 🔹
٠			"					> save
Minuntingting								
visualization								
Slice	4		Type of plot	inton -	GoTo late	ral	plot CT	
Decem			Diana	inten •	Open 3D V	iew	 plot contour plot isolines 	
C-lti	4	-	Pidlie Display and	axial 💌	open ob-v		 plot dose 	
Offset	4		Display option	no option ava	il 🔻		plot isolines	labels
				Show DV	/H/QI		 piot iso cent visualize pla 	n / be

- **Photons** : sans masse, sans charge électrique et voyage toujours à la vitesse de la lumière
 - pas d'accélération, mais d'énergie dépendante de la fréquence
 - Comment générer? Nous pouvons accélérer les électrons!
 - les électrons accélérés touchent une cible
 - les électrons perdent de l'énergie en raison de « bremsstrahlung »
 - photons de haute énergie
- gantry : déplace la source de rayonnement autour du patient
- lit : fait pivoter le patient

4. Déclencher le calcul de la dose via le bouton (« Calc. Influence Mx ») et lancer l'optimisation inverse en cliquant sur (« Optimize »)

5. Analyser la distribution de dose résultante

🛎 | 🖳 🎰 | 🍳 | 🔍 | 🐙 | 🖽 🚺

6. Enregistrer le résultat de l'optimisation via (« Save to GUI ») Ensuite, afficher le DVH par (« Show DVH/QI »)

🛎 😼 🚳 🔍 🔍 👋 🐙 🖪 🚺

Concept à retenir

x% du volume atteint au moins d% de la dose prescrite

DANS LE CAS IDÉAL, SEULE LA TUMEUR EST IRRADIÉE SANS AFFECTER LES AUTRES TISSUS (SAINS).

rel. dose (%)

100

7. Remplacer la modalité de rayonnement par : Protons laisser les angles du faisceau inchangés.

8. Déclencher le calcul de la dose via le bouton (« Calc. Influence Mx ») et lancer l'optimisation inverse en cliquant sur (« Optimize »)

🖆 💹 💩 🔍 🔍 👋 🐙 🖽 🔲

9. Enregistrer le résultat de l'optimisation via (« Save to GUI ») Ensuite, afficher le DVH par (« Show DVH/QI »)

🖆 🗒 🕲 🔍 🍳 💘 🔜 🚺

Show DVH/QI

	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.4Gy	V_0.8Gy	V_1.3Gy	V
Core	0.1815	0.2396	0.9866	2.0386e-09	0.8909	0.7849	0.0744	2.4933e-05	6.0723e-07	1	0.1682	0.0470	0	
OuterTarget	1.6449	0.1770	2.1789	0.7475	1.9408	1.8726	1.6533	1.4205	0.9187	1	1	0.9949	0.9722	
BODY	0.0640	0.2912	2.2101	0	1.4572	0.2364	0	0	0	1	0.0462	0.0405	0.0282	
					•									

٠.

Comparaison des résultats

doses moyennes pour différent régions (Gy):

Region/Radiation	Photons	Protons
Base	1.0665	0.1815
Cible	1.5852	1.6449
Corps	0.1443	0.0640

- Le treatment par **Photons** délivre la dose la plus élevée à la surface
- Les **Protons** délivrent la dose la plus élevée à la cible (tumeur) et protègent les organes sensibles

C'est tout pour ce matin !

9. Try to define a better photon treatment plan by defining more beam angles (e.g. [0, 72, 144, 216, 288]). Trigger dose calculation ("Calc. Influence Mx") and start inverse optimization ("Optimize").

10. Save the optimization result via ("Save to GUI"). Show the DVH by ("Show DVH/QI"). Analyze resulting dose distribution.

🎽 | 🔜 🎰 | 🔍 | 🍳 | 🖤 | 🖳 | 🖽 | 🔳

	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.3Gy	V_0.7Gy	V_1Gy	V.
Core	0.6625	0.2176	1.0370	0.1450	1.0030	0.9853	0.6686	0.2460	0.1755	1	0.9265	0.4477	0.0250	
OuterTarget	1.6563	0.0659	1.7897	1.2866	1.7566	1.7450	1.6652	1.5323	1.4636	1	1	1	1	
BODY	0.1968	0.3777	1.7897	0	1.5510	1.0629	0.0091	0	0	1	0.1986	0.1230	0.0568	
	•					111								Þ

e en anna e e

Results

• Mean doses for different regions (Gy):

Region/Radiation(angles)	Photons(0)	Protons(0)	Photons (0,72,144,216,288)
Core	1.0665	0.1815	0.6625
Outer Target	1.5852	1.6449	1.6563
Body	0.1443	0.0640	0.1968

- Treatment plan using multiple photon beams gives better results than single photon beam.
- Best results are obtained using protons.

