Charge misidentification study Rozmin Daya SMU 05/16/2011 High pT eγ meeting ### Intro - The efficiencies of identifying electrons and positrons (and the related misidentification rates) are expected to be worse for high pT objects - Important to understand at what pT threshold we start to see effect - Any extra observations may be helpful for reducing charge misID in the future - Have measured the charge efficiency on data in $|\eta|$ bins - For the data study, used a Breit Wigner convoluted with Crystal Ball to describe the signal and an exponential for the background. Fit the data with combined signal + bg pdf and return fraction signal from the fit. - And on MC in pT bins - Measurement on data work in progress (fits more complicated than in |η| case) # Equations: T = tag, P = probe Shown are the equations used for charge efficiency and misidentification: $$\varepsilon_{+} = \frac{T_{-}P_{+}}{T_{-}P_{+} + T_{-}P_{-}}$$ Efficiency for a true positron to be id'ed as positron $$\rho_{-} = 1 - \varepsilon_{+} = \frac{T_{-}P_{-}}{T_{-}P_{+} + T_{-}P_{-}}$$ Negative misID: rate at which true positron is incorrectly id'ed as electron $$\varepsilon_{-} = \frac{T_{+}P_{-}}{T_{+}P_{-} + T_{+}P_{+}}$$ Efficiency for a true electron to be id'ed as electron $$\rho_{-} = 1 - \varepsilon_{+} = \frac{T_{-}P_{-}}{T_{-}P_{+} + T_{-}P_{-}}$$ $\rho_{+} = 1 - \varepsilon_{-} = \frac{T_{+}P_{+}}{T_{+}P_{-} + T_{+}P_{+}}$ Positive misID: rate at which true electron is incorrectly id'ed as positron ### Selection criteria for data measurement - Using periods B-D, EF_2e12_medium trigger, e_γ standard GRL (corresponds to 177.59 pb-1) - Require >=1 primary vertex with >=3 tracks, larError<1 - Tag electron: - pT>15 GeV, $|\eta|$ <2.47 (crack excluded), e γ author (1 || 3) - el_OQ passed - el tight passed - Highest pT electron passing taken as tag - Probes (opposite charge and same charge probes): - Same as for tag, except pass el_medium - Opposite charge probe has charge opposite tag, same charge probe has charge same as tag - Highest pT probe candidates selected # Result in $|\eta|$ bins - Use 4 bins, 2 each in barrel and endcaps - |η| bins={0.0, 0.8, 1.37, 1.52, 2.0, 2.47} crack bin excluded - Errors shown are statistical (systematics not done yet) | | N_{pp} | ****** | N_{pm} | N_{mp} | |--------------------------|------------|------------|---------------|---------------| | $0.00 \le \eta < 0.80$ | 141 ± 17 | 51 ± 69 | 9084 ± 70 | 8993 ± 57 | | $0.80 \le \eta < 1.37$ | 64 ± 8 | 148 ± 7 | 6557 ± 75 | 6370 ± 69 | | $1.52 < \eta < 2.00$ | 244 ± 33 | 146 ± 13 | 4323 ± 38 | 4112 ± 43 | | $2.00 \le \eta < 2.47$ | 226 ± 12 | 208 ± 16 | 3022 ± 33 | 3028 ± 36 | | | $\epsilon_p~(\%)$ | $ ho_m$ (%) | $\epsilon_m~(\%)$ | $ ho_p~(\%)$ | |--------------------------|-------------------|---------------|-------------------|---------------| | $0.00 \le \eta < 0.80$ | 99.4 ± 1.2 | 0.56 ± 0.01 | 98.5 ± 1.1 | 1.53 ± 0.02 | | $0.80 \le \eta < 1.37$ | 97.7 ± 1.5 | 2.27 ± 0.03 | 99.0 ± 1.6 | 0.97 ± 0.02 | | $1.52 < \eta < 2.00$ | 96.6 ± 1.4 | 3.43 ± 0.05 | 94.7 ± 1.3 | 5.34 ± 0.07 | | $2.00 \le \eta < 2.47$ | 93.6 ± 1.6 | 6.43 ± 0.11 | 93.0 ± 1.4 | 6.96 ± 0.11 | # Fits in $|\eta|$ bins # Fits in $|\eta|$ bins #### -+ invariant masses #### - - invariant masses ## MC measurement details $$\varepsilon_{+} = \frac{N_{\text{Reco}+}^{\text{Match True}+}}{N^{\text{True}+}}$$ $$\varepsilon_{-} = \frac{N_{\text{Reco-}}^{\text{Match True-}}}{N_{\text{True-}}}$$ ### Samples used: - (15-50 GeV): mc10_7TeV.105466.Pythia_DYee_75M120_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325925_00 - (50-80 GeV): mc10_7TeV.105467.Pythia_DYee_120M250_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325926_00 - (80-175 GeV): mc10_7TeV.105468.Pythia_DYee_250M400_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325927_00 - (175-300 GeV): mc10_7TeV.105469.Pythia_DYee_400M600_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325928_00 - (300-400 GeV): mc10_7TeV.105470.Pythia_DYee_600M800_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325929_00 (400-500 GeV): - mc10_7TeV.105471.Pythia_DYee_800M1000_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325930_00 - (500-600 GeV): mc10_7TeV.105472.Pythia_DYee_1000M1250_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325931_00 - (600-700 GeV): mc10_7TeV.105473.Pythia_DYee_1250M1500_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325932_00 - (700-800 GeV): mc10_7TeV.105474.Pythia_DYee_1500M1750_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325933_00 - (800-1000 GeV): mc10_7TeV.105475.Pythia_DYee_1750M2000_unfiltered.*.e574_s933_s946_r2215_r2260_p545_tid325934_00 # Result (%) in pT bins (MC) 98.90 **E-** 98.55 98.63 97.59 | | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45 | 45-50 | 50-60 | 60-70 | |----------|-------|-------|--------|-------|-------|-------|-------|-------|-------| | <u> </u> | | 1 | | | | | | | | | +3 | 99.26 | 99.75 | 99.52 | 99.48 | 99.39 | 99.74 | 99.79 | 99.62 | 99.26 | | ε- | 98.92 | 99.40 | 99.72 | 99.82 | 99.52 | 99.60 | 99.65 | 99.51 | 99.43 | | | | | | | | | | | | | | 70-80 | 80-90 | 90-100 | 100- | 125- | 150- | 175- | 200- | 250- | | | | | | 125 | 150 | 175 | 200 | 250 | 300 | | +3 | 99.71 | 99.80 | 99.42 | 99.36 | 99.34 | 99.43 | 99.29 | 99.46 | 99.49 | | ε- | 99.39 | 98.76 | 99.24 | 98.78 | 99.30 | 98.96 | 98.66 | 98.96 | 98.63 | | | • | | | | | | | • | • | | | 300- | 350- | 400- | 500- | 600- | 700- | 800- | | | | | 350 | 400 | 500 | 600 | 700 | 800 | 1000 | | | | ε+ | 99.49 | 99.12 | 99.12 | 98.58 | 98.26 | 97.89 | 97.09 | 1 | | 96.41 97.02 96.25 ### Conclusions - Clear dependence seen in |η| - Will check if there is asymmetry in η - And include rest of data - pT dependence seems consistent up to around 500 GeV for positrons and 200 GeV for electrons - Further study required to understand why there is such a difference - Working on completing pT binned measurement on data for 15-50 GeV region - Unlikely we will be able to do very high pT measurement from data soon, but if the charge misID is well described by MC, we can use the numbers shown.