11. Change optimization objective to improve the photon treatment plan. Use Table ("Objectives &constraints") and add for e.g. maximal dose for the core or minimal dose for the outer target.

🎽 🔜 🔍 🔍 👋 堤 🖪 🔳

12. Trigger dose calculation ("Calc. Influence Mx") and start inverse optimization ("Optimize"). Save the optimization result via ("Save to GUI"). Next, show the DVH by ("Show DVH/QI").

	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.5Gy	V_1Gy	V_1.6Gy	V
Core	0.6974	0.1876	0.9986	0.1704	0.9743	0.9563	0.7189	0.2781	0.1981	1	0.8848	0	0	
OuterTarget	1.9652	0.1732	2.7054	1.5511	2.3409	2.2397	1.9766	1.6761	1.6190	1	1	1	0.9857	
BODY	0.2343	0.4481	2.7054	0	1.7993	1.2658	0.0110	0	0	1	0.1780	0.0784	0.0288	
	•													•

Results

 Mean doses for different regions (Gy) using 5 beams with and without constraints:

Region/Radiation	With constraints	Without constraints
Core	0.6625	0.6974
Outer Target	1.6563	1.9652
Body	0.1968	0.2343

2nd Exercise

- Carbon ion treatment plan for a liver patient
- Defining treatment plan using photons and protons
- <u>Analysing and comparing diferent treatment</u>
 <u>plans</u>

1. Load the liver patient case via the Load *.mat button (LIVER.mat)

Workflow Refresh Load *.mat data Calc. influence Mx Optimize Save to GUI Load COM Recalc Export	matRad	GERMAN CANCER RESEARCH CENTE IN THE HELMHOLTZ ASSOCIATION
Import Dose Status: plan is optimized	Viewing axial pl	ane z = 162.5 [mm]
Plan		
bixel width in [mm] 20 use MC (VMC++) dose calculations Gantry Angle in * 0 72 144 216 288 3D conformal Couch Angle in * 0 0 0 0 0 Run Sequencing	Organize ▼ New folder	ad-2957fcc → - + Search e0404-matRad-2957fcc >
Radiation Mode protons	- Name	Date modified Type
Machine Generic 7 IsoCenter in [mm] 251.3 236.4 162.6 ✓ Auto. O Run Direct Aperture Optimizat # Fractions 30	E Desktop istandalone Downloads istools	6/19/2019 8:34 AM File folder 6/19/2019 8:34 AM File folder
Type of optimization const RBExD - Set Tissue	🔚 Recent Places 🛛 🕌 unitTest	6/19/2019 8:34 AM File folder
	😲 Dropbox 🗧 🍑 vmc++	6/19/2019 8:34 AM File folder
Objectives & constraints	BOXPHANTOM	6/19/2019 8:33 AM MAT File
	Libraries Carbon_Generic	6/19/2019 8:34 AM MAT File
VOI name VOI type priority obj. / const. penalty dose EUD volume	Documents HEAD_AND_NECK	6/19/2019 8:33 AM MAT File
1 Core 🗸 OAR 🗸 2 max dose constraint 🗸 NaN 25 NaN NaN		6/19/2019 8:33 AM MAT File
2 OuterTarget 🗸 TARGET 🖌 1 min dose constraint 🖌 NaN 50 NaN NaN		6/10/2019 8:33 AM MAT File
3 BODY VOAR V 3 square overdosing V 100 30 NaN NaN		6/19/2019 8:34 AM MAT File
	Homegroup	6/19/2019 8:34 AM MAT File
	· · · · · · · · · · · · · · · · · · ·	4 III
Visualization Q plot CT	File name: LIVER	✓ MAT-files (*.mat)
Slice Type of plot inten GoTo lateral Option Display option RBExDose Offset Show DVH/QI Option Content	labels 500 - 500 - 500 - 100 150 200	Open ▼ Cancel 250 300 350 400 450 500 ×[mm]

2. Define your own photon treatment plan with approx. 4-5 beam directions.

🎽 🔛 🎰 🔍 🥄 👋 🐙 🖽 🔲

3. Trigger dose calculation ("Calc. Influence Mx") and start inverse optimization ("Optimize").

🖆 | 🗟 🏟 | 🍳 | 🍳 | 🦞 | 🖳 🔳 🔲

4. Save the optimization result via ("Save to GUI"). Next, show the DVH by ("Show DVH/QI"). Analyze dose distribution.

📁 🔙 🗠 🔍 🥄 👋 🖳 🖪

												I iver-C	V
	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.3Gy	V_0.6Gy	V_0.90
GTV	1.5000	0.0090	1.5281	1.4727	1.5188	1.5148	1.5002	1.4851	1.4796	1	1	1	
Kidney_R	0	0	0	0	0	0	0	0	0	1	0	0	
Kidney_L	0	0	0	0	0	0	0	0	0	1	0	0	Ξ
Stomach	0.0342	0.0566	0.2310	0	0.1940	0.1736	0.0082	0	0	1	0	0	
SmallBowel	0	0	0	0	0	0	0	0	0	1	0	0	
LargeBowel	2.6018e-04	0.0012	0.0147	0	0.0047	0.0019	0	0	0	1	0	0	
Celiac	0	0	0	0	0	0	0	0	0	1	0	0	
SMA_SMV	0	0	0	0	0	0	0	0	0	1	0	0	
Liver	0.3033	0.4713	1.5526	0	1.5042	1.4889	0.0367	0	0	1	0.2838	0.2190	0.
Heart	0.2296	0.2426	1.5232	0.0066	1.1065	0.6913	0.1728	0.0182	0.0141	1	0.2202	0.0650	0.)
SpinalCord	0.0391	0 0686	0 2167	0	0 1969	0 1856	0	0	0	1	0	0	· ·

entrance on

5. Define your own proton treatment plan with one beam from e.g. 315°. Then trigger dose calculation ("Calc. Influence Mx") and start inverse optimization ("Optimize").

🞽 📓 💩 🔍 🥄 👋 🖳 🖪 🚺

6. Save the optimization result via ("Save to GUI"). Next, show the DVH by ("Show DVH/QI"). Analyze the resulting dose distribution.

🎽 🔜 💩 🔍 🥄 👋 🖳 🔳 🔲

	mean	sta	mdx	min	0_2	0_0	0_00	0_95	D_90	v_ody	v_0.56y	v_10y	A_T'D(
GTV	1.5053	0.1981	2.0110	1.0341	1.8973	1.8506	1.4947	1.1921	1.1231	1	1	1	0. 4	ė.
Kidney_R	0	0	0	0	0	0	0	0	0	1	0	0		
Kidney_L	0	0	0	0	0	0	0	0	0	1	0	0	=	
Stomach	0	0	0	0	0	0	0	0	0	1	0	0		
SmallBowel	0	0	0	0	0	0	0	0	0	1	0	0	_	i
LargeBowel	0	0	0	0	0	0	0	0	0	1	0	0		
Celiac	0	0	0	0	0	0	0	0	0	1	0	0		
SMA_SMV	0	0	0	0	0	0	0	0	0	1	0	0		
Liver	0.1694	0.4605	2.5011	0	1.6940	1.4688	0	0	0	1	0.1177	0.1008	0.	
Heart	0.0172	0.1143	1.8597	0	0.2483	0.0195	0	0	0	1	0.0127	0.0050	0.)	
SpinalCord	0	0	0	0	0	0	0	0	0	1	0	0		٢
	•												- F	

7. Create a carbon ion treatment with the exact same settings as used for the proton treatment plan – What difference can now be observed?

🍯 🖳 📾 🔍 🔍 👋 🐙 🖽 🔲

8. Save the optimization result via ("Save to GUI"). Next, show the DVH by ("Show DVH/QI"). Analyze the resulting dose distribution.

🗯 🔜 🎰 🔍 🔍 👋 🐙 🖽 🚺

											_	Liver-CT	V
	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.4Gy	V_0.8Gy	V_1.2(
GTV	1.5212	0.0930	1.8920	1.2809	1.7595	1.7032	1.5090	1.3845	1.3641	1	1	1	
Kidney_R	0	0	0	0	0	0	0	0	0	1	0	0	
Kidney_L	0	0	0	0	0	0	0	0	0	1	0	0	E
Stomach	0	0	0	0	0	0	0	0	0	1	0	0	
SmallBowel	0	0	0	0	0	0	0	0	0	1	0	0	
LargeBowel	0	0	0	0	0	0	0	0	0	1	0	0	
Celiac	0	0	0	0	0	0	0	0	0	1	0	0	
SMA_SMV	0	0	0	0	0	0	0	0	0	1	0	0	
Liver	0.1570	0.4178	1.9880	0	1.5533	1.4456	0	0	0	1	0.1243	0.1004	0.)
Heart	0.0277	0.1314	1.8137	0	0.4139	0.1145	0	0	0	1	0.0212	0.0088	0.)
SninalCord	0 0077	0 0187	0.0855	0	0.0659	0.0582	0	0	0	1	0	0	
	•												- F

Results

 Mean doses for different regions (Gy) using 5 photon beams, sigle proton beam and carbon ion beam:

Region/Radiation(angles)	Photons(0,180,22 5,270,315)	Protons(315)	Carbon(315)
GTV	1.5	1.5053	1.5212
Kidneys	0	0	0
Stomach	0.0342	0	0
Liver	0.3033	0.1694	0.1570
Heart	0.2296	0.0172	0.0277
Spinal Cord	0.0391	0	0.0077
СТV	1.5015	1.4981	1.5236
PTV	1.4991	1.4595	1.4868
Skin	0.0568	0.0179	0.0162

3rd Exercise

- Treatment planning uncertainties
- Proton radiotherapy plan for patients head
- Simulating a patient positioning error
- <u>Analysing and comparing resulting dose</u> <u>distributions</u>

1. Load a head patient case (HEAD_AND_NECK orALDERSON.mat)

Workflow		. The 🔭 👘	GERMAN	
Refresh Load *.mat data Calc. influence Mx Optimize Save to GUI	mg	at Kad	CANCER RESEARCH CEN	rer
Loar COM Recalc Export	1110		IN THE HELMHOLTZ ASSOCIAT	ION
Import Dose	Viewing			min 0 max 2.122
Status: plan is optimized		axial plane z = 317.5 fm	n]	
_	Select File to Open			Set IsoDose Levels
_ Plan		matPad 2.1 . a0404 matPad 2057fac	- An Course a0404 mat Park 2057fee	_ Viewer Options
bixel width in [mm] 10 Use MC (VMC++) dose calculations	1 • E0404-r		Search eu404-markaa-295/fcc	Result (i.e. dose)
Gantry Angle in * 315 310 conformal	Organize 🔻 New fo	lder	III 🔻 📶 🔞	Custom
Rediation Mode		A Name	Date modified Type	Window Center:
Machine Caperic T	🗙 Favorites		Datembulled	Window Width:
IsoCenter in [mm] 265.8 296.7 316.4 V Auto.	n Desktop	📕 standalone	6/19/2019 8:34 AM File folder	2.1
# Fractions 30	📙 Downloads	u tools	6/19/2019 8:34 AM File folder	Range: 0 2.123
Type of optimization LEMIV_RBExD Set Tissue	🔛 Recent Places	unitTest	6/19/2019 8:34 AM File folder	
	😵 Dropbox 💡	🛯 🤑 vmc++	6/19/2019 8:34 AM File folder	jet -
Objectives & constraints		BOXPHANTOM	6/19/2019 8:33 AM MAT File	
<u>г</u>	📜 Libraries	Carbon_Generic	6/19/2019 8:34 AM MAT File	_ Structure Visibilty_
VOLpame VOLture priority obj (const. penalty does FUD volume	Documents	HEAD_AND_NECK	6/19/2019 8:33 AM MAT File	E GTV
1 Skin - OAR - 2 square overdosing - 300 25 NaN NaN	🚽 Music	LIVER	6/19/2019 8:33 AM MAT File	Kidney_R
2 PTV TARGET 1 square deviation 1000 45 NaN NaN	Pictures	photons_Generic	6/19/2019 8:34 AM MAT File	Stomach
	Videos	PROSTATE	6/19/2019 8:33 AM MAT File	SmallBowel
		protons_Generic	6/19/2019 8:34 AM MAT File	Celiac
<	🔞 Homegroup	TG119	6/19/2019 8:34 AM MAT File	SMA_SMV
		✓ < III	+	✓ Liver ✓ Heart
Visualization	File	name: HEAD AND NECK	▼ MAT-files (*.mat) ▼	SpinalCord
O TA Listanti O plot CT				
Slice I I I I I I I I I I I I I I I I I I I			Open 🔽 Cancel	Info
Beam Plane axial View O plot isolines O plot dose				v3.0.0
Offset Display option RBExDose	abels 650 .	100 150 200 250 200 250 4		github.com/e0404/m
Show DVH/QI	1 50	100 100 200 200 300 350 40 x (mm)		About

2. Add three proton beam angles on your own. Calculate and optimize the dose ("Calc. Influence Mx" & "Optimize").

3. Analyze the result (dose& DVH) and save it (",Save to GUI").

🖆 | 🔜 📾 | 🔍 | 🔍 | 🖤 | 🗶 | 🖽 🔲

	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.6Gy	V_1.2Gy	V_1.9(
BRAIN_STEM	0.2645	0.3831	1.5408	0	1.1597	1.0153	0.0030	0	0	1	0.2649	0.0167	
BRAIN_STEM_PRV	0.2906	0.4099	1.5754	0	1.2980	1.0952	0.0016	0	0	1	0.2896	0.0251	
CEREBELLUM	0.6355	0.3774	2.0785	0	1.3512	1.1661	0.6933	0	0	1	0.5998	0.0469	7.3233
CHIASMA	0	0	0	0	0	0	0	0	0	1	0	0	-
CTV63	2.1304	0.1945	3.1861	0.9407	2.4868	2.4230	2.1346	1.8175	1.6587	1	1	0.9973	0.
GTV	2.3305	0.1036	2.7047	1.9940	2.5353	2.4898	2.3381	2.1496	2.0935	1	1	1	
LARYNX	0.9230	0.4283	1.9861	0.2391	1.8607	1.7473	0.8058	0.3375	0.2819	1	0.7891	0.2585	0.0
LENS_LT	0	0	0	0	0	0	0	0	0	1	0	0	
LENS_RT	0	0	0	0	0	0	0	0	0	1	0	0	
LIPS	0.0157	0.0412	0.2352	1.1603e-35	0.1705	0.1231	5.8836e-06	4.7064e-25	6.6316e-30	1	0	0	
OPTIC NRV I T	0	0	0	0	0	0	0	0	0	1	0	0	-
	•												•

4. Simulate a patient positioning error: Remove the hook at the auto iso-center checkbox and define a new iso-center. Recalculate the dose by clicking on the "Recalc".

🖆 💹 💩 🔍 🔍 👋 🐙 🖽 🔲

🖆 📙 🛍 🔍 🔍 👋 🖳 🔳 🔳

5. Moving "Slice" option find iso-center and analyze and compare the resulting dose distribution.

🎽 😼 💩 🔍 🔍 🤎 🖳 🖪 🔳

	mean	std	max	min	D_2	D_5	D_50	D_95	D_98	V_0Gy	V_0.9Gy	V_1.8Gy	V_2.7(
BRAIN_STEM	0.5784	0.5092	1.8823	0	1.5814	1.4499	0.5847	0	0	1	0.3294	0.0048	
BRAIN_STEM_PRV	0.6153	0.5759	2.3528	0	1.8157	1.6326	0.5786	0	0	1	0.3519	0.0240	
CEREBELLUM	0.9112	0.4681	2.5823	0	1.9049	1.7408	0.8620	0.1636	0.0032	1	0.4588	0.0373	-
CHIASMA	0.2487	0.2353	0.8091	0.0071	0.7505	0.6536	0.2672	0.0169	0.0118	1	0	0	-
CTV63	1.9376	0.6348	4.0525	0.0093	3.1482	2.8966	1.9997	0.7051	0.3469	1	0.9282	0.6441	0./
GTV	2.2150	0.4918	3.9825	0.4100	3.1008	2.8992	2.2980	1.3330	1.0648	1	0.9886	0.7991	0.
LARYNX	0.5702	0.3493	1.7209	0.0422	1.5158	1.2552	0.4717	0.1262	0.1006	1	0.1769	0	
LENS_LT	0	0	0	0	0	0	0	0	0	1	0	0	
LENS_RT	0	0	0	0	0	0	0	0	0	1	0	0	
LIPS	0.0064	0.0261	0.2268	0	0.0963	0.0371	8.7893e-18	0	0	1	0	0	
OPTIC NRV I T	0 0775	0 2143	0.9674	0	0.9571	0.5805	7 5343e-04	0	0	1	0.0385	0	
	•												•

Results

 Mean doses for diferent regions (Gy) using three proton beams, with and without patients movement:

Region/Iso-center	Without movement	With movement
Brain Stem	0.2645	0.5784
Cerebellum	0.6355	0.9112
CTV63	2.1304	1.9376
GTV	2.3305	2.2150
Lenses (L,D)	0,0	0,0
Skin	0.4682	0.4555
Optic Nerv (L,D)	0,0	0.0775, 0.0092
Spinal Cord	0.6268	0.7466
PTV63	2.1092	1.8369
PTV70	2.3102	2.1671

Thank you :)

